ON THE MATRIX EQUATION X'X = A

by JOHN E. MAXFIELD and HENRYK MINC (Received 26th July 1961)

1. Introduction

If X is a matrix with non-negative entries then X'X is positive semi-definite with non-negative entries. Conversely, if A is positive semi-definite then there exist matrices Y, not necessarily with non-negative entries, such that Y'Y = A. In the present paper we investigate whether, given a positive semidefinite matrix A with non-negative entries, the equation X'X = A has a solution X with non-negative entries. An equivalent statement of the problem is: Can a positive semi-definite matrix with non-negative entries be expressed as a sum of rank 1 positive semi-definite matrices with non-negative entries? We answer the question in the affirmative for $n \leq 4$ and quote the following example due to M. Hall (1) to show that the answer is in the negative for $n \ge 5$:

Tł

The matrix	A =	/	1	0	0	$\frac{1}{2}$	$\frac{1}{2}$	
		1	0	1	3	Õ	1/2	1
			0	3	i	1/2	Õ	
			ł	Ó	ł	ī	0	
			Ĩ	ł	Õ	0	1	
		· ·	-	-				/

is positive semi-definite, yet there exists no matrix X with non-negative entries such that X'X = A.

There is a rather surprising geometrical consequence of this answer: In an *n*-dimensional space $(n \ge 5)$ not every pencil of *n* vectors such that the angle between any two vectors does not exceed $\pi/2$ can be placed in the non-negative orthant of coordinates by a rotation or by a rotation followed by a reflection.

We are indebted to Marvin Marcus and Morris Newman for drawing our attention to the problem.

2. Results

Lemma 1. Let $A = (a_{ij})$ be a positive semi-definite matrix, $a_{ij} \ge 0$. Then for any i, j, k at most one of $a_{ij}a_{kk} - a_{ik}a_{jk}$, $a_{ik}a_{jj} - a_{ij}a_{jk}$, $a_{jk}a_{ii} - a_{ij}a_{ik}$ can be negative.

Proof. Suppose that $a_{ij}a_{kk} < a_{ik}a_{jk}$ and $a_{ik}a_{jj} < a_{ij}a_{jk}$. Then $a_{ij}a_{kk}a_{ik}a_{jj} < a_{ij}a_{jk}$. Then $a_{ij}a_{kk}a_{ik}a_{jj} < a_{ik}a_{jk}a_{ij}a_{jk}$, i.e. $a_{jj}a_{kk} < a_{jk}^2$ which is impossible since $a_{jj}a_{kk} - a_{jk}^2$ is a principal minor of the positive semi-definite matrix A.

Lemma 2. Let A be a 4-square positive semi-definite matrix, $a_{ij} \ge 0$. Then there exists a permutation matrix P such that all the entries in the leading 3-square E.M.S.---I

principal submatrix of $C_2(PAP')$, the second compound matrix of PAP', are non-negative unless $a_{ij}a_{kk} < a_{ik}a_{jk}$, $a_{ij}a_{mm} < a_{im}a_{jm}$, $a_{km}a_{ii} < a_{ik}a_{im}$, $a_{km}a_{jj} < a_{jk}a_{jm}$ for (i, j, k, m) = (1, 2, 3, 4) or (1, 3, 2, 4) or (1, 4, 2, 3).

Proof. The diagonal entries in $C_2(PAP')$ being principal minors of a positive semi-definite matrix are non-negative. The remaining entries are equal to $a_{ij}a_{kk} - a_{ik}a_{jk}$, $a_{im}a_{kk} - a_{ik}a_{km}$, $a_{jm}a_{kk} - a_{jk}a_{km}$. Hence the upper 3-square principal submatrix of $C_2(PAP')$ has non-negative entries if and only if a row in

1	231	241	341	\
1	132	142	342	
(123	143	243	1
	124	134	234	1.

where $|ijk| = a_{kk}a_{ij} - a_{ik}a_{jk}$, has non-negative entries. Suppose that all rows have at least one negative entry. Let |ijk| < 0. Then, by Lemma 1, $|jki| \ge 0$ and $|ikj| \ge 0$. If there is a negative entry in the *j*th row it must be either |imj| or |kmj|.

(i) If |imj| < 0, then $|jmi| \ge 0$ and $|ijm| \ge 0$. Thus if the *i*th row contains a negative entry it must be |kmi|. Hence $|ikm| \ge 0$ and all the entries in the *m*th row are non-negative. For if |jkm| < 0 we have:

$$\begin{array}{l} a_{kk}a_{ij} < a_{ik}a_{jk}, \\ a_{mm}a_{jk} < a_{jm}a_{km}, \\ a_{ii}a_{km} < a_{ik}a_{im}, \\ a_{jj}a_{im} < a_{ij}a_{jm} \end{array}$$

and therefore $a_{ii}a_{jj}a_{kk}a_{mm} < a_{ik}^2a_{jm}^2$. But $a_{ii}a_{kk} - a_{ik}^2$ and $a_{jj}a_{mm} - a_{jm}^2$ are principal minors of positive semi-definite matrix A and thus are non-negative. Contradiction.

(ii) If |kmj| < 0 it is easy to see that all entries in the *i*th or in the *m*th row are non-negative unless |kmi| < 0 and |ijm| < 0, as stated in the lemma.

The last proviso in Lemma 2 cannot be omitted. For example,

4	=	./	1	0	$\frac{1}{2}$	ł	\
		1	0	$ \begin{array}{c} 0 \\ 1 \\ \frac{1}{2} \\ \frac{1}{2} \end{array} $	$\frac{1}{2}$ $\frac{1}$	$\frac{1}{2}$ $\frac{1}{2}$ 0	1
			$\frac{1}{2}$	$\frac{1}{2}$	Ī	Ō	1
		/	2 1 2	$\frac{\overline{1}}{2}$	0	1	/

is positive semi-definite but there exists no permutation matrix P for which the leading 3-square principal submatrix of $C_2(PAP')$ has non-negative entries.

Theorem. Let $A = (a_{ij})$ be a positive semi-definite n-square matrix $(n \le 4)$ with non-negative entries. Then there exists an n-square matrix X with non-negative entries such that X'X = A.

Proof. The theorem is trivial for n = 1. We prove it for n = 2, 3 and 4. We can assume therefore, without loss of generality, that no main diagonal element of A is 0, for if an *n*-square positive semi-definite matrix has a diagonal element 0 then every element in the same row and column must vanish and

we are essentially dealing with an (n-1)-square matrix.

(i)
$$n = 2$$
.
$$X = \begin{cases} a_{11} & \frac{a_{12}}{\sqrt{a_{11}}} \\ 0 & \frac{\sqrt{|A|}}{\sqrt{a_{11}}} \end{cases}$$

(ii) n = 3. Let $Q = \text{diag}\{\sqrt{a_{11}}, \sqrt{a_{22}}, \sqrt{a_{33}}\}$ and let $B = (b_{ij}) = Q^{-1}AQ^{-1}$. Then it is easy to see that unless all $b_{ij} = 1$, in which case we choose $X = BQ/\sqrt{3}$, at least one principal minor of order 2 of B is strictly positive. Let $1 - b_{ij}^2 > 0$. Then $1 > b_{ij}$ and either $b_{jk} - b_{ij}b_{ik} \ge 0$ or $b_{ik} - b_{ij}b_{jk} \ge 0$. In either case there exists a permutation matrix P such that $PBP' = C = (c_{ij})$ where $1 - c_{12}^2 > 0$ and $c_{23} - c_{12}c_{13} \ge 0$. Then X = YPQ where

$$Y = \left(\begin{array}{cccc} 1 & c_{12} & c_{13} \\ 0 & \sqrt{1 - c_{12}^2} & \frac{c_{23} - c_{12}c_{13}}{\sqrt{1 - c_{12}^2}} \\ 0 & 0 & \frac{\sqrt{|C|}}{\sqrt{1 - c_{12}^2}} \end{array}\right)$$

(iii) n = 4. Let $Q = \text{diag}\{\sqrt{a_{11}}, \sqrt{a_{22}}, \sqrt{a_{33}}, \sqrt{a_{44}}\}$ and let $B = (b_{ij}) = Q^{-1}AQ^{-1}$.

(a) First suppose that the conditions of Lemma 2 are satisfied and that there exists a permutation matrix P such that all the entries in the leading 3-square submatrix of $C_2(PBP')$ are non-negative.

Thus we can find a matrix Z with non-negative entries such that Z'Z = C if a 3-square matrix Y with non-negative entries can be found such that $Y'Y = C_{11} - V'V$. Now, $C_{11} - V'V$ is precisely the leading 3-square submatrix of $C_2(PBP')$ all of whose entries are non-negative. Hence, by part (ii), the required Y can be be found.

(b) Suppose now that $b_{ij}-b_{ik}b_{jk}$, $b_{ij}-b_{im}b_{jm}$, $b_{km}-b_{ik}b_{im}$ and $b_{km}-b_{jk}b_{jm}$ are all negative. Without loss of generality we can assume that (i, j, k, m) = (1, 2, 3, 4). We first show that there exists a matrix R with non-negative entries such that $(R^{-1})'BR^{-1} = C = (c_{ij})$ has at least 4 entries equal to 0.

128 Let

$R^{-1} = /$	1 ·	$-b_{12}$	$-x_1$	$-x_2$	1
1	0	1	0	0	
	0	0	1	0	
$R^{-1} = \left(\begin{array}{c} \\ \end{array} \right)$	0	0	0	1)

where x_1 , x_2 are non-negative numbers to be determined. We have $c_{12} = 0$, $c_{13} = b_{13} - x_1$, $c_{14} = b_{14} - x_2$, $c_{23} = b_{23} - b_{12}b_{13}$, $c_{24} = b_{24} - b_{12}b_{14}$, $c_{34} = f(x_1, x_2) = b_{34} - b_{14}x_1 - b_{13}x_2 + x_1x_2$. Since $b_{12} - b_{13}b_{23} < 0$ and $b_{12} - b_{14}b_{24} < 0$ both c_{23} and c_{24} are, by Lemma 1, non-negative. Choose x_1 , x_2 so that $x_1 \le b_{13}$, $x_2 \le b_{14}$ and $f(x_1, x_2) = 0$. This can always be done since $f(0, 0) = b_{34} \ge 0$ while $f(b_{13}, b_{14}) < 0$. Then C, which is positive semidefinite, has 0 in the (1, 2), (2, 1), (3, 4) and (4, 3) positions and non-negative entries elsewhere.

Let $Z = (z_{ii})$ be a 4-square matrix with

$$z_{12} = z_{14} = z_{21} = z_{24} = z_{32} = z_{33} = z_{41} = z_{43} = 0$$

We show that we can determine the other z_{ij} in such a way that $z_{ij} \ge 0$ and Z'Z = C, i.e.

$$z_{11}^2 + z_{31}^2 = z_{22}^2 + z_{42}^2 = z_{13}^2 + z_{23}^2 = z_{34}^2 + z_{44}^2 = 1$$

and

$$z_{11}z_{13} = c_{13}, \ z_{31}z_{34} = c_{14}, \ z_{22}z_{23} = c_{23}, \ z_{42}z_{44} = c_{24}.$$

1

It will follow that all entries in ZRQ are non-negative and (ZRQ)'ZRQ = A. A straightforward computation gives

$$\begin{aligned} z_{11}^4 (1 - c_{23}^2 - c_{24}^2) - z_{11}^2 (1 + c_{13}^2 - c_{14}^2 - c_{23}^2 - c_{24}^2 - c_{13}^2 c_{24}^2 + c_{14}^2 c_{23}^2) \\ &+ c_{13}^2 (1 - c_{14}^2 - c_{24}^2) = 0. \end{aligned}$$

Denote z_{11}^2 by z and the minor of c_{ii} by $|C_{ii}|$. The equation becomes

(1)
$$z^2 | C_{11} | - z(| C | - 2c_{13} | C_{13} |) + c_{13}^2 | C_{33} | = 0$$

We prove first that the roots of (1) are real. The discriminant of (1) is

$$D = (|C| - 2c_{13} |C_{13}|)^2 - 4c_{13}^2 |C_{11}| |C_{33}|$$

But, by the classical theorem of Jacobi on the minors of adj(C),

$$|C_{11}| |C_{33}| - |C_{13}|^2 = |C| (1 - c_{24}^2).$$

Therefore $D = |C|^2 - 4c_{13}|C| |C_{13}| + 4c_{13}^2 |C_{13}|^2$
 $-4c_{13}^2 |C| + 4c_{13}^2c_{24}^2 |C| - 4c_{13}^2 |C_{13}|^2$
 $= |C| \{ |C| - 4c_{13}(|C_{13}| + c_{13} - c_{13}c_{24}^2) \}$
 $= |C| (|C| + 4c_{13}c_{14}c_{23}c_{24})$

which is non-negative. Therefore the roots of (1) are real. The coefficient

of z in (1) is

$$- |C| + 2c_{13} |C_{13}| = - |C| - 2c_{13} \{c_{13}(1 - c_{24}^2) + c_{12}c_{24}c_{34}\}$$

which is non-positive and, since $c_{13}^2 | C_{33} | \ge 0$, both roots are non-negative. Hence there is a real non-negative root for z_{11} .

The corresponding equations for z_{22} , z_{33} and z_{44} yield similar results.

REFERENCE

(1) MARSHALL HALL, Jr., A Survey of Combinatorial Analysis, Surveys in Applied Mathematics IV (Wiley, 1958), 35-104.

UNIVERSITY OF FLORIDA GAINESVILLE, FLORIDA