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§ 1. Introduction.

In the Mathematische Annalen, 11 (1877), 440-444, E. Toeplitz
has proved the following theorem: / / three quadrics are polar quadrics
of three points with respect to a cubic surface, then their (2, 2, 2) invariant
vanishes; the invariant being of the second degree in the coefficients
of each of the three quadrics.

The original proof, as given by Toeplitz, is complicated, but its
underlying principles are revealed very clearly by combining the
notation of the symbolic invariant theory with that of matrices.
This brings out at once the interesting fact that the property is
general, and applies to quadrics and cubics in space of, not merely
three, but any odd number of dimensions.

§ 2. Notation.

Let the non-symbolic forms of three quadrics in a space of
m — 1 dimensions be fx = 2 a,-3- xt xjy /2 = 2 bfi x{ Xj, and f3 = Z ci;- Xj, xjy

where i, j — 1, 2, .., m.
Symbolically these are

f1 = a2
x = a'l = a"l = . . . . = ( a 1 x l + a 2 x 2 + . . . . + am xmf,

f _ i2 t'2 1//2
J2 = °x — ° x — 0 x — ,
J3 = c x — c x — c x — • • • • ,

where ata^ = ati = a, at = a^, etc.

§ 3. Statement of the theorem.

The necessary and sufficient condition that the three quadrics,
ax> bx> o% in the (m — 1) manifold be the polar quadrics of three
points £, 7}, £ with respect to a cubic primal t% is that

(AnBn)(BnCn)(CnAn) = 0
where (1) m = 2n,
and (2) An= aa'a" a'""1', a convolution of n equivalent
symbols a.
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§ 4. Proof.

The polar quadric of a point £ = {fi, f2> > £m} wit>h respect
to tx is 4*f) a n d this is to be the same quadric as a% Hence
tltt = iral. Similarly, t%tq = pbl and ^<r=x<& where 77, p, x are
scalar.

Polarising these three equations with respect to an arbitrary
point y, we get the following relations:

= pbxby\ txtyti = (1)

whence we see that

a^= pbx

In matrix notation, the first of these becomes px' Qt, = xx> Ry>
where the accent attached to x denotes transposition; that is, if a; is a
column, then x' is a row vector. This is indicated by the kind of
brackets we use:

X = [Xi, #2>

£ = & . £2,

Again, Q = (by) =

- blm

b22

bml .

Hence we have the following equations:

— — R —
X PX P

P-M = o,
X

x'lR

x>(pJL-Q±-) = o.
\ p •"•

(2)

(3)

(4)

(• v- I-
Eliminating the 3m scalar quantities —, - , - , (i = 1, 2, . . , m),

77 p x

from the equations (2), (3), (4), we get a vanishing determinant of 3m
rows and columns, conveniently represented as follows:

0 - R Q
R

-Q
0 - P = 0.
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We shall shew that this skew-symmetric determinant, when
expanded and expressed in symbolic form, is equal to

-).({AnBn){BnCn){CnAn)f.

Conversely, if this invariant vanishes, the argument can be reversed;
we should get consistent equations (1), giving possible values for the
coefficients of the cubic form.

Pre-multiplying the matrix X of the above equations by KH
where

H =
1
0
0

QP-1

l
0

0
0
1

, K =
1 0
0 1
0 0

0
1

we have R
-Q

0 0
0 -P
P 0

But K, H are evidently unimodular matrices; that is, | K \ = | H | = 1.

Hence | X | = | QP~lR - RP^Q]. | P | 2 . (5)

The sign in front of the determinant is settled by the fact that
the matrix P is of even order 2n. Again, the matrix S=QP~1R—RP~1Q
is skew symmetric and of even order: hence its determinant is a
perfect square.

Further, we can easily shew that \S\ is an invariant of the three
quadrics.

Let the matrix equation x = Mx denote a linear transformation

from the variables x to the new variables x; and let x'Px = x'Px.

Hence x'M'PMx = x'Px: or M'PM = P. Similarly for Q and R.

Therefore QP~1R= (M'QM)(M~1 P-1 M1'1) (M'RM)

= M'QP^RM.

Hence S = QP'1 R - RP^Q

= M' (QP-1 R - RP^Q) M

= M'SM:

or \S\ = \S\.\M\2.
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The transformation also replaces \P\ by | P \ . | M|2, and hence

replaces | X | by \S\ | M|2 . j P | 2 | M|*; that is

which shews that | X | is an invariant of weight six. Its square root
is an invariant of weight three and may be calculated from a con-
venient canonical form.

Since any two general quadrics can be reduced to forms giving
matrices of the unit and diagonal types, let us leave R general,
and take P as the unit matrix / , and Q as the diagonal matrix
diag (6ls b2, b3, ..., bm). Hence we get simply for (5), | X \ = \ QR—RQ \.
But in this case,

"1 c l l > f>i Ci2, . . 6 1 Cl r a

#2 C 12 . • >

" 3 C13> • j - •

Hence | X | = | c y (6,- — bj) \, w h e r e i,j=l,2, .. . ., m.

We shall assume the lemma (proved hereafter in § 6) that, when
this determinant is expanded and its terms re-arranged, we get

VI X I = ( - )»'2 S 6,- bj.... 6, «?<,... .,)„.

or ( - ) ( " -1)/2 2 bt bj bk (Cy... .*)„... .„

according as n = Jwiis even or odd. The following properties are to
be noted.

771 ^

(i) There are '— terms in each summation.
n\ n\

(ii) For our present purpose, the sign in front of S is of no import-
ance, and we shall write y/ \ X | = ± 2 bt bj . . .. bk (Cy.. _t)n_ t.

(iii) Again, (ij .. .. k) and (rs .... t) are each sequences of n letters
and are algebraic complements for the sequence (123 . . . . m).

(iv) The sign convention is determinantal; that is, (ij . . . . krs . . .. t)
is regarded as positive, whereas (ji.. . .krs.. . A), for example,
is negative.
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(v)

Symbolically then

cir cit • • • • cit

ckr ckt

—T

and the symbol for the product btbj bk is — B%....k, similarly.

Hence

Now

(An Bn) (BnCn) (CnAn) = 2 Atj,,,,k B n . . . . t 2 ?„...., S

But for the case we have taken, where An is derived from the unit,
and Bn from a diagonal, matrix, we have

(i)

(ii)

rS....t = 0 unless (# k) = (rs t);

(iii) -By....i £„....< = 0 unless (ij k) = (rs t).

Hence
(AnBn) (BnCn) (CnAn) = S £?,...* Cy...... (?„....,.

Comparing this result with (6), we see that

= ±(-,)' (AnBn)(BnCn)(CnAn)

or | Z | = ( 1 ) ! ((An Bn) (Bn Cn) (Gn An) f. (7)

§ 5. Special Cases.

(i) Binary Case, m = 2.

The binary invariant (aft) (6c) (ca) vanishes if a\, b\, c| (that is,

three point-pairs on a line), are first polars of three points with

respect to a binary cubic, t\ (which, of course, represents three points
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on the same line): or, equivalently, if the three pairs of points are
in involution.

(ii) Quaternary Case, m = 4.

In this case we get for (7),

|X|

which is the result given by Toeplitz.

(iii) m = 2w — 1.

Since | X) = | ci;- (6,- — bj) \, that is, is a skew symmetric deter-
minant, which vanishes if m is odd, there is no definite result in the
(2n — l)-ary case.

§ 6. Proof of Lemma.

Let [ X | = | cpq (bp — bg) \ = | am \, where p, q = 1, 2, . . . . , m.

Then we require to shew that

V\X\ = ( - )»* S 6 , 6 . . . . . . bk(C{i.. ..k)n....t,

o r {-)ln-mXbibj....bt(C{j....t)n....»

according as n is even or odd. The summation sign and the sign
conventions have already been explained.

Now \ / 1 X | is a Pfaffian; and Pfaffians of order m can be
calculated from those of order m — 2 in the following way.1

If V l * l = [l . 2> . . . . ,«»] =V\aPi\ = V\cpq(bp-bll)\, then (8),
[1,2, . . , m] = a12 [3, 4, . . , m ] + a13[4, . . , m , 2] + +ai™[2, 3 , . . , m - 1 ]

where, after the suffix 1 has been selected, the others follow cyclically.

Again, [1, 2] = o12,

[1, 2, 3, 4] = a12a3i + a13ai2 + aua2s,
and so on.

We shall assume the lemma true for the m — 2 case; further, we
shall take n — 1 to be even; that is,

[1, 2 , . . . . , m - 2 ] = (-)<«-i)/2 26 1 6 2 . . . .6 n _ 1 (C ' 1 2 . . . , „_! )„ >2n_2.

1 Scott and Mathews, Theory of Determinants (1904), p. 95.
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But from (8), [1, 2, ..,m]

= ( - ) < — ^ onih - h) S6364 . . bn+1 (C3i tn+1)n+t ,2« + • • • •
- 6 n ) 2 6n + 1 6 n + 2 . . 62.-1 (C', + 1, 2»-l)2n,2 n-1

Here the factor b1b2b3 .. .. bn occurs in n of the above terms and the
sum of the coefficients is easily shewn to be (—)in~1)l2 (C12 n)»+i, ....,2»
if n is odd. But this is true since we took n — 1 to be even.
Similarly for the other terms, and so we get

[ 1 , 2, . . . . , m] = (_)<«-»/* Sft!6s68 • • • .6S(O12»....„)„+! ».

The other case, when n — 1 is odd, is proved in a similar
manner.

My thanks are due to Professor Turnbull for supervising this
work throughout and freely giving me at all times the benefit of his
own wide experience.
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