
Flow (2022), 2 E5
doi:10.1017/flo.2021.20

RESEARCH ARTICLE

Characterization of atmospheric coherent structures and
their impact on a utility-scale wind turbine
Aliza Abraham1 ,2 and Jiarong Hong1 ,2 ,*
1St. Anthony Falls Laboratory, University of Minnesota, 2 Third Avenue SE, Minneapolis, MN 55455, USA
2Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455, USA
*Corresponding author. E-mail: jhong@umn.edu

Received: 11 June 2021; Revised: 8 October 2021; Accepted: 19 December 2021

Keywords: utility-scale wind turbine; atmospheric boundary layer; turbulent coherent structures; field-scale measurements

Abstract
Atmospheric turbulent velocity fluctuations are known to increase wind turbine structural loading and accelerate
wake recovery, but the impact of vortical coherent structures in the atmosphere on wind turbines has not yet been
evaluated. The current study uses flow imaging with natural snowfall with a field of view spanning the inflow and
near wake. Vortical coherent structures with diameters of the order of 1 m are identified and characterized in the
flow approaching a 2.5 MW wind turbine in the region spanning the bottom blade tip elevation to hub height.
Their impact on turbine structural loading, power generation and wake behaviour are evaluated. Long coherent
structure packets ( >

∼ 200 m) are shown to increase fluctuating stresses on the turbine support tower. Large inflow
vortices interact with the turbine blades, leading to deviations from the expected power generation. The sign of these
deviations is related to the rotation direction of the vortices, with rotation in the same direction as the circulation
on the blades leading to periods of power surplus, and the opposite rotation causing power deficit. Periods of power
deficit coincide with wake contraction events. These findings highlight the importance of considering coherent
structure properties when making turbine design and siting decisions.

Impact Statement
Utility-scale wind turbines are subject to complex atmospheric conditions, including varying levels of turbu-
lence. Atmospheric turbulence is characterized in part by coherent vortical structures, i.e. strongly rotating
regions of fluid, although they are difficult to study in real atmospheric flow due to limitations in measurement
techniques. The current study characterizes these coherent structures using a super-large-scale flow visual-
ization technique with natural snowfall, and shows that they lead to increased stress on the turbine structure,
which can cause premature structural failure. This study also shows that coherent structures impact power
generation and the behaviour of the wake (the region of slower air behind the turbine), which affects overall
wind farm efficiency. By quantifying the characteristics of these structures and their impact on wind turbines,
these findings highlight the importance of including considerations of coherent structure properties in wind
farm design and siting decisions.
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1. Introduction

Wind turbines operate in a complex atmospheric environment subject to constantly changing turbulent
wind conditions that are influenced by a broad range of scales (Veers et al., 2019). Previous works
have established the significant impacts of atmospheric turbulent velocity fluctuations on wind turbines,
showing that higher levels of turbulence intensity lead to increased structural loading (Frandsen, 2007;
Park, Basu, & Manuel, 2014) and accelerated recovery of the wake, the region of slower air behind the
turbine (Medici & Alfredsson, 2006; Wu & Porte-Agel, 2012). Moreover, turbulent wind speed fluctua-
tions lead to power production deviations from the expected power curve, contributing to uncertainty in
wind farm energy production and increased financial risk for energy contractors (Lee & Fields, 2021).
However, the impact of atmospheric coherent structures, characteristic features of turbulence, has not
been thoroughly explored.

Coherent structures in the atmospheric boundary layer (ABL) have been observed to exhibit similar
properties to those of canonical turbulent boundary layers observed in laboratory experiments. In
particular, signatures of hairpin vortex packets have been consistently identified in the ABL within
∼10–20 m elevations (Heisel, Dasari, et al., 2018; Hommema & Adrian, 2003; Li & Bou-Zeid, 2011;
Oncley, Hartogensisa, & Tong, 2016). These structures are more difficult to detect at higher elevations
where they could interact with wind turbines due to limitations in the spatial resolution of conventional
measurement techniques such as sonic anemometers. However, some recent studies have used lidar
to detect intermittent coherent structures at elevations up to 200 m. Träumner, Damian, Stawiarski,
and Wieser (2015) observed large-scale coherent regions of velocity, or ‘streaks’, with 100–200 m
vertical extent that are interpreted as indicators of groups of hairpin vortices, with insufficient resolution
to detect individual vortex cores. By qualitatively classifying hourly intervals as ‘with structures’ or
‘homogeneous’, they determined that the mean wind speed is higher for periods with structures than for
homogeneous periods (4.5–6.3 m s−1 vs. 2.2–3.8 m s−1, respectively). Cheliotis et al. (2020) identified
similar velocity streaks in lidar data at an elevation of 75 m. Using an automated classification method,
they detected coherent streaks on 25 % of the lidar scans over a period of 2 months. These streaks were
found to occur more frequently at night than during the day. Alcayaga, Larsen, Kelly, and Mann (2020)
directly quantified the vertical component of vorticity from lidar scans taken at 200 m elevation and found
that positive-divergence streaks (indicative of vertical ejections of low-momentum flow) are bounded
by counter-rotating vortices. These features are characteristic of canonical hairpin vortex packets found
in turbulent boundary layers at a wide range of Reynolds numbers, which have been shown to extend
beyond the logarithmic layer even up to the edge of the boundary layer (Adrian, 2007).

Very few works have investigated the impact of coherent structures on wind turbines. One such study
simulated a Kelvin–Helmholtz billow, which generates coherent structures in the atmosphere, interacting
with a wind turbine. Using large eddy simulations supplemented with a short example from field data,
they found that coherent structures cause high-frequency structural vibrations and strong impulsive
loading events, both of which can lead to structural damage (Kelley, Jonkman, Scott, Bialasiewicz, &
Redmond, 2005). A more recent investigation used cylinders of different sizes to generate turbulence
upstream of a hydrokinetic turbine in open-channel flow. This study showed that cylinders placed farther
upstream cause the vortex structures in the turbine wake to breakdown faster than those placed closer
to the turbine, because the upstream placement allows a longer time for coherent structures to develop.
In addition, the slope of the turbine power spectrum is steeper when in the wake of a cylinder in the
same intermediate-frequency range that scales with the cylinder diameter and flow speed due to von
Kármán vortex shedding (Chamorro, Hill, et al., 2015). Although these studies provided important
insights into the interactions between wind turbines and coherent structures, they were not conducted
over an extended period in real atmospheric conditions.

Previous works have had limited success directly characterizing atmospheric coherent structures over
a range of scales and determining their impact on wind turbines due to limitations in spatio-temporal
resolution. Of the studies discussed above, only Alcayaga et al. (2020) directly identified individual
vortices at high enough elevations to interact with wind turbines, and even they were constrained by
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their use of scanning lidar, which requires 45 s to obtain a full scan of the measurement region (Karagali,
Mann, Dellwik, & Vasiljević, 2018). On the other hand, several field-scale investigations have explored
the interaction between wind turbines and different ranges of atmospheric turbulent length scales.
Chamorro, Lee, et al. (2015) conducted a field study using a meteorological tower to characterize
the inflow experienced by the 2.5 MW wind turbine at the Eolos Wind Energy Research Station, and
investigated the modulation of power generation and foundation strain. They identified three frequency
regions that influence power and strain differently: sub-rotor length scales have no effect on power but
directly influence strain, power and strain both exhibit a damped response to intermediate length scales
and the largest length scales (of the order of the boundary layer thickness) directly influence strain and
power. Heisel, Hong, and Guala (2018) quantified the modulation of turbulent length scales between
the inflow, probed using a meteorological tower, and the wake, measured with lidar. They observed a
reduction of low-frequency energy and an increase in high-frequency energy in the wake relative to
the inflow, suggesting a breakdown of large turbulent scales into smaller scales. This sheltering effect
was only observed when the turbine was operating in the optimal regime. Both aforementioned studies
used frequency spectra to analyse the turbulent flow scales, but they did not directly detect coherent
structures. However, frequency spectra do not fully capture the complexity of the ABL, including the
coherent structures discussed above.

To summarize, direct characterization of atmospheric coherent structures has been hindered by
the low spatio-temporal resolution of conventional field-scale measurement techniques. Furthermore,
investigations into the impact of such structures on wind turbines have been limited to the laboratory
and simulations where the stochasticity of atmospheric flow is difficult to replicate. Therefore, the goal
of the current investigation is to (i) provide a more detailed characterization of atmospheric coherent
structures, including their intermittency and stochasticity, and (ii) quantify the impact of these structures
on utility-scale wind turbine loading, power generation and wake behaviour under real atmospheric
conditions. These aims are achieved using snow-powered super-large-scale particle image velocimetry,
a high-resolution field-scale measurement technique that has proven successful in quantifying flows
(including coherent vortical structures) around utility-scale wind turbines (Hong & Abraham, 2020).
Previous studies have used this method to characterize the incoming flow approaching the 2.5 MW
turbine at the Eolos site (Li, Abraham, Li, & Hong, 2020) and to identify previously unobserved wake
behaviours including wake contraction in response to changing turbine blade pitch (Dasari, Wu, Liu, &
Hong, 2019). This technique has also been used to characterize the ABL flow at the Eolos site (Toloui
et al., 2014) and to provide insight into the structure of very-high-Reynolds-number turbulent boundary
layers (Heisel, Dasari, et al., 2018). In the current study, we extend this technique to identify coherent
structures in the inflow and to quantify the turbine and wake response. The paper is structured as follows:
§ 2 describes the experimental methods, § 3 presents the results of the investigation and § 4 provides a
summary and discussion of the key findings.

2. Methodology

2.1. Experimental Set-up

The field experiments were conducted at the University of Minnesota Eolos Wind Energy Research Field
Station in Rosemount, Minnesota. The site hosts a 2.5 MW Clipper Liberty C96 wind turbine with a hub
height of 80 m and a rotor diameter (D) of 96 m. The turbine is a horizontal axis, three-bladed, pitch
regulated machine, fully instrumented with a supervisory control and data acquisition (SCADA) system
at the nacelle and 20 strain gauges around the base of the support tower. The SCADA data are recorded
at 20 Hz and include atmospheric conditions such as wind speed and direction collected by a sonic
anemometer at the back of the nacelle, and turbine operational parameters including blade pitch, rotor
speed, nacelle orientation and power generation. A meteorological tower (met tower) is located 170 m
south of the turbine, with sensors at 7 m, 27 m, 52 m, 77 m, 102 m and 126 m elevations recording wind
speed and direction (cup and vane anemometers), temperature and relative humidity at 1 Hz. Additional
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sonic anemometers at 10 m, 30 m, 80 m and 129 m record three wind speed components and temperature
at 20 Hz. The area surrounding the turbine is primarily flat farmland with sparse shrubs located 100 m
upstream, beyond which lies 1 km of additional farmland. No structures or large trees are located in the
immediate upstream vicinity (i.e. within 10D upstream) of the turbine. The ground was covered with
snow during all data collection periods discussed in the current study. Further details about the site and
turbine can be found in Hong et al. (2014) and Dasari et al. (2019).

In addition to the data collected by the turbine, flow visualization data are recorded using
super-large-scale particle image velocimetry (SLPIV), with natural snowflakes serving as flow tracers
(Hong & Abraham, 2020). A collimated searchlight is projected into a sheet to illuminate the snowflakes
in the field of view (FOV), which spans the inflow and near wake of the turbine (figure 1a). The light
sheet is slightly offset from the central tower plane in the spanwise direction (yFOV in table 1) to capture
the vortices shed from the turbine blade tips, which mark the wake boundary, without distortion from the
turbine support tower. A Nikon D600 camera, fitted with a 50 mm f /1.2 lens, is used to record videos of
the snowflake motion at 30 Hz. Three flow visualization datasets were recorded during snowstorms that
occurred during the hours of darkness, one on 9 April 2018, and two on 24 February 2019, two hours
apart (figure 1b). The conditions of each dataset vary in mean wind speed at hub height (U∞), region
of turbine operation and atmospheric conditions (table 1). The atmospheric stability of each dataset is
quantified using the bulk Richardson number, RB = gΔ𝜃vΔz/(𝜃v [(ΔŪ)2 + (ΔV̄)2]), where g is the grav-
itational acceleration, 𝜃v is the virtual potential temperature, z is the elevation, U is the northerly wind
component and V is the westerly wind component (Stull, 1988). All parameters are calculated using
the cup and vane anemometers at the 126 m and 7 m elevations of the met tower. We also calculate the
Monin–Obukhov length for each dataset as LOB = −U3

𝜏𝜃v/(𝜅gw′𝜃 ′v), where U𝜏 is the friction velocity,
𝜅 is the von Kármán constant and w′𝜃 ′v is the vertical heat flux calculated using temperature and ver-
tical wind speed fluctuations from the 10 m sonic anemometer on the met tower. The friction velocity
is estimated using the Reynolds stresses (Stull, 1988), as follows: U𝜏 = (u′w′

2
+ v′w′

2
)1/4, where u′,

v′ and w′ are the fluctuating streamwise, spanwise and vertical velocity components, respectively, also
measured at the 10 m sonic anemometer. The ABL during both Feb 2019 datasets can be considered
neutral, as RB is less than the critical value of 0.25 but greater than 0, and z/LOB � 0.1. The Apr 2018
dataset is slightly stable. The ABL is typically near neutral during snow storms, but the snow was rel-
atively weak on the night the Apr 2018 data were collected, leading to a shift towards the more stable
stratification typical of night time. Although capturing approximately the same area, the dimensions of
the FOVs (HFOV ×WFOV ) for each dataset vary slightly as well. The Apr 2018 dataset is slightly shorter
than the other two, although the turbine is producing power for a substantially lower percentage of the
time. Therefore, this dataset is primarily used for inflow characterization and contributes very little to
the analysis of coherent structure impact on turbine operation.

2.2. Inflow Coherent Structure Identification

In the flow visualization images, regions of strong vorticity are visible as dark voids where the snowflake
concentration is significantly reduced (see figure 1b). These voids are caused by the rotating fluid
expelling snowflakes from the centre of the vortex. In previous studies, these voids have been used to
characterize the behaviour of vortices shed from the tips of the turbine blades (Yang, Hong, Barone,
& Sotiropoulos, 2016; Dasari et al., 2019; Abraham & Hong, 2020; Abraham & Hong, 2021). In the
current study, we also analyse these voids to characterize the level of coherent vortical structures in the
inflow approaching the turbine. There are many types of coherent structures in a turbulent boundary
layer, but here we focus on coherent structures that leave signatures of vortices on our measurement
plane such as the hairpin vortex packets reported in the literature (Alcayaga et al., 2020; Heisel, Dasari,
et al., 2018; Hommema & Adrian, 2003; Li & Bou-Zeid, 2011; Oncley et al., 2016), as mentioned in the
introduction. Note that the voids visible in the snow visualization images only capture a cross-section
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Figure 1. (a) Schematic showing the flow visualization FOV for the experiments. (b) Sample enhanced
and de-warped flow visualization images for each of the three datasets. Arrows indicate vortices shed
from the bottom blade tips in the near wake and coherent structures in the inflow, both seen as voids in
the snow images.

Table 1. Parameters for each of the three datasets.

Apr 2018 Feb 2019a Feb 2019b

Data collection date
and time (UTC)

04:35:39 9 Apr 2018 04:34:00 24 Feb 2019 06:39:08 24 Feb 2019

U∞ (m s−1) 2.6 7.0 11.4
Mean wind direction

(° clockwise from
North)

59.3 336.6 322.6

Region of turbine
operation

1–1.5 1.5–2 2.5–3

RB 0.45 0.12 0.04
LOB (m) 35 1550 −2260
U𝜏 (m s−1) 0.07 0.41 0.73
HFOV × WFOV (m×m) 87× 49 105× 59 93× 52
yFOV (m) 19 21 23
Duration 18 min 30 sec 20 min 20 min
Percentage of time

turbine is producing
power

3 % 100 % 100 %

of the coherent structures as determined by the illuminated plane of the light sheet, so their three-
dimensional structure (e.g. if they are true hairpin vortices) cannot be characterized. However, many
previous studies conducted at a range of Reynolds numbers have successfully utilized two-dimensional
datasets to analyse three-dimensional structures (e.g. Adrian, Meinhart, & Tomkins, 2000; Heisel,
Dasari, et al., 2018; Wu & Christensen, 2006).

First, the images are enhanced using wavelet denoising and adaptive histogram equalization to
strengthen the void signature over the background noise. Next, they are de-warped to correct for
distortion caused by the inclination angle of the camera relative to the ground (Dasari et al., 2019; Toloui
et al., 2014). From the enhanced and de-warped images, a region located 15 m upstream of the turbine
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Figure 2. Sample frames for each of the three datasets (a) with coherent structures and (b) without
coherent structures in the inflow. The yellow outline indicates the region used for the machine learning
classification. Note that the physical locations of these sampling regions are the same for all three
datasets, although they appear different due to the differences in the FOVs. (c) A gallery of example
coherent and non-coherent images used to train the classifier.

and ranging from 35 to 80 m in elevation is selected, angled such that the turbine blades are excluded
(figure 2). In some video frames, coherent structures are clearly seen within this window (figure 2a),
whereas no coherent structures are visible in others (figure 2b). MATLAB image category classification
using ‘bag of features’ (also known as ‘bag of words’, MathWorks, 2020) is used to classify the video
frames from all three datasets as coherent (labelled as 1) or non-coherent (labelled as 0). To train the
classifier, 758 frames taken from all three datasets were manually identified as containing coherent
structures (371 frames) or not containing coherent structures (387 frames) based on the presence or
absence of dark voids in the images (figure 2c shows a gallery of these images). Of the 758 manually
classified frames, 60 % were randomly selected for training and the other 40 % were reserved for
validation. Features were then extracted from all training images and a ‘visual vocabulary’ of a reduced
number of feature clusters is defined using k-means clustering (algorithm described in MathWorks
(2020)). The images were categorized based on the frequency of occurrence of each feature cluster
in the image. Next, these feature clusters were used to classify the validation images and the results
were compared with the manual classification. The automatic classifier yielded an average accuracy of
90 %, with 89 % of non-coherent frames accurately identified and 90 % of coherent frames accurately
identified. The trained classifier was then used to categorize all 105,189 video frames from the three
datasets. A manual check was performed on several segments of automatically classified frames to
ensure the accuracy of the classifier. It is worth noting that previous studies (i.e. Cheliotis et al., 2020;
Träumner et al., 2015) have used manual visual identification to classify periods as with or without

https://doi.org/10.1017/flo.2021.20 Published online by Cambridge University Press

https://doi.org/10.1017/flo.2021.20


Flow E5-7

20 40 60 20 40 60

1.0

0.8

0.6

0.4

0.2

0

20
–20 –20 0 200

20

40

60

20

40

60

z (
p
ix

el
s)

x (pixels) x (pixels) z (pixels) x (pixels)

N
o
rm

al
iz

ed
 c

o
rr

el
at

io
n

(a)

(b) (c)

Figure 3. Demonstration of the PIV blade-skipping algorithm, including (a) sample images with one
PIV window (64× 64 pixels) outlined in red. The first image is the frame before the blade enters the
window, the second is a frame with the blade inside the window and the third is the frame just after the
blade moves outside the window. The windows from the first and third images, exhibiting a clear pattern
persisting across the frames, are shown in (b), and their correlation is shown in (c).

coherent structures, and Cheliotis et al. (2020) also used this manual classification method to train a
machine learning-based classifier. Such an automated method eliminates the need for manually selected
filtering or thresholding parameters. With every frame of all three datasets classified, periods with a
strong presence of coherent structures can be compared with those without structures in the inflow.

2.3. Particle Image Velocimetry with Blade Skipping

Particle image velocimetry (PIV) processing is conducted using PIVlab, an open-source MATLAB-
based PIV software (Thielicke & Stamhuis, 2014). As with previous studies investigating such a large
FOV, the snowflake patterns in the enhanced images provide the signal for the PIV correlation rather
than individual snowflakes (Abraham & Hong, 2021; Abraham, Dasari, & Hong, 2019; Dasari et al.,
2019). In the current study, the velocity field is calculated over the inflow region, spanning from 16.4 to
82.5 m in elevation, and from 31.0 to 9.5 m upstream. An interrogation window of 64× 64 pixels with
50 % overlap is used for the first pass, and a second pass is conducted with an interrogation window of
48× 48 pixels with 50 % overlap. These window sizes yield a spatial resolution of 2.7 m for the velocity
vector field.

The PIV code is modified to account for the turbine blades passing through the analysed FOV, as the
motion of the blades would interfere with the flow field calculation. First, the blades are detected in each
frame by computing the correlation between all images in a sequence. As the blades are the strongest
feature in the images, the frames with the highest correlation have the blades in the same location. These
frames are averaged and converted to binary images that only contain masks of the blades, which are
used to determine if a blade is within a PIV interrogation window. For each interrogation window, the
frames with a blade detected are skipped during the PIV correlation step (figure 3a), and the velocity
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vector at that location is calculated by correlating the frames before and after the blade passes through
(figure 3b). The magnitude of this vector is divided by the number of frames skipped to account for the
additional displacement that occurred during those frames. Note that the snowflake patterns persist with
a clear enough signature to yield a strong correlation despite the skipped frames (figure 3c). Additionally,
only the windows through which the blade passes undergo frame skipping, while the remaining parts of
the image are unaffected. Still, the temporal resolution of the flow velocity calculated when the blade
is passing through the window is limited by the speed of the blade at each radial location. The slowest
blade speed occurs near the blade root, where the blade remains within a window for a maximum of
25 frames. In this worst-case scenario, the temporal resolution of the velocity data is 0.8 seconds in the
region near the blade root, compared with the upper limit of 0.03 seconds as determined by the camera
frame rate.

3. Results

3.1. Atmospheric Coherent Structure Characterization

The image classification process shows that vortical coherent structures appear frequently at an elevation
where they can interact with wind turbines (figure 4a). Furthermore, these coherent structures are highly
intermittent, with the amount depending on wind speed (figure 4b). In the Apr 2018 dataset with a mean
wind speed of Ū∞ = 2.6 m s−1, coherent structures occur 3 % of the time (per cent of frames labelled
with 1 by the classifier). Both Feb 2019 datasets have higher mean wind speeds of Ū∞ = 7.0 m s−1 for
Feb 2019a and Ū∞ = 11.4 m s−1 Feb 2019b, corresponding to rates of coherent structure appearance of
63 % and 61 %, respectively. Figure 4(c) shows the relationship between the level of coherent structures
and the instantaneous wind speed. A sharp increase in the appearance of coherent structures is observed
around wind speeds of 4 m s−1. These findings are comparable to those presented by Träumner et al.
(2015), who also observed significantly fewer atmospheric coherent structures at wind speeds below
4 m s−1. Note that the level of coherent structures does not necessarily correspond to the turbulence
intensity of the inflow calculated using the nacelle anemometer. The average turbulence intensity of all
periods with coherent structures observed is 0.16, very close to that of the periods without structures
(0.15).

In addition to characterizing the intermittency of atmospheric coherent structures, we also quantify
two different structure scales which we term the ‘packet length’ and the ‘vortex size’. The packet length
approximates the streamwise length of a group of vortical coherent structures in the ABL at the elevation
of the region of interest shown in figure 2, i.e. 35 to 80 m. This scale is calculated using the amount of
time that coherent structures are consistently in the inflow, determined by the time the coherent structure
classification label stays above 0.5 (figure 5a). The time scale is converted to length using the mean
wind speed of each dataset, per Taylor’s frozen turbulence hypothesis (figure 5b). Under the conditions
presented here, coherent structure packets can extend beyond 400 m, with an increase in the number of
long packets at higher wind speeds. Figure 5(c) shows the probability distribution function (PDF) of the
packet length scale, which peaks at the smallest detectable packet scale, and decreases monotonically
with increasing packet length. These results are consistent with the findings of Lee and Sung (2011),
who investigated very-large-scale coherent structures in a canonical turbulent boundary layer using
direct numerical simulation, and Ganapathisubramani, Longmire, and Marusic (2003), who observed
hairpin vortex packets extending up to twice the boundary layer thickness in length. The long tail of
the distribution indicates the presence of analogous long packets in the ABL. Previous studies have
observed these structures extending up to 1500 m in the streamwise direction (Träumner et al., 2015).
Such packet lengths are not observed here, although this discrepancy is likely caused by out-of-plane
motions that would make very long structures appear as multiple separate structures. The organization
of vortical coherent structures into packets and the shape of the packet length distribution suggest the
structures observed here are signatures of canonical turbulent boundary layer structures, which originate
from a disturbance at the wall and grow outwards (Adrian et al., 2000). As we will show in § 3.2, the
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Figure 4. Relationship between wind speed and the level of atmospheric vortical coherent structures
observed, with (a) a time series of the level of coherent structures, as determined by the image classifi-
cation method, for all three datasets (smoothed with a time scale of 3 s to facilitate visualization) and
(b) a time series of wind speed at turbine hub height for all three datasets. (c) Percentage of frames
labelled as coherent or non-coherent by the image classifier for each instantaneous wind speed. Note that
non-coherent indicates a lack of vortical coherent structures. Other types of structures may be present.

packet length scale is also an important factor in determining the impact of coherent structures on
turbine structural loading.

The vortex size is estimated based on the void properties in the atmospheric flow images. Note that
these results once again represent an approximation of vortex size, as only a cross-section of the three-
dimensional structure is captured in the FOV. The voids are extracted from the inflow region of the
images using a combination of image intensity thresholding and edge detection. This image processing
method is described in detail in Abraham and Hong (2020). The cross-sectional area (A) of the largest
atmospheric coherent structure in each frame is determined by the number of pixels, and an equivalent
diameter of the structure is calculated using deq =

√
4A/𝜋 (figure 6a). The largest void in each frame

is used because larger structures are expected to have a stronger impact on the turbine than smaller
structures. Because of the centrifugal effect of the fluid rotation on the snow particles, the edges of the
voids are determined by the Stokes number, St = 𝜏p/𝜏f , where 𝜏p is the particle time scale and 𝜏f is
the flow time scale (Eaton & Fessler, 1994). As 𝜏f is determined by the strength (i.e. circulation, 𝛤)
of the vortex causing the snow particle void, the diameter of the void is directly related to the vortex
strength. Therefore, the void boundaries represent a circulation threshold that is approximately equal
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Figure 5. (a) The level of coherent structures from image classification, with a dashed grey line
indicating the threshold, used to determine (b) the coherent structure packet length scale. (c) The PDF
of the packet length for all three datasets. Note that the bin size is gradually increased for events with
larger packet lengths to ensure sufficient statistical convergence for events with lower probability of
occurrence.

to that determined by Hong et al. (2014), i.e. 𝛤 ≈ 6 m2 s−1. Here, we use deq to investigate the vortex
size for all three datasets (figure 6b). As evidenced by the size distributions shown in figure 6(c), the
Apr 2018 dataset exhibits the fewest and smallest vortices, with deq = 1.0 m, where the overbar denotes
the mean. The vortices in the Feb 2019a dataset have deq = 1.5 m, and Feb 2019b includes the most
vortices with the largest size (deq = 2.4 m). The vortex size discrepancy between the three datasets is
attributed to their different values of friction velocity, U𝜏 . Previous studies have shown that the vortex
diameter increases with distance from the wall, normalized by the viscous length scale, i.e. z+ = zU𝜏/𝜈
(Robinson, 1990). Therefore, although all three FOVs are located at the same elevation, they capture
different parts of the boundary layer, with larger vortices occurring at larger values of z+ (figure 6d).
These findings are also consistent with the results of Ganapathisubramani et al. (2003) for a canonical
turbulent boundary layer. They showed that the minimum vortex packet length, which corresponds to
a single hairpin vortex, increases with increasing values of z+. Note that a digital inline holography
sensor was used to measure the snowflake size (see Nemes, Dasari, Hong, Guala, and Coletti (2017)
for a detailed description of this method), and the mean snowflake equivalent diameter was consistently
between 0.3 and 0.4 mm for all three datasets. Additionally, temperature and humidity conditions for
all three datasets were within 1 °C and 1 %, respectively, leading the snowflakes of the same shape
(Pruppacher & Klett, 2010). Therefore, differences in coherent structure size cannot be attributed to
discrepancies in snowflake properties. As we will show in § 3.3, vortex size is also related to the impact
of inflow coherent structures on wind turbine power production and wake behaviour.

3.2. Impact on Structural Loading

We now investigate the impact of inflow coherent structures on the structural loading of the utility-
scale wind turbine. As mentioned in § 2.1, 20 strain gauges are mounted around the base of the Eolos
turbine support tower. In the current study, we focus on the lateral strain, i.e. the strain gauge located
perpendicular to the wind direction, as we observed the strongest relationship between inflow turbulence
and strain in this direction. Because of lateral symmetry, all analysis is conducted on a single strain gauge
located 90° anticlockwise from the incoming wind for both Feb 2019 datasets – Apr 2018 is removed
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Figure 6. Vortex size characterization, including (a) a sample image with a coherent structure in the
inflow, and the resulting extracted void. The equivalent diameter (deq) of the void is indicated by the
blue line bisecting the red dashed circle. (b) A time series of deq over all three datasets. (c) Histogram of
deq for each dataset, with dashed vertical lines representing the mean. (d) Relationship between z+ and
deq, with the circles indicating the mean values and the error bars representing the standard deviations.
A log scale is used for z+, as ABL quantities typically vary with the log of the elevation.
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Figure 7. (a) Schematic showing the strain gauges located around the base of the Eolos turbine tower.
The strain gauge used for the following analysis is circled in red and the wind direction is indicated by
a blue arrow. (b) Time series of the standard deviation of strain (𝜎s) and the square of the standard
deviation of the spanwise wind component (𝜎2

v ) for both Feb 2019 datasets. Note that the Apr 2018
dataset has been removed, as the turbine is not producing power for 97 % of the recorded period.

from the analysis, as the turbine is not producing power for 97 % of the recorded period, and the
remaining data are insufficient to derive meaningful conclusions with statistical significance (figure 7a).
The analysis focuses on the standard deviation of lateral strain (𝜎s), as strain fluctuations indicate fatigue
loading on the turbine. In figure 7(b), 𝜎s is compared with 𝜎2

v , the square of the standard deviation of
spanwise velocity, showing they follow similar large-scale trends. Both 𝜎s and 𝜎2

v are calculated over a
7.5 min moving window. This window length was chosen as it yields the maximum correlation between
𝜎s and 𝜎2

v , suggesting it is the time scale at which their interaction occurs. Based on this relationship
between 𝜎s and 𝜎2

v , fluctuations in the drag force exerted by the spanwise component of the wind cause
fluctuating loads on the tower. Indeed, the drag force of a fluid on a cantilevered beam (like the turbine
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Figure 8. Effect of coherent structures on tower strain, including (a) an example of 𝜎s deviating from
𝜎2

v . The yellow bar indicates the time range of the images shown in (b), which highlight an atmospheric
coherent structure (circled in yellow) impinging on the turbine tower. Several such structures were
observed during this period of increased 𝜎s, although only the clearest is shown here.

support tower) is proportional to the square of the velocity and directly proportional to the strain at the
base of the beam.

However, some periods are observed where 𝜎s does not follow 𝜎v
2. One example of this deviation

is exhibited in figure 8(a), where a strong increase in 𝜎s is observed, while 𝜎2
v stays relatively constant.

In figure 8(b), a proposed explanation for this increase is demonstrated with several flow visualization
images from this time period. These images clearly show a strong atmospheric coherent structure entering
the FOV and interacting with the turbine tower, which induces fluctuating loads on the tower. Several
such coherent structures are observed during this period of increasing 𝜎s, although only the clearest is
shown here. This example suggests that coherent structures generate additional structural loading on
the turbine beyond that induced by velocity fluctuations, consistent with the findings of Kelley et al.
(2005).

Our results further show that tower strain fluctuations increase with increasing coherent structure
packet length (figure 9). Once again, the Apr 2018 dataset is not included in the analysis due to the
limited amount of data where the turbine is operating. However, both Feb 2019 datasets clearly exhibit the
presence of long packets coinciding with peaks in 𝜎s (figure 9a). Binning 𝜎s by packet length shows that
the general positive relationship between packet length and 𝜎s is consistent throughout the entirety of the
data collected (figure 9b). Furthermore, the correlation between the two variables is 0.6 with p � 0.01.
These findings are consistent with the understanding developed in the study of lower Reynolds-number
turbulent boundary layers that longer packets contribute significantly more turbulence production and
momentum transport than shorter packets (Ganapathisubramani et al., 2003). In interacting with a
utility-scale wind turbine, this additional turbulence and momentum leads to increased fluctuating loads
on the structure. This phenomenon has not been previously observed at such high Reynolds numbers
as those investigated in the current study (Re ∼ 107). This finding also has important implications for
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Figure 9. Relationship between coherent structure packet length and standard deviation of lateral tower
strain (𝜎s), including (a) a time series across both Feb 2019 datasets, and (b) a scatter plot with the 𝜎s
data points binned by packet length. The circles indicate the mean value of 𝜎s for each value of packet
length, and the error bars indicate the standard deviation. Once again, the Apr 2018 dataset has been
removed due to the limited duration of turbine operation (3 %).

wind farm siting decisions, as landscape features or buildings that generate large coherent structures
can lead to additional structural fatigue loading.

3.3. Impact on Power Production and Wake Behaviour

We next explore the effect of coherent structures on turbine power production and wake behaviour.
When the turbine is producing power and extracting energy from the wind, the wake typically expands
as the air slows down due to mass and momentum conservation. Previous studies have observed some
periods of wake contraction caused by changes in the pitch of the turbine blades (Abraham & Hong,
2020; Dasari et al., 2019). These blade pitch changes occur when the turbine is operating above the rated
wind speed and the turbine reduces the angle of attack of the blades to regulate loading on the turbine.
In the current study, we focus on periods when the turbine is operating below the rated wind speed and
the blade pitch is not changing. Instances of wake contraction are also observed under these conditions,
suggesting the existence of an additional mechanism leading to wake contraction. Closer investigation
reveals that these contraction periods occur when there are coherent structures in the inflow that interact
with the turbine (figure 10a). Furthermore, they coincide with a reduction in power generation compared
with the expected performance based on the turbine power curve (figure 10b).

To characterize this wake contraction behaviour, we develop a method to quantify the wake expansion
angle. Using an image processing technique similar to that described in § 3.1, binary images of the tip
vortices are extracted from the enhanced snow images. The centroid of the tip vortex nearest the turbine
is determined from the binary image, and the angle of the centroid from the elevation of the bottom
turbine blade tip (𝜑w) is calculated (figure 11). Only the first tip vortex downstream of the turbine tower
is used to calculate 𝜑w in order to minimize distortion caused by interactions between adjacent vortices
as they advect downstream. The wake expansion angle is quantified for the entire Feb 2019a dataset,
where the turbine operates below the rated wind speed. Any periods of wake contraction observed while
the turbine is operating under these conditions cannot be attributed to changes in blade pitch, which is
fixed to a minimal value of 1° to maximize power generation.

Figure 12 shows a time series of 𝜑w, power deviation and vortex size (deq, defined in § 3.1). Power
deviation is defined as expected power subtracted from actual power, where expected power is determined
using the Eolos turbine power curve and the instantaneous hub-height wind speed. The expected power
is filtered and shifted in time to maximize the correlation with the actual power. A negative value of
power deviation indicates the turbine is under-producing, while a positive value indicates the turbine
is producing more power than expected. Five periods are highlighted in figure 12 where a large power
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Figure 10. Example of a coherent structure interacting with the turbine and inducing (a) a reduction
in wake expansion and (b) a reduction in power generation. In (a), the coherent structure is circled in
yellow, and the wake expansion angle is indicated by the yellow lines. The dashed line represents the
bottom blade tip elevation, and the dot-dashed line shows the position of the tip vortices. The yellow
region marked in (b) indicates the time period shown in the images. Power deviation is defined as the
expected power production at the given wind speed based on the power curve, subtracted from the actual
power produced.

Blade tip

elevation

Tip vortex

centroid

ϕw

10 m

Figure 11. Definition of wake expansion angle, 𝜑w, as determined using the centroid of the bottom
blade tip vortex and the elevation of the tip of the bottom turbine blade.

deviation is observed. For the three periods where this power deviation is negative (marked in blue),
𝜑w is also negative, indicating wake contraction. All five periods also coincide with above-average
values of deq. The images showing the spanwise vorticity (𝜔y) and vector fields superimposed on the
snow visualization images for each period provide further insight into the cause of the power surpluses
and deficits observed. For the power deficit periods, large coherent structures with negative vorticity
are observed in the inflow. For the power surplus periods (marked in yellow), large structures with
positive vorticity are detected. We attribute this dependence on rotation direction to lift generation on
the turbine blades. Lift is directly proportional to the circulation around the blade cross-sections per the
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Figure 12. Time series of wake expansion angle (𝜑w), power deviation (expected power subtracted from
actual power) and vortex size (deq). The blue and yellow bars indicate periods with strong power deficits
and surpluses, respectively. The red numbers correspond to the images show around the plot, which
are sample enhanced snow particle images superimposed with spanwise vorticity and vector fields from
each highlighted time period. The vector fields represent the fluid velocity with the mean subtracted. Note
that the region of positive vorticity around the bottom blade tip in some images is caused by recently
generated tip vortices. Supplementary movies 1–5 are available at https://doi.org/10.1017/flo.2021.20
show the vorticity and vector fields for the duration of each of the five highlighted periods.

Kutta–Joukowski equation (Sherwood, 1946). The positive vorticity of the vortices shed from the blade
tips indicates that the bound circulation on the blades is also positive. Therefore, negative vorticity in
the inflow neutralizes some of the lift, reducing the power generation and inducing wake contraction,
while positive vorticity enhances the lift, increasing power generation.

Not every period with a large power surplus or deficit demonstrates this clear relationship with inflow
coherent structure vorticity because of the complex nature of field data. In the field, turbine and wake
behaviour are influenced by many different variables, making it difficult to establish a clear one-to-one
correspondence between variables. In particular, the FOV of the flow visualization data only captures a
cross-section of the inflow, so the three-dimensionality or structures appearing outside of the visualized
plane cannot be detected. Some of the large power deviations are likely caused by structures outside
of the FOV plane. Still, a statistically robust relationship between power deviation and vortex size is
observed (figure 13). The histogram of power deviation magnitude conditionally sampled by inflow
vortex size shows a clear separation between vortices that are below and above the mean value of deq.
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(b) a comparison between vortices in the bottom and top quartile of vortex size (Q1(deq) and Q3(deq),
respectively).

This separation is further strengthened when comparing vortices from the bottom and top quartile of
deq, which correspond to the smallest and largest quarter, respectively, of all vortices detected in the
inflow while the turbine is operating below the rated wind speed. These results are confirmed to be
statistically significant using a two-sample Kolmogorov–Smirnov test ( p � 0.01).

4. Conclusion

In this study, we characterize turbulent coherent structures in the ABL and investigate their impact on
utility-scale wind turbine loading, power generation and wake behaviour. This investigation is conducted
using flow visualization with natural snowfall with a FOV spanning the inflow and near wake of a 2.5 MW
turbine. Coherent vortical structures in the inflow are detected using a manually trained image classifier
and the flow field is quantified with SLPIV. This method facilitates the visualization and analysis of
atmospheric structures that could not previously be observed due to limitations in the spatio-temporal
resolution of conventional field-scale measurement techniques. Three datasets with different conditions
reveal the substantial increase in inflow coherent structures with increasing wind speed. The coherent
structure packet length, determined by the duration with coherent structures consistently in the inflow,
exhibits a long-tailed distribution similar to that observed for hairpin vortex packets in canonical turbulent
boundary layers. Meanwhile, the inflow vortex size distribution varies between the three datasets due
to differences in the friction velocity. Turbine structural loading is shown to depend on spanwise wind
speed fluctuations, although some periods exhibit disproportionately high tower strain fluctuations due to
interaction with coherent structures. Tower strain fluctuations also increase significantly with increases
in coherent structure packet length. Finally, we observe a relationship between large vortical coherent
structures in the inflow and deviations in turbine power production from the expected value based on
the power curve. These deviations are attributed to rotation direction of the atmospheric structures, with
positive vorticity leading to a power surplus, and negative vorticity leading to a power deficit along with
wake contraction.

These findings have implications for wind turbine design and siting decisions. On the one hand,
coherent structures tend to induce increased structural loading and deviations from expected turbine
performance, both of which increase the cost and uncertainty of wind farm operation. On the other hand,
our findings suggest that coherent structures with the same rotation direction as the blade circulation have
the potential to boost power generation on short time scales. Consequently, the size, rotation direction
and frequency of occurrence of vortical coherent structures should be evaluated alongside mean wind
conditions at prospective wind farm sites. These factors should then be included in considerations for
turbine design and layout decisions. These findings will be particularly important in situations when
obstacles such as buildings or tree are located upstream of a turbine, as they will generate additional
coherent structures. However, vortical coherent structures are present even in flat terrain such as that
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investigated in the current study. In this case, because of the direction of shear in the ABL, large
structures with negative vorticity are more common than those with positive vorticity (Heisel, Dasari,
et al., 2018). Consequently, it may be beneficial to select turbine rotation direction such that blade
circulation is negative as well. Finally, we reveal an additional mechanism leading to turbine wake
contraction. Dasari et al. (2019) showed that wake contraction occurs when the turbine is operating
above the rated wind speed and the blade pitch changes, deflecting the turbine into its own wake. In
the current study, we further show that wake contraction can also be induced in below rated operation
by coherent vortical structures in the inflow reducing the lift generated by the blades. This near-wake
behaviour can significantly impact wake development downstream, including wake length, recovery and
mixing.

One limitation of this study has already been mentioned, i.e. a single plane of visualization data
which does not allow us to observe the entire three-dimensional shape of the coherent structures or detect
structures outside of the plane. The current study also focuses exclusively on vortical coherent structures,
as they can be easily visualised using natural snowfall. However, the impact of other boundary layer
coherent structures (e.g. streaks, rolls) has not been evaluated. Most of the coherent structures observed
in the current study occurred under near-neutral atmospheric stability conditions. Previous studies
have shown that stability affects the properties of large-scale regions of coherent velocity fluctuations
(Barthlott, Drobinski, Fesquet, Dubos, & Pietras, 2007), so we expect the vortical atmospheric structures
investigated here to exhibit similar dependencies. In addition, all three datasets were collected at the
same site, which has a relatively uniform surface roughness. Surface roughness is expected to affect
the properties of the coherent structures appearing in the ABL, but we do not expect the main trends
presented here to be significantly modified. Finally, the turbine geometry (e.g. rotor diameter, height,
blade profile, etc.) will influence the magnitude of the coherent structure impact on loading, power,
and wake. However, the physical mechanisms described here will remain relevant regardless of turbine
design.
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