IGNATOV'S THEOREM: AN ABBREVIATION OF THE PROOF OF ENGELEN, TOMMASSEN AND VERVAAT

L. C. G. ROGERS,* University of Cambridge

The beautiful proof of Ignatov's theorem which appeared in Engelen et al. (1988) is obviously the correct way in which to prove this amazing result. The purpose of this note is to show that, by assembling ideas of Engelen et al. in a slightly different way, one can deduce the general case from the discrete case.

Recall the situation. X_1, X_2, \cdots are i.i.d. real-valued random variables. The observation X_n is a *k*-record value if $\sum_{i=1}^{n} I_{\{X_i \ge X_n\}} = k$, and the collection of all *k*-record values makes up a point process on \mathbb{R} , called the *k*-record process. Let us denote the *k*-record process by $(N_x^k)_{x \in \mathbb{R}}$, using the 'counting process' formulation $N_x^k \equiv$ no. of *k*-record values $\le x$. Ignatov's incredible result says that N^1, N^2, \cdots are i.i.d. point processes and Engelen et al. prove this very quickly assuming that the distribution of X_1 is discrete (Section 2 of their paper).

To pass to the general case, we shall prove by a discretization argument that for any $K, M \in \mathbb{N}$, the restrictions to $(-\infty, M)$ of N^1, \dots, N^K are i.i.d., which is all that is needed. Consider the approximations X_i^n to X_i defined by $X_i^n \equiv 2^{-n}[2^nX_i]$, where $[\cdot]$ denotes the integer part. Then always $X_i - 2^{-n} < X_i^n \le X_i$, and for the i.i.d. sequence $(X_i^n)_{i \in \mathbb{N}}$, Ignatov's theorem holds, since X_1^n has a discrete distribution.

Let

$$\tau \equiv \inf\left\{m: \sum_{j=1}^{n} I_{[M,\infty)}(X_j^n) = K\right\}$$
$$\equiv \inf\left\{m: \sum_{j=1}^{n} I_{[M,\infty)}(X_j) = K\right\}.$$

Evidently, it is impossible for any X_j , $j > \tau$, to be a k-record value, $k \le K$, except if $X_j \ge M$. The same is true for the approximations (X_j^n) . Thus the restrictions to $(-\infty, M)$ of the k-record processes, $k = 1, \dots, K$, are known once X_1, \dots, X_{τ} have been observed. Now while the k-record processes of $(X_j^n)_{j \in \mathbb{N}}$ are not easily related to the k-record processes of $(X_j)_{j \in \mathbb{N}}$ (since different X_j -values may get aliased into the same X_j^n -value, and may thereby get attributed to the wrong k-record process) what we can say is that for n sufficiently large, the mesh $2^{-n}\mathbb{Z}$ will be fine enough to distinguish all different X_j -values, $j = 1, \dots, \tau$. Thus, almost surely, the restrictions to $(-\infty, M)$ of the k-record process of the (X_j^n) converge (weakly) to the k-record processes of (X_j) , and the independence of N^1, N^2, \dots follows.

We note also that the common law of the N^i can be easily identified, by taking some continuous $f \ge 0$ supported in (-M, M) and computing the Laplace functional $\phi(f) \equiv E \exp\{-\int f(x)N^{-1}(dx)\}$. If the distribution were discrete, $P(X_1 = x_j) = \phi_j$, then elementary calculations give

$$\phi(f) = \exp\left\{\sum_{j} \log\left(1 - p_j f(x_j)/\bar{p}_j\right)\right\}$$

where $\bar{p}_i \equiv \sum_{k \ge i} p_k$. If ϕ_n is the Laplace functional of the *n*th approximation to N^1 , then the

Received 16 May 1989; revision received 12 June 1989.

^{*} Postal address: Statistical Laboratory, University of Cambridge, 16 Mill Lane, Cambridge CB2 1SB, UK.

almost sure convergence of the 1-record processes implies that $\phi_n(f) \rightarrow \phi(f)$, characterising the (simplified Poisson) law of N^1 .

Reference

ENGELEN, R., TOMMASSEN, P., AND VERVAAT, W. 1988) Ignatov's theorem; a new and short proof. J. Appl. Prob. 25A, 229–236.