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Inbreeding depression and the maintenance of deleterious
genes by mutation: model of a Drosophila chromosome
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Summary

Inbreeding experiments in Drosophila, particularly those carried out using the 'balancer
equilibration' technique, have revealed high levels of inbreeding depression. It has been estimated
that non-lethal chromosomes have a fitness of 20 % or less in homozygous condition compared to
chromosome heterozygotes. Deleterious recessive genes are, in principle, capable of explaining such
inbreeding depression. In this paper we have asked quantitatively whether the observed high levels
are consistent with what is known about numbers of loci and mutation rates. We find that
accepted mutation rates are easily high enough, provided that the deleterious genes are fully
recessive. Partial dominance, even to the extent of 10% or less, reverses this conclusion. These
calculations have been made assuming the multiplicative model. However the arguments are
potentially sensitive to certain types of selective interactions, and a model which proposes
quadratic gene interaction allows for higher levels of partial dominance. We also test the effect of
taking into account a further constraint. Crow and Mukai have argued from estimates of the
persistence of new deleterious mutations affecting viability that heterozygotes have a reduction in
fitness of around 1-2% per locus, similar to the estimate for lethal genes. Application of this
additional constraint would markedly reduce the range of permissible selection coefficients.
However we argue that the selective disadvantages in heterozygotes of most mutations affecting
fitness are unlikely to be as high as estimated for mutations affecting viability.

1. Introduction

Inbreeding depression is a phenomenon which has
been noted in most, if not all, normally outbreeding
diploid organisms. The corresponding phenomenon
of heterosis, found in outcrossing a normally inbred
organism, is also widely found. We use both terms
'inbreeding depression' and 'heterosis' throughout
this paper and the accompanying paper (Wilton,
Joseph & Sved, 1989), although for Drosophila the
former term is more appropriate.

Inbreeding depression is an observation which is
made at the level of the organism. For some
experimental designs it is possible to associate levels of
inbreeding depression with particular chromosomal
genotypes. However, no direct observation can be
made at the level of the gene. Indeed it has been
known for a long time that either dominance or
overdominance at the level of the individual gene can
be consistent with the observation of inbreeding
depression or heterosis at the chromosome level.
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A priori, the dominance hypothesis must be regarded
as the more likely of the two hypotheses, since it
depends on a class of genes, deleterious recessives,
whose existence is well established. By contrast, there
has been little evidence to suggest the widespread
occurrence of overdominance (e.g. Kimura, 1983),
although Lewontin (1974) has commented that the
potentially small selective values involved make
detection of such selection problematical.

The key difference between the two hypotheses is
that the dominance hypothesis relies on mutation to
replenish the supply of deleterious genes. Although
Crow (1948) and Fisher (1949) argued that overall
mutation rates would probably be insufficient to
account for observed levels of heterosis in maize, more
recent estimates of mutation rates, particularly from
Drosophila, seem to have removed some of the strength
of this argument (see e.g. Crow & Simmons, 1983).
However, there appears to have been no quantitative
evaluation in recent years of the dominance argument.
Such an evaluation is needed, particularly because of
the finding (see below) that levels of inbreeding
depression may be much higher than previously
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recognized. The purpose of this paper is therefore to
build a model of a Drosophila chromosome which
incorporates large numbers of loci each mutating to
deleterious genes. In particular, we are interested in
the prediction of inbreeding depression given by
accepting various levels of mutation and selection,
and the extent to which the results from inbreeding
experiments therefore constrain the possible values of
mutation rates and selective intensities for natural
populations.

The principal experimental result upon which we
rely in the paper comes from the 'balancer equili-
bration' (BE) technique for measuring the selective
value of a chromosome homozygote (Sved & Ayala,
1970). The technique is a simple one in which a
population cage is set up with descendants from just
two chromosomes, one a balancer chromosome which
is lethal in homozygous condition, and the other a
chromosome, usually a wild-type chromosome, whose
fitness in homozygous condition is to be measured.
This technique, with minor modifications, has been
carried out on several different species and chromo-
somes (see Simmons & Crow, 1977; Table 4). In all
cases the results have indicated a low fitness of
chromosome homozygotes. As a rough median, we
have accepted a figure in this paper of 20 % as the
mean fitness of chromosome homozygotes. It should
be mentioned that only non-lethal chromosomes are
investigated by this technique, and that chromosomes
causing complete sterility make a comparatively small
contribution in the experiments.

2. The model

(i) Single locus selection intensities

We follow the usual single-locus selection terminology
for a deleterious gene (cf. Crow & Kimura, 1970, p.
183), s being the selection coefficient and h the degree
of dominance (Table 1, line 3). While the discussion is
directed at recessive genes, we cannot assume complete
recessiveness, and, indeed, the degree of dominance
is shown to be perhaps the most important parameter
in the discussion below. There is conflicting evidence
on the likely magnitude of h for genes in natural
populations (Simmons & Crow, 1977). However, the
weight of evidence (e.g. Mitchell & Simmons, 1977)
seems to favour the notion that genes of small
deleterious effect are incompletely recessive. The bulk
of this evidence comes from genes affecting viability,

Table 1. Frequencies and selective values for a single
locus deleterious gene model

Genotype + /d did

Frequency
Selective value r

l

2pq
l-hs r

\-s

so that its applicability to the description of fitness in
populations is still unproven. In this discussion we
consider possible values of h in the range 0 ^ h < 0-5.
Since the discussion is directed at deleterious genes,
we will not consider negative values of h (over-
dominance). Similarly, although s can take any value
from 1 to —oo, in this discussion we restrict our
attention to small positive values of s.

(ii) The nature of selective interactions

Nothing can be calculated without some under-
standing about how deleterious genes might interact.
This is especially the case if many genes are involved,
as in the present discussion of genes on an entire
chromosome. Unfortunately, consideration of general
models of selective interactions indicates that virtually
any expected inbreeding depression can be consistent
with a given set of deleterious genes. The following
simple model serves to illustrate this.

We are interested in this paper in two rather
different types of populations. The first is that of a
natural population in which deleterious genes are
maintained at a mutation-selection balance. If dele-
terious genes at k loci are present at frequencies
q1,q2,...,qk then in a random-mating population the
expected number of deleterious homozygous loci will
be nA — £(^)2. The second type of population is the
balancer equilibration population in which chromo-
somes from the natural population are made homo-
zygous. In such populations, the number of deleterious
homozygotes is nB = Y,q(. Clearly for low values of
q(, nA is expected to be much lower than nB.

Let us assume that there exists a genotype-fitness
function in which the fitness of a genotype depends
only on the number of homozygous loci. For example,
the multiplicative, or log linear, model leads to such a
function, specifically a linear function if fitness is
plotted on a log scale (Fig. 1, line 1). Now let us
assume instead that the fitness function is one with the
same slope in the region of point nA, i.e. in the range
of genotypes such as expected in the natural popu-
lation, while having a slope of zero outside of this
range (Fig. 1, line 2). Clearly in this case, homozygous
genotypes will perform better than expected from the
single locus selective values applying in the natural
population. But from experiments which consider
only genotypes in the normal range there is no way of
knowing which of the two models will apply.

Even more pathological models are possible, e.g.
Fig. 1, line 3. In this case, the fitness of genotypes with
nB deleterious genes is greater than that of genotypes
with no deleterious genes. Thus genes which are
deleterious in the natural population become advan-
tageous in the inbreeding test, and it becomes difficult
to distinguish what is, and what is not, a deleterious
gene. Note that this is not intended as a realistic
model. However, it is one which illustrates that no
unequivocal prediction for the inbreeding test can be
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«A I Number of homozygous loci

Fig. 1. Four possible relationships between genotype and
fitness. The linear (1) and quadratic (4) models are shown
in thick lines, and two other possible relationships in thin
lines. The position of the natural population distribution
is illustrated by the normal distribution around a mean «A,
and the position of a chromosome homozygote is
indicated by nB.

made from the behaviour of genes under mutation-
selection balance in a natural population.

From these considerations we conclude that no
calculations can be made unless it can be assumed that
the interaction of deleterious genes follows some
' reasonable' rules. Unfortunately there are few studies
which would allow us to test this assumption directly.
We need estimates of the relationship between the
fitness of whole- and part-chromosome homozygotes.
Wilton et al. (1987) have attempted to measure the
fitness of part-chromosome homozygotes in balancer
equilibration cages, and obtained results consistent
with a fitness of such genotypes approximately
intermediate between the fitness of chromosome
heterozygotes and complete chromosome homo-
zygotes. It follows from this result that if homozygous
fitness is attributable to deleterious genes, then there is
approximate linearity of the interaction over at least
part of the range.

We have used several models in an attempt to
determine the likely role of gene interaction. All of
these may be considered as falling into the class of
' reasonable' interaction models. The results from two
of these models, the multiplicative and quadratic
interaction models (Fig. 1, lines 1 and 4), will be
presented in some detail below. We have also
considered in some detail the ' additive' and ' trunca-
tion' models. However for reasons which will be
described below, the results from these are not as
important for considerations of the applicability of
the dominance model.

(iii) Number of loci

An important parameter in any attempt to model the
selective situation for a whole Drosophila chromosome
is the total number of loci on the chromosome. There
is at present no simple estimate of this number. Based
on an analysis of mutation rates to lethal genes on
the A'chromosome, Lefevre & Watkins (1986) have
questioned the validity of estimates based on equating
band, or chromomere, numbers with numbers of
functional units identified by saturation mutagenesis
(e.g. Judd et al. 1972). Perhaps even more importantly,
the evidence from molecular walks has shown that
there are more mRNA transcripts than predicted
from chromomere numbers (see Fristrom & Clegg,
1988, pp. 553-560 for an instructive summary of the
current evidence).

From our point of view, the distinction between the
class of genes identified by saturation mutagenesis,
and those identified by the existence of transcripts, is
an important one. As emphasized by Fristrom &
Clegg (see also Young & Judd, 1978) the obvious
explanation for the difference in counts is that the
majority of genes are not capable of mutating to lethal
or visibly distinct alleles. It is precisely these non-
lethal genes which are of potential importance in the
balancer equilibration experiments. Also, although
lethal genes are specifically excluded from these
experiments, we do not exclude the possibility that
non-lethal mutations are making an important contri-
bution at the loci capable of mutating to lethality. We
therefore accept the overall estimate given by tran-
script counting, rather than that given by chromomere
counting, as a relevant estimate of the number of loci
at which deleterious recessives can occur.

As a confirmation of the results from counting
transcripts, which has necessarily been carried out
over a small number of regions, an overall estimate
can be obtained of the fraction of DNA giving rise to
mRNA (see Fristrom & Clegg, 1987, p. 560). This has
given reasonable agreement with the transcript count-
ing experiments, and an overall estimate of gene
number of about three or four times the number of
chromomeres. Accepting a figure of 2000 chromo-
meres per major autosome (Lefevre & Watkins, 1986)
leads to an estimate of around 6000-8000 genes.

3. Calculations

(i) Chromosome fitness under the multiplicative
model

Assuming that deleterious genes occur in natural
populations at equilibrium given by the balance of
mutation and selection, our aim in these calculations
is to estimate the expected fitness of chromosome
homozygotes. Since our principal interest is to describe
the situation in BE populations, the calculation is
tailored specifically to the procedure of this type of
experiment. Two stages are involved: (1) predicting
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the fitness of wild-type chromosome homozygotes
relative to heterozygotes containing the balancer
chromosome, (2) predicting the fitness of balancer
chromosome heterozygotes relative to chromosome
heterozygotes in BE populations set up with a mixture
of wild-type chromosomes.

Because of the large number of unknown parameters
in the formulation, we have tried to simplify as much
as possible by reversing the natural direction of the
calculation. We start with an assumed value of the
homozygous fitness, and work backwards to find
what mutation value is consistent with this.

A typical chromosomally homozygous individual
will be homozygous for some number of deleterious
genes, which we take to be /. Chromosomally
homozygous individuals cannot carry any deleterious
genes in heterozygous condition. Assuming multi-
plicativity, the selective value of such an individual,
ignoring contributions from genes on other chromo-
somes, will be

w++ = (i-sy.

The selective value of such a genotype is measured
against heterozygotes containing the balancer hetero-
zygote. We assume that a balancer heterozygote
contains no homozygous deleterious genes. However
it will contain i heterozygous genes contributed by the
+ chromosome, plus some contribution from the
balancer chromosome. The selective value of this
genotype is conveniently expressed in the form

wB+ = {\-hs)lB,

where B is taken to be a constant contribution from
the balancer chromosome. The balancer chromosome
will typically contain gene(s) of major effect which are
of a different class than those carried by the +
chromosome.

The overall selective value of chromosome homo-
zygotes compared to balancer heterozygotes is

0)

genes, assumed to be the same at all loci. Thus the
above equation becomes

B\\-hsV

We now take into account the frequency of deleterious
genes in the population from which the chromosomes
are drawn. If the frequency of chromosomes having i
deleterious genes is J{i), then the mean selective value
of chromosome homozygotes will be

where L is the total number of loci. Assuming that the
deleterious genes are in linkage equilibrium in the
population from which the chromosomes are drawn,
J[i) is a binomial distribution with parameters L and q,
where q is the population frequency of deleterious

Combining the terms [1 — s/\ — hsf and q\ and
simplifying, gives

(2)

To complete the calculation, we need to give expecta-
tions for the selective values of genotypes in a BE
population containing chromosome heterozygotes
rather than homozygotes. The overall selective value
of chromosome homozygotes must be judged relative
to chromosome heterozygotes, eliminating the contri-
bution from the balancer chromosome.

Two wild-type chromosomes in a heterozygous
population will have respectively / and j deleterious
genes. Then the selective value of such a genotype will
be

Since two chromosomes are sampled together in
heterozygous cages, the mean selective value of such
genotypes will be

i-0 j-0

which simplifies to

iC\q\\ -

Note that the summation is carried out here before
comparing against the balancer genotypes, since a
single population in this case consists of a mixture of
genotypes.

The selective value of balancer genotypes is, as
previously,

Summing over all possible wild type chromosomes
in this case gives

w = (l-hsq)LB.

The selective value of chromosome heterozygotes
compared to balancer heterozygotes is therefore

= B-{\-hsqf.

The overall selective value of chromosome homo-
zygotes compared to heterozygotes is now obtained
by dividing vvhom by vvhet. The contribution B due to
the balancer chromosome cancels out. Note that this
division is an artificial one for the balancer equili-
bration procedure, since the chromosome homo-
zygotes and heterozygotes are never compared directly
against each other. However this procedure is what
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has been used to obtain the actual estimates of
homozygous fitness (e.g. Sved & Ayala, 1970).
Denoting this fitness simply by w, we get

1 —sq
\-h
\-hs 1 (3)

—•— i

1 — hsq

Equation (3) is exact under the assumptions made.
The equation may be simplified, if .? is sufficiently
small that we can ignore terms in s2, to

w = [\-sq(\-2h)]L, (4a)

or, alternatively to

= [\~s(\-2h))L". (4 b)

A simple derivation of equation (4b) follows from
noting that the 'average' chromosome has Lq dele-
terious genes, and therefore that the average chromo-
some homozygote has selective value (1— s)L", while
the average chromosome heterozygote has selective
value (1— sh)2L". Dividing the former by the latter,
and simplifying by ignoring terms in s2, gives (4b).
This shows that, to a first approximation, the sampling
processes can be ignored, and the selective value of the
average chromosome used.

The assumption of equal selective values at all loci
is made for convenience. An explicit solution may
be obtained in the case of unequal selective values
at individual loci. If the selective disadvantages of
homozygote and heterozygote at the /th locus are st

and st hj respectively, with gene frequency qt, then it is
shown in Appendix I that the equivalent equation to
(3) may be derived as

w=UZ,
(-1

where

(5)

}-stt

Z,=

\-ht

\-hisiqi

In practice, conclusions cannot readily be drawn for
models in which the selective values are unequal. All

numerical calculations given are for the case of equal
selective values.

As previously mentioned, we are reversing the
natural direction of the calculation to determine what
population parameters are consistent with the ob-
served chromosome fitness. Thus we take the value of
w as fixed, and equal to 0-2, and calculate the gene
frequency q consistent with a range of values of s and
h. Reversing equation (3) gives

(l-fV)(l-hs)
s(\-h-hW+hsW)' (6)

where W = (w)llL.
Assuming a value for w of 0-2, values of q calculated

from equation (6) for various values of the selection
coefficient ^ and degree of dominance h are tabulated
in Table 2. Rather than tabulating the value of q, it is
convenient to tabulate the value of Lq, which is the
number of deleterious genes are chromosome. A small
approximation is involved here, as in passing from
equation (4a) to (4b). The values in Table 2 have been
calculated assuming that £ = 1 0 0 0 0 . The values
calculated assuming L = 2000 differ from these by less
than 1%.

The table shows that there is a strong, approxi-
mately inverse, dependence of Lq on s, and a weak
dependence on It excepting in the higher range of h
values. As the value of h approaches 0-5, no inbreeding
depression is expected at all, which accounts for the
severe rise in values of Lq in the range h = 0-25-0-40.

(ii) Mutation-selection balance

We now wish to calculate the level of mutation
required to maintain deleterious genes in a natural
population at the levels given in Table 2. In extending
the argument in this way, we are making the important
assumption that the selective intensities in natural
populations are comparable to those found in the
population cage.

Assuming that deleterious genes are at equilibrium
as determined by a balance between mutation and
selection, the required rate of mutation can be given as

Table 2. Number of deleterious genes per chromosome (Lq) calculated
from the multiplicative interaction model

h

1/2-5
1/4
1/8
1/16
1/32
1/64
1/128
0

s

1/2

9-2
5-3
40
3-6
3-4
3-3
3-3
3-2

1/4

241
11-7
8-3
7-2
6-8
6-6
6-5
6-4

1/8

55-6
24-6
16-9
14-6
13-7
13 3
131
12-9

1/16

119-5
50-3
340
29-3
27-4
26-6
261
25-7

1/32

2480
101-8
68-3
58-7
54-9
531
52-3
51-5

1/64

505-3
204-8
1370
117-6
109-8
106-3
104-6
1030

1/128

10200
410-7
274-3
235-3
219-7
212-6
209-2
2060
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Table 3. Mutation rates (x 106) required to maintain deleterious genes in
natural populations, assuming the multiplicative interaction model. Two
possible estimates of the total number of loci are considered

h

1/2-5
1/4
1/8
1/16
1/32
1/64
1/128
0

1/2-5
1/4
1/8
1/16
1/32
1/64
1/128
0

s

1/2

1840
66-3
24-9
112
5-3
2-6
1-3
01

920-6
332-9
125-9
56-9
27-7
14-2
7-7
1-3

1/4

241-6
73-3
260
11-4
5-4
2-7
1-4
01

1212-4
369-8
132-4
59-4
29-3
15-6
90
2-6

1/8 1/16

10000 Loci

278-7
77-1
26-6
11-6
5-6
2-8
1-5
0-2

300-6
79-4
271
11-9
5-8
30
1-7
0-4

2000 Loci

1406-7
392-9
138-3
62-8
32-2
18-3
11-6
5-2

15361
412-4
146-4
68-9
37-8
23-6
16 9
10-4

1/32

313-8
811
27-8
12-4
6-2
3-4
21
0-8

1643-3
437-8
160-8
80-9
48-8
34-3
27-4
20-7

1/64

323-8
83-3
290
13-4
71
4-3
30
1-7

1775-3
481-5
188-7
104-6
70-9
55-7
48-4
41-4

1/128

335-0
86-8
31-2
15 3
8-9
60
4-6
3-3

1996-4
565-4
2440
1520
1151
98-4
90-5
82-8

in equation (7), which is obtained by slight simpli-
fication from equation (6.2.6) of Crow & Kimura
(1970).

u = q2s{\ —2h) + qhs. (7)

Substituting for q from (6) gives the mutation rate
required to balance particular selective values. Table 3
gives the value of u for a range of values of h and s, for
two different values of L, 10000 and 2000, which span
the estimated value of 6000-8000 discussed earlier.
The results show that there is a comparatively weak
dependence of mutation rate on selection intensity s,
except for nearly recessive genes. On the other hand,
there is a strong dependence on the degree of
dominance. Clearly for high values of h, i.e. low
dominance, unrealistically high mutation rates, as
well as gene numbers (Table 2), must be postulated in
order to give a mutation-selection balance which
explains high levels of inbreeding depression. In the
lower range of h values, there is an approximately
inverse relationship between h and u until for very low
values of h, selection against the recessive becomes the
dominant selective force. The considerable differences
between the two sets of values of Table 3, especially
for low values of h, highlights the necessity for an
accurate estimate of locus number L.

If we accept that mutation rates cannot be much
higher than 10"5 (Simmons & Crow, 1977), the results
from Table 3 rule out the possibility of values of h
much higher than 1/16. This is true even if we accept
the more conservative results corresponding to a locus
number per chromosome of 10000. However the re-
sults imply very weak limits on the selection intensity s.

There are two reasons for the strong dependence of
inbreeding depression on the value of h. The first,
already discussed in connection with Table 2, is that
heterosis occurs only if there is some dominance at the
loci in question. However, Table 2 shows that this
effect is only important at higher values of h. More
important in the present calculation is the way in
which the equilibrium frequency of the deleterious
genes falls as h rises. From equation (7), there is an
approximately inverse relationship between q and h.

An additional factor which may come into play at
very low values of h is the size of the population. The
calculations have all assumed an infinite population
size, which is probably not critical for partially
dominant genes. However, Robertson (1962) has
emphasized that the population size needs to be
extremely large before formulae calculated for the
balance between mutation and selection for a recessive
gene are accurate. Thus the values of u in Table 3 for
very low values of h are undoubtedly underestimates
for realistic population sizes.

(iii) The rate of production of new mutations

Crow (1979) has used estimates of (1) the rate of
mutation to new deleterious genes, and (2) the
population incidence, to obtain estimates of the
selective disadvantage in populations. For example,
for lethal genes the estimated rate of production of
lethals on chromosome II (£/) is 0005 per generation,
while the population incidence (Q = Lq) is around
0-25. Assuming that the mutation rate is u at all L loci,
we can use equation (7) with 5 = 1 to estimate h. This
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gives approximately/; = (U/Q)(\ -Q2/LU). For any
value of L greater than a few hundred, the estimate of
/; becomes very close to U/Q, or 1/50 in this case.

A similar argument can be made for non-lethal
deleterious genes to show that the ratio of newly
produced loads to equilibrium population loads
should again directly estimate the selective dis-
advantage of heterozygotes, hs in this case. Crow
(1979) has used estimates of Mukai et al. (1972) from
newly accumulated viability polygenes to estimate the
value of hs in this case as 1/30, surprisingly a higher
estimate than the estimate for lethal genes. It is
perhaps safer to assume an estimate for hs in the range
1/50-1/30.

Since similar estimates of hs are obtained for two
different classes of genes, it seems worthwhile investi-
gating whether a similar estimate would be consistent
with the calculations of the present paper. Unfortun-
ately we cannot test this question experimentally,
since we have no estimate of the effect of mutation
from the BE technique. Clearly if we assume that hs is
equal to 1/32, the range of permissible values of/? and
sis greatly reduced. For low values of.?, e.g. s = 1/16,
even if we assume for conservatism that hs is only
1/128, i.e. 1/4 as high as the estimated value of 1/32,
the lowest mutation rate corresponds to h = 1/4 and
L = 10000, and is equal to 271 x 10"6, which seems
unacceptably high.

(iv) The quadratic interaction model

The potential importance of the model of gene
interactions has already been indicated. The calcu-
lations to date have assumed the multiplicative
interaction model. We have attempted to give a
numerical assessment of the .importance of this
assumption by considering three other interaction
models, which may be described as the 'additive',
'truncation' and 'quadratic' models respectively. We
will only be presenting results for the latter model,
partly because of the complexity of the calculations
with the other models. More importantly, however,
for a given inbreeding depression in the BE population,
the truncation model predicts a greater selection
intensity per locus than does the multiplicative model.
Thus the restrictions shown above for the multi-
plicative model are accentuated by the truncation
model. The quadratic model predicts the opposite,
thereby allowing us to see whether more realistic
combinations of parameter values can be achieved
with the deleterious gene model. The additive model
predicts a result somewhere between the multiplicative
and quadratic models, and so does not add sig-
nificantly to the argument.

The quadratic model, in which log fitness falls in a
curvilinear manner (Fig. 1, curve 4) derives support
from the data of Mukai (1969). The rate of decrease of
mean viability over a long time course followed a
convex curve. The model implies a type of synergism

such that the joint effect of a number of deleterious
genes is greater than the product of the individual
genes.

The general form of the quadratic fitness function is
taken to be

For a completely recessive model, / is simply the
number of deleterious genes in homozygous condition.
For a model with partial dominance, measured by the
parameter h as in Table 1, / is equal to i + hj, where i
is the number of loci homozygous for deleterious
genes and j the number of loci heterozygous for
deleterious genes. For the linear (multiplicative)
model we set b = 0, and can confirm that this
formulation leads to the same calculations as given
above for the multiplicative model if the parameter a
is equated to the selective value s.

For a pure quadratic model we set a = 0. The
selective value s cannot be used immediately in this
calculation. The quadratic model implies a particular
set of fitness values in the population in terms of the
parameter b. From these values we can calculate the
mean, or marginal, selective value at individual loci.
To do this, we focus attention on one particular locus,
and calculate the mean fitness of individuals homo-
zygous for the deleterious gene relative to the mean
fitness of individuals homozygous for the wild type
gene at that locus. This is equal to
e-HL(Q2+2pQh) + lf Ie-b[UQ2+2PQll)]2^

where L is again the total number of loci on the
chromosome, q is the frequency of deleterious genes
and p = \—q. The term L(q2 + 2pq) represents the
average ' homozygosity', while the + 1 term represents
the additional homozygosity at the locus in question.
Note that what is being calculated is the fitness of the
mean individual in the population rather than the
mean fitness in the population, but the calculations
with the multiplicative model showed that little error
is introduced by this device. The above quantity can
be equated with (1—.s), where .? is the marginal
selective disadvantage of deleterious homozygotes.
Simplifying the above expression then gives

Equation (8) may be inverted to solve for the
parameter b in terms of s, but the formulation leads to
a confounding of b with the gene frequency q.

We now calculate the consequences of this model
for selection in the BE population. If / is the mean
number of deleterious genes in the BE cage, then the
average chromosome homozygote will be homozygous
for / loci and heterozygous for none, while the average
chromosome heterozygote will be heterozygous for 2/
loci and homozygous for none. As previously, the
parameter / is the same as the product Lq. The mean
selective value of chromosome homozygotes com-
pared to heterozygotes in BE populations will be

GRH 53
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Table 4. Mutation rates ( x 106) required to maintain deleterious genes in
a population assuming a quadratic gene interaction model. Format of the
table is as for Table 3

h

1/2-5
1/4
1/8
1/16
1/32
1/64
1/128
0

1/2-5
1/4
1/8
1/16
1/32
1/64
1/128
0

1/2

218-4
48-7
14-5
5-8
2-6
1-3
0-6
001

1095-4
244-5

72-8
29-5
13-5
6-6
3-4
0-3

1/4

255-2
52-3
13-7
50
2-2
10
0-5
001

1285-5
2641

69-2
25-6
11-2
5-4
2-8
0-4

1/8 1/16

10000 Loci

2720
53-4
12-6
4-2
1-7
0-8
0-4
002

2810
540
11-9
3-6
1-4
0-6
0-3
002

2000 Loci

1382-3
272-5

64-8
21 9

90
4-3
2-2
0-4

1452-6
281-2

62-7
19-3
7-5
3-4
1-8
0-4

1/32

287-2
54-7
11-6
3-2
11
0-5
0-2
002

1537-3
296-8

640
18-2
6-5
2-9
1-5
0-4

1/64

2941
55-9
11-6
30
10
0-4
0-2
002

1688-4
329-9

70-9
19 2
6-3
2-6
1-4
0-4

1/128

305-5
58-2
120
31
0-9
0-3
01
002

2023-7
409-2

90-8
24-3

7-4
2-9
1-4
0-5

This quantity is equated to 0-2 if we accept the same
figure as previously for homozygous fitness.

The combination of equations (8) and (9) now
enables the two unknown parameters, b and q, to be
calculated in terms of the parameters s, h and L. Then,
substituting for q in equation (7), the mutation rates
compatible with particular selection coefficients can be
calculated (Table 4). This table shows that the
conclusions regarding values of h are somewhat
alleviated by comparison with the multiplicative
model (Table 3). Values of h greater than 10 % are not
excluded for the higher estimate of L.

4. Discussion and conclusions

The results as summarized in Tables 3 and 4 show that
there are combinations of parameters for which
mutation rates to deleterious genes of 10~5 or less
predict selective values as low as 20 % for chromosome
homozygotes. It is therefore clear that there is a range
of parameter values for the dominance model which
will satisfactorily explain chromosome heterosis. The
magnitude of selective values at individual loci is
relatively unimportant in these calculations, a finding
which is in agreement with genetic load calculations
(Crow & Kimura, 1977, p. 300). However when
dominance is incomplete, the inbreeding depression
consistent with a given mutation rate falls rapidly for
increasing h. Depending on the number of loci assumed
in the calculation, and the mode of interaction, the
critical value of h could be as low as 1/128 or as high
as 1/8.

Even the upper limit of this range, h = 1/8 is not
high. As mentioned previously, Crow (1979) has
compared the rate of production of new deleterious
mutations with the incidence in populations, and has
shown that the persistence in populations is much less
than expected for a fully recessive gene. Crow's study
considered only mutations affecting viability, pre-
sumably a sub-set of the mutations affecting fitness.
Interestingly, although the study provides an estimate
of the mean value of the parameter combination sh,
which comes to about 1/50-1/30, it does not provide
an estimate of either s or h individually. Thus if the
values of s in the study were reasonably high, say
1/4-1/8, the corresponding value of h would not be
inconsistent with the upper limit h = 1/8 mentioned
above. We would argue that it is likely that only the
more severe mutations are detectable by their effects
on viability, and that therefore the estimate for sh,
1/50-1/30, is only applicable to mutations with
moderately high values of s. Patently the value of sh
cannot be as high as 1/50 for mutations for which
s < 1/50. Thus if most mutations affecting fitness are
of low selective effect, and if the value of h does
not generally rise above 1/8, then observed levels
of heterosis are consistent with the dominance
hypothesis.

As mentioned previously, a key assumption of the
argument is that selective intensities at individual loci
in the population cage are comparable with those in
natural populations. In fact we do not know whether
the population cage fitness estimates are likely to be
higher or lower than those in natural populations.
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Haymer & Hartl (1982) have raised the possibility that
the 20 % fitness estimate from population cages is too
low. From the point of view of crowding it seems
possible that the situation in the population cage is
more extreme than in the wild, and therefore that the
intensity of selection is overestimated in the population
cage. However it has been argued by Sved (1976) that
many of the selectively important activities in natural
populations, e.g. finding food, shelter, mates and egg-
laying sites, are eliminated or reduced to chance
events in the population cage. On this argument the
population cage selective intensities are more likely to
be underestimates of the natural population inten-
sities. This would accentuate the problem of account-
ing for the heterosis in terms of deleterious recessives.

The arguments of the paper implicitly assume that
linkage equilibrium occurs in natural populations.
Given that we are discussing-genes at low frequency
spread over the genome, such an assumption seems
warranted. No assumption is necessary for the
population cage, since the experiment is set up to
measure the effect of all genes on a single chromosome,
and recombination is deliberately suppressed.

Some mention should also be made of the assump-
tion that all deleterious genes have equal effects on
fitness. As previously mentioned, it is possible to relax
this assumption, but it is then difficult to establish
summary principles. Perhaps more importantly,
models in which there is a mixture of gene effects are
expected to give results which are intermediate
between different models of equal gene effects. For
example, we can consider a model in which half the
genes have selective disadvantage s and half have
selective disadvantage lOs. Clearly this model will give
results which are intermediate between the models
in which all genes have selective value 5 and \0s
respectively. For order-of-magnitude calculations
such as those made in the paper, the intermediate
result would add little to the argument.

Finally, it should be mentioned that although the
dominance rather than overdominance model has
been assumed in all calculations, from one point of
view it does not matter which model is invoked. On
either model, each chromosome homozygote must
contain a deleterious genotype at numerous loci. The
calculations of gene numbers and selective effects
(Table 2) could equally well be interpreted in terms of
the overdominance model. It is only the calculations
which invoke mutation to explain the maintenance of
these selective values which strictly demand the
dominance model.

Numerous suggestions and criticisms on this manuscript
from Professor James Crow are gratefully acknowledged.
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Appendix I. Derivation of fitness formulae for
unequal selective values

We begin by deriving an equation equivalent to (2) for
the fitness of a chromosome homozygote in the
balancer equilibration cage. The fitness of a chromo-

10-2
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some having the deleterious gene at some combination
of loci ix, i2, ...,ik is equal to

If we put

^ = 1+71

w. B\\-si hj\\-st hj'"\\-st h

The probability of a genotype such as this is equal
to

then it may be seen by evaluating the product term
I!;:, (JSQ that

where the terms in (1 —q) involve all loci other than *
21;i2,...,ik. This may be rewritten as 1

Thus all terms in (1 —q) cancel, giving

1 t

I l^
where this time the terms in (\—q) involve a
contribution from all loci. where

The overall mean fitness is equal to

(10)

where summation is over all combinations of deleter- Equation (10) is the analogue of equation (2) with
ious genes. This expression involves a constant variable selective values.
term, The derivation of equation (5) follows in an exactly

analogous manner. The mean heterozygous fitness,
l(\-qi){\-q2)...(\-qL).

Each term in the summation involves the product of
terms of the form

whet, is equal to

\-qJ\\-stK

Dividing equation (10) by this product leads to
equation (5).
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