ON THE MATRIX EQUATION $X^{\prime} X=A$

by JOHN E. MAXFIELD and HENRYK MINC
(Received 26th July 1961)

1. Introduction

If X is a matrix with non-negative entries then $X^{\prime} X$ is positive semi-definite with non-negative entries. Conversely, if A is positive semi-definite then there exist matrices Y, not necessarily with non-negative entries, such that $\boldsymbol{Y}^{\prime} \boldsymbol{Y}=A$. In the present paper we investigate whether, given a positive semidefinite matrix A with non-negative entries, the equation $X^{\prime} X=A$ has a solution X with non-negative entries. An equivalent statement:of the problem is: Can a positive semi-definite matrix with non-negative entries be expressed as a sum of rank 1 positive semi-definite matrices with non-negative entries? We answer the question in the affirmative for $n \leqq 4$ and quote the following example due to M. Hall (1) to show that the answer is in the negative for $n \geqq 5$:

The matrix

$$
A=\left(\begin{array}{ccccc}
1 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 1 & \frac{3}{4} & 0 & \frac{1}{2} \\
0 & \frac{3}{4} & 1 & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} & 1 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 & 1
\end{array}\right)
$$

is positive semi-definite, yet there exists no matrix X with non-negative entries such that $X^{\prime} X=A$.

There is a rather surprising geometrical consequence of this answer: In an n-dimensional space ($n \geqq 5$) not every pencil of n vectors such that the angle between any two vectors does not exceed $\pi / 2$ can be placed in the non-negative orthant of coordinates by a rotation or by a rotation followed by a reflection.

We are indebted to Marvin Marcus and Morris Newman for drawing our attention to the problem.

2. Results

Lemma 1. Let $A=\left(a_{i j}\right)$ be a positive semi-definite matrix, $a_{i j} \geqq 0$. Then for any i, j, k at most one of $a_{i j} a_{k k}-a_{i k} a_{j k}, a_{i k} a_{j j}-a_{i j} a_{j k}, a_{j k} a_{i i}-a_{i j} a_{i k}$ can be negative.

Proof. Suppose that $a_{i j} a_{k k}<a_{i k} a_{j k}$ and $a_{i k} a_{j j}<a_{i j} a_{j k}$. Then $a_{i j} a_{k k} a_{i k} a_{j j}$ $<a_{i k} a_{j k} a_{i j} a_{j k}$, i.e. $a_{j j} a_{k k}<a_{j k}^{2}$ which is impossible since $a_{j j} a_{k k}-a_{j k}^{2}$ is a principal minor of the positive semi-definite matrix A.

Lemma 2. Let A be a 4-square positive semi-definite matrix, $a_{i j} \geqq 0$. Then there exists a permutation matrix P such that all the entries in the leading 3-square
E.M.S.-I
principal submatrix of $C_{2}\left(P A P^{\prime}\right)$, the second compound matrix of $P A P^{\prime}$, are non-negative unless $a_{i j} a_{k k}<a_{i k} a_{j k}, a_{i j} a_{m m}<a_{i m} a_{j m}, a_{k m} a_{i i}<a_{i k} a_{i m}, a_{k m} a_{j j}<a_{j k} a_{j m}$ for $(i, j, k, m)=(1,2,3,4)$ or $(1,3,2,4)$ or $(1,4,2,3)$.

Proof. The diagonal entries in $C_{2}\left(P A P^{\prime}\right)$ being principal minors of a positive semi-definite matrix are non-negative. The remaining entries are equal to $a_{i j} a_{k k}-a_{i k} a_{j k}, a_{i m} a_{k k}-a_{i k} a_{k m}, a_{j m} a_{k k}-a_{j k} a_{k m}$. Hence the upper 3-square principal submatrix of $C_{2}\left(P A P^{\prime}\right)$ has non-negative entries if and only if a row in
where $|i j k|=a_{k k} a_{i j}-a_{i k} a_{j k}$, has non-negative entries. Suppose that all rows have at least one negative entry. Let $|i j k|<0$. Then, by Lemma $1,|j k i| \geqq 0$ and $|i k j| \geqq 0$. If there is a negative entry in the j th row it must be either $|\mathrm{imj}|$ or $|\mathrm{kmj}|$.
(i) If $|i m j|<0$, then $|j m i| \geqq 0$ and $|i j m| \geqq 0$. Thus if the i th row contains a negative entry it must be $|k m i|$. Hence $|i k m| \geqq 0$ and all the entries in the m th row are non-negative. For if $|j k m|<0$ we have:

$$
\begin{aligned}
& a_{k k} a_{i j}<a_{i k} a_{j k}, \\
& a_{m m} a_{j k}<a_{j m} a_{k m}, \\
& a_{i i} a_{k m}<a_{i k} a_{i m}, \\
& a_{j j} a_{i m}<a_{i j} a_{j m}
\end{aligned}
$$

and therefore $a_{i i} a_{j j} a_{k k} a_{m m}<a_{i k}^{2} a_{j m}^{2}$. But $a_{i i} a_{k k}-a_{i k}^{2}$ and $a_{j j} a_{m m}-a_{j m}^{2}$ are principal minors of positive semi-definite matrix A and thus are non-negative. Contradiction.
(ii) If $|k m j|<0$ it is easy to see that all entries in the i th or in the m th row are non-negative unless $|k m i|<0$ and $|i j m|<0$, as stated in the lemma.

The last proviso in Lemma 2 cannot be omitted. For example,

$$
A=\left(\begin{array}{llll}
1 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 1 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 1 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 & 1
\end{array}\right)
$$

is positive semi-definite but there exists no permutation matrix P for which the leading 3-square principal submatrix of $C_{2}\left(P A P^{\prime}\right)$ has non-negative entries.

Theorem. Let $A=\left(a_{i j}\right)$ be a positive semi-definite n-square matrix ($n \leqq 4$) with non-negative entries. Then there exists an n-square matrix X with nonnegative entries such that $X^{\prime} X=A$.

Proof. The theorem is trivial for $n=1$. We prove it for $n=2,3$ and 4. We can assume therefore, without loss of generality, that no main diagonal element of A is 0 , for if an n-square positive semi-definite matrix has a diagonal element 0 then every element in the same row and column must vanish and
we are essentially dealing with an ($n-1$)-square matrix.
(i) $n=2$.

$$
X=\left(\begin{array}{ll}
a_{11} & \frac{a_{12}}{\sqrt{a_{11}}} \\
0 & \frac{\sqrt{|A|}}{\sqrt{a_{11}}}
\end{array}\right)
$$

(ii) $n=3$. Let $Q=\operatorname{diag}\left\{\sqrt{a_{11}}, \sqrt{a_{22}}, \sqrt{a_{33}}\right\}$ and let $B=\left(b_{i j}\right)=Q^{-1} A Q^{-1}$. Then it is easy to see that unless all $b_{i j}=1$, in which case we choose $X=B Q / \sqrt{3}$, at least one principal minor of order 2 of B is strictly positive. Let $1-b_{i j}^{2}>0$. Then $1>b_{i j}$ and either $b_{j k}-b_{i j} b_{i k} \geqq 0$ or $b_{i k}-b_{i j} b_{j k} \geqq 0$. In either case there exists a permutation matrix P such that $P B P^{\prime}=C=\left(c_{i j}\right)$ where $1-c_{12}^{2}>0$ and $c_{23}-c_{12} c_{13} \geqq 0$. Then $X=Y P Q$ where

$$
Y=\left(\begin{array}{ccc}
1 & c_{12} & c_{13} \\
0 & \sqrt{1-c_{12}^{2}} & \frac{c_{23}-c_{12} c_{13}}{\sqrt{1-c_{12}^{2}}} \\
0 & 0 & \frac{\sqrt{|C|}}{\sqrt{1-c_{12}^{2}}}
\end{array}\right)
$$

(iii) $n=4$. Let $Q=\operatorname{diag}\left\{\sqrt{a_{11}}, \sqrt{a_{22}}, \sqrt{a_{33}}, \sqrt{a_{44}}\right\}$ and let $B=\left(b_{i j}\right)$ $=Q^{-1} A Q^{-1}$.
(a) First suppose that the conditions of Lemma 2 are satisfied and that there exists a permutation matrix P such that all the entries in the leading 3-square submatrix of $C_{2}\left(P B P^{\prime}\right)$ are non-negative.
Let $P B P^{\prime}=C=\left(\begin{array}{c:cc}1 & c_{12} & c_{13} \\ c_{14} \\ c_{12} & C_{11} \\ c_{13} & C_{11}\end{array}\right)$ and let $Z=\left(\begin{array}{c:ccc}1 & c_{12} & c_{13} & c_{14} \\ \hdashline c_{14} & 0 \\ 0 & Y \\ 0 & \end{array}\right)$.
Then $\quad Z^{\prime} Z=\left(\begin{array}{c:ccc}1 & c_{12} & c_{13} & c_{14} \\ c_{12} & V^{\prime} \\ c_{13} & V^{\prime} V+Y^{\prime} Y \\ c_{14} & \end{array}\right)$ where $V=\left(c_{12} c_{13} c_{14}\right)$.
Thus we can find a matrix Z with non-negative entries such that $Z^{\prime} Z=C$ if a 3-square matrix Y with non-negative entries can be found such that $Y^{\prime} Y=C_{11}-V^{\prime} V$. Now, $C_{11}-V^{\prime} V$ is precisely the leading 3-square submatrix of $C_{2}\left(P B P^{\prime}\right)$ all of whose entries are non-negative. Hence, by part (ii), the required Y can be be found.
(b) Suppose now that $b_{i j}-b_{i k} b_{j k}, b_{i j}-b_{i m} b_{j m}, b_{k m}-b_{i k} b_{i m}$ and $b_{k m}-b_{j k} b_{j m}$ are all negative. Without loss of generality we can assume that (i,j,k,m) $=(1,2,3,4)$. We first show that there exists a matrix R with non-negative entries such that $\left(R^{-1}\right)^{\prime} B R^{-1}=C=\left(c_{i j}\right)$ has at least 4 entries equal to 0 .

Let

$$
R^{-1}=\left(\begin{array}{cccc}
1 & -b_{12} & -x_{1} & -x_{2} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

where x_{1}, x_{2} are non-negative numbers to be determined. We have $c_{12}=0$, $c_{13}=b_{13}-x_{1}, \quad c_{14}=b_{14}-x_{2}, \quad c_{23}=b_{23}-b_{12} b_{13}, \quad c_{24}=b_{24}-b_{12} b_{14}$, $c_{34}=f\left(x_{1}, x_{2}\right)=b_{34}-b_{14} x_{1}-b_{13} x_{2}+x_{1} x_{2}$. Since $b_{12}-b_{13} b_{23}<0$ and $b_{12}-b_{14} b_{24}<0$ both c_{23}, and c_{24} are, by Lemma 1, non-negative. Choose x_{1}, x_{2} so that $x_{1} \leqq b_{13}, x_{2} \leqq b_{14}$ and $f\left(x_{1}, x_{2}\right)=0$. This can always be done since $f(0,0)=b_{34} \geqq 0$ while $f\left(b_{13}, b_{14}\right)<0$. Then C, which is positive semidefinite, has 0 in the $(1,2),(2,1),(3,4)$ and $(4,3)$ positions and non-negative entries elsewhere.

Let $Z=\left(z_{i j}\right)$ be a 4 -square matrix with

$$
z_{12}=z_{14}=z_{21}=z_{24}=z_{32}=z_{33}=z_{41}=z_{43}=0
$$

We show that we can determine the other $z_{i j}$ in such a way that $z_{i j} \geqq 0$ and $Z^{\prime} Z=C$, i.e.

$$
\begin{gathered}
z_{11}^{2}+z_{31}^{2}=z_{22}^{2}+z_{42}^{2}=z_{13}^{2}+z_{23}^{2}=z_{34}^{2}+z_{44}^{2}=1 \\
z_{11} z_{13}=c_{13}, \quad z_{31} z_{34}=c_{14}, \quad z_{22} z_{23}=c_{23}, \quad z_{42} z_{44}=c_{24}
\end{gathered}
$$

and

It will follow that all entries in $Z R Q$ are non-negative and $(Z R Q)^{\prime} Z R Q=A$.
A straightforward computation gives

$$
\begin{aligned}
z_{11}^{4}\left(1-c_{23}^{2}-c_{24}^{2}\right)-z_{11}^{2}\left(1+c_{13}^{2}-c_{14}^{2}-c_{23}^{2}-\dot{c}_{24}^{2}-c_{13}^{2} c_{24}^{2}\right. & \left.+c_{14}^{2} c_{23}^{2}\right) \\
& +c_{13}^{2}\left(1-c_{14}^{2}-c_{24}^{2}\right)=0
\end{aligned}
$$

Denote z_{11}^{2} by z and the minor of $c_{i j}$ by $\left|C_{i j}\right|$. The equation becomes

$$
\begin{equation*}
z^{2}\left|C_{11}\right|-z\left(|C|-2 c_{13}\left|C_{13}\right|\right)+c_{13}^{2}\left|C_{33}\right|=0 \tag{1}
\end{equation*}
$$

We prove first that the roots of (1) are real. The discriminant of (1) is

$$
D=\left(|C|-2 c_{13}\left|C_{13}\right|\right)^{2}-4 c_{13}^{2}\left|C_{11}\right|\left|C_{33}\right| .
$$

But, by the classical theorem of Jacobi on the minors of $\operatorname{adj}(C)$,

$$
\left|C_{11}\right|\left|C_{33}\right|-\left|C_{13}\right|^{2}=|C|\left(1-c_{24}^{2}\right)
$$

Therefore

$$
\begin{aligned}
D & =|C|^{2}-4 c_{13}|C|\left|C_{13}\right|+4 c_{13}^{2}\left|C_{13}\right|^{2} \\
& \quad-4 c_{13}^{2}|C|+4 c_{13}^{2} c_{24}^{2}|C|-4 c_{13}^{2}\left|C_{13}\right|^{2} \\
& =|C|\left\{|C|-4 c_{13}\left(\left|C_{13}\right|+c_{13}-c_{13} c_{24}^{2}\right)\right\} \\
& =|C|\left(|C|+4 c_{13} c_{14} c_{23} c_{24}\right)
\end{aligned}
$$

which is non-negative. Therefore the roots of (1) are real. The coefficient

ON THE MATRIX EQUATION $X^{\prime} X=A$

of z in (1) is

$$
-|C|+2 c_{13}\left|C_{13}\right|=-|C|-2 c_{13}\left\{c_{13}\left(1-c_{24}^{2}\right)+c_{12} c_{24} c_{34}\right\}
$$

which is non-positive and, since $c_{13}^{2}\left|C_{33}\right| \geqq 0$, both roots are non-negative. Hence there is a real non-negative root for z_{11}.

The corresponding equations for z_{22}, z_{33} and z_{44} yield similar results.

REFERENCE

(1) Marshall Hall, Jr., A Survey of Combinatorial Analysis, Surveys in Applied Mathematics IV (Wiley, 1958), 35-104.

University of Florida
Gainesville, Florida

