GROUP CONGRUENCES ON EVENTUALLY REGULAR SEMIGROUPS

S. HANUMANTHA RAO and P. LAKSHMI

(Received 4 December 1986)

Communicated by T. E. Hall

Abstract

A characterization of group congruences on an eventually regular semigroup S is provided. It is shown that a group congruence is dually right modular in the lattice of congruences on S. Also for any group congruence γ and any congruence ρ on $S, \gamma \vee \rho$ and kernel $\gamma \vee \rho$ are described.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 M 10.

1. Introduction

D. R. LaTorre [1] gave an alternative characterization for a group congruence on a regular semigroup to that given by R. Feigenbaum [4] in her doctoral dissertation.

Let us recall from [2] that a semigroup S is eventually regular if a power of each element is regular. Throughout this paper S is an eventually regular semigroup and E is the set of idempotents of S. If a is a regular element of S, $V(a)$ denotes the set of inverses of a. For $a \in S$, by " a^{n} is a-regular" we mean that n is the least positive integer for which a^{n} is regular. We denote by $\Lambda(S)$ the lattice of congruences of S.

In this paper a characterization for a group congruence on an eventually regular semigroup is provided. In Theorem 3 seveal equivalent expressions for any group congruence on an eventually regular semigroup are given. The join $\gamma \vee \rho$ of a group congruence γ and an arbitrary congruence ρ of an eventually
regular semigroup is described in Theorem 5. The next corollary says that every group congruence is a dually right modular element in the lattice of congruences on S, which generalises Corollary 3.2 of [3]. For any congruence ρ on S and any group congruence γ on S, an expression for the kernel of $\gamma \vee \rho$ is obtained: $\operatorname{Ker}(\gamma \vee \rho)=((\operatorname{Ker} \gamma) \rho) \omega$, which was obtained for regular semigroups in [1]. An expression for $\operatorname{Ker} \gamma \wedge \rho$ is also obtained.

2. Group congruences

A subset H of S is defined to be full if $E \subseteq H$. For any subset H of S the closure $H \omega$ of H is $\{x \in S: h x \in H$ for some $h \in H\} ; H$ is said to be closed if $H \omega=H$.

A subset H of S is called self-conjugate if $a H a^{n-1}\left(a^{n}\right)^{\prime} \subseteq H$ and $a^{n-1}\left(a^{n}\right)^{\prime} H a$ $\subseteq H$ for each $a \in S$, where a^{n} is a-regular, and for each $\left(a^{n}\right)^{\prime} \in V\left(a^{n}\right)$. This coincides with the definition of self-conjugate in [1] for regular semigroups.

LEMMA 1. If H is a full self-conjugate subsemigroup of an eventually regular semigroup S, then $H \omega=H$ if and only if, for all $h \in H$ and $x \in S, x h \in H$ implies $x \in H$.

Proof. Suppose $H \omega=H$ and $h, x h \in H$. Let x^{n} be x-regular and $\left(x^{n}\right)^{\prime} \in$ $V\left(x^{n}\right)$. Since H is full we have $x^{n-1}\left(x^{n}\right)^{\prime} x \in H$. Now $x h, x^{n-1}\left(x^{n}\right)^{\prime} x \in H$ imply $x h x^{n-1}\left(x^{n}\right)^{\prime} x \in H$. Since H is self-conjugate, $x^{n-1}\left(x^{n}\right)^{\prime}\left(x h x^{n-1}\left(x^{n}\right)^{\prime} x\right) x \in H$. Since $x^{n-1}\left(x^{n}\right)^{\prime} x h x^{n-1}\left(x^{n}\right)^{\prime} x \in E H E \subseteq H$, we have $x \in H$.

The other implication can be proved similarly.
THEOREM 1. If H is a full, self-conjugate closed subsemigroup of an eventually regular semigroup S then $\beta_{H}=\left\{(a, b) \in S \times S: a b^{n-1}\left(b^{n}\right)^{\prime} \in H\right.$ where b^{n} is b-regular and $\left.\left(b^{n}\right)^{\prime} \in V\left(b^{n}\right)\right\}$ is a group congruence on S.

Proof. Reflexivity follows from $E \subseteq H$. To show symmetry let $(a, b) \in \beta_{H}$; this implies $a b^{n-1}\left(b^{n}\right)^{\prime} \in H$, where b^{n} is b-regular and $\left(b^{n}\right)^{\prime} \in V\left(b^{n}\right)$. Let a^{m} be a-regular and $\left(a^{m}\right)^{\prime} \in V\left(a^{m}\right)$. Since H is self-conjugate,

$$
\left(b a^{m-1}\left(a^{m}\right)^{\prime} a b^{n-1}\left(b^{n}\right)^{\prime}\right)\left(a b^{n-1}\left(b^{n}\right)^{\prime}\right) \in H
$$

Since H is closed, $b a^{m-1}\left(a^{m}\right)^{\prime} \in H$, so β_{H} is symmetric. If $a b^{n-1}\left(b^{n}\right)^{\prime}$, $b c^{l-1}\left(c^{l}\right)^{\prime} \in H$ where b^{n} is b-regular and c^{l} is c-regular and $\left(b^{n}\right)^{\prime} \in V\left(b^{n}\right)$, $\left(c^{l}\right)^{\prime} \in V\left(c^{l}\right)$, we have $a b^{n-1}\left(b^{n}\right)^{\prime} b c^{l-1}\left(c^{l}\right)^{\prime} \in H$. Let a^{m} be a-regular and $\left(a^{m}\right)^{\prime} \in V\left(a^{m}\right)$. As H is self-conjugate $a^{m-1}\left(a^{m}\right)^{\prime}\left(a b^{n-1}\left(b^{n}\right)^{\prime} b c^{l-1}\left(c^{l}\right)^{\prime}\right) a \in H$ from which it follows that $c^{l-1}\left(c^{l}\right)^{\prime} a \in H$. Again $c\left(c^{l-1}\left(c^{l}\right)^{\prime} a\right) c^{l-1}\left(c^{l}\right)^{\prime}$ belongs to H, giving $a c^{l-1}\left(c^{l}\right)^{\prime} \in H$, which proves transitivity of β_{H}.

Hence β_{H} is an equivalence relation.
To see compatibility of β_{H}, suppose $a b^{n-1}\left(b^{n}\right)^{\prime} \in H$, where b^{n} is b-regular and $\left(b^{n}\right)^{\prime} \in V\left(b^{n}\right)$ and $c \in S$. If a^{m} is a-regular and $\left(a^{m}\right)^{\prime} \in V\left(a^{m}\right)$ we also have $b a^{m-1}\left(a^{m}\right)^{\prime} \in H$. Let $(b c)^{l}$ be $b c$-regular and $\left((b c)^{l}\right)^{\prime} \in V(b c)$ and let c^{k} be c-regular and $\left(c^{k}\right)^{\prime} \in V\left(c^{k}\right)$. Now $c(b c)^{i-1}\left((b c)^{l}\right)^{\prime} b \in E \subseteq H$. Making use of the self-conjugacy property we have $a c(b c)^{l-1}\left((b c)^{l}\right)^{\prime} b a^{m-1}\left(a^{m}\right)^{\prime} \in H$, so $a c(b c)^{l-1}\left((b c)^{l}\right)^{\prime} \in H$, which gives that β_{H} is right compatible. We can similarly prove left compatibility. Hence β_{H} is a congruence.

Since H is a full subsemigroup it is easy to observe that E is contained in a single β_{H}-class. For any $e \in E$ and $a \in S$ we have $a e a^{n-1}\left(a^{n}\right)^{\prime}, e a a^{n-1}\left(a^{n}\right)^{\prime} \in H$, where a^{n} is a-regular, so $(a e, a),(e a, a) \in \beta_{H}$. Hence $\operatorname{Ker} \beta_{H}$ is the identity element of S / β_{H}. For any $a \in S$, if a^{n} is a-regular, we have $\left(a \beta_{H}\right)\left(a^{n-1}\left(a^{n}\right)^{\prime} \beta_{H}\right)=$ $\left(a^{n-1}\left(a^{n}\right)^{\prime} \beta_{H}\right)\left(a \beta_{H}\right)=e \beta_{H}$. Hence β_{H} is a group congruence on S.

Remark. It can be observed that $\operatorname{Ker} \beta_{H}=H$ and hence H is the identity element of S / β_{H}.

Theorem 2. The kernel of any group congruence γ on an eventually regular semigroup S is a full, self-conjugate closed subsemigroup.

Proof. Clearly kernel γ is a full subsemigroup. Let $a \in S, b \in \operatorname{Ker} \gamma$, a^{n} be a-regular and $\left(a^{n}\right)^{\prime} \in V\left(a^{n}\right)$. Since $b \in \operatorname{Ker} \gamma$, we have for some $e \in$ E that $(b, e) \in \gamma$, so $\left(a b a^{n-1}\left(a^{n}\right)^{\prime}, a e a^{n-1}\left(a^{n}\right)^{\prime}\right) \in \gamma$. But $a e a^{n-1}\left(a^{n}\right)^{\prime} \gamma=$ $a \gamma e \gamma a^{n-1}\left(a^{n}\right)^{\prime} \gamma=a \gamma a^{n-1}\left(a^{n}\right)^{\prime} \gamma=a^{n}\left(a^{n}\right)^{\prime} \gamma$, so $a b a^{n-1}\left(a^{n}\right)^{\prime} \in \operatorname{Ker} \gamma$. Similarly we can show that $a^{n-1}\left(a^{n}\right)^{\prime} b a \in \operatorname{Ker} \gamma$, which proves that $\operatorname{Ker} \gamma$ is self-conjugate. If $h, h x \in \operatorname{Ker} \gamma=e \gamma$ for any $e \in E$ then $e \gamma=h \gamma=h x \gamma=e \gamma x \gamma=x \gamma$ so that $x \in \operatorname{Ker} \gamma$ and hence $\operatorname{Ker} \gamma$ is closed. The theorem follows.

Remark. It can be easily seen that for any group congruence γ on S, $\beta_{\mathrm{Ker} \gamma}=\gamma$, and the mapping $H \mapsto \beta_{H}$ is an inclusion preserving one-to-one correspondence between the set of all full, self-conjugate closed subsemigroups of S and the set of group congruences on S.

ThEOREM 3. If γ is a group congruence on an eventually regular semigroup S and $\operatorname{Ker} \gamma=H$, then the following are equivalent:
(1) $a \gamma b$;
(2) $b a^{m-1}\left(a^{m}\right)^{\prime} \in H$ where a^{m} is a-regular and $\left(a^{m}\right)^{\prime} \in V\left(a^{m}\right)$;
(3) $a^{m-1}\left(a^{m}\right)^{\prime} b \in H$ where a^{m} is a-regular and $\left(a^{m}\right)^{\prime} \in V\left(a^{m}\right)$;
(4) $b^{n-1}\left(b^{n}\right)^{\prime} a \in H$ where b^{n} is b-regular and $\left(b^{n}\right)^{\prime} \in V\left(b^{n}\right)$;
(5) $a x b^{n-1}\left(b^{n}\right)^{\prime} \in H$ for some $x \in H$ and b^{n} is b-regular and $\left(b^{n}\right)^{\prime} \in V\left(b^{n}\right)$;
(6) $b x a^{m-1}\left(a^{m}\right)^{\prime} \in H$ for some $x \in H$ and a^{m} is a-regular and $\left(a^{m}\right)^{\prime} \in V\left(a^{m}\right)$;
(7) $a^{m-1}\left(a^{m}\right)^{\prime} x b \in H$ for some $x \in H$ and a^{m} is a-regular and $\left(a^{m}\right)^{\prime} \in V\left(a^{m}\right)$;
(8) $b^{n-1}\left(b^{n}\right)^{\prime} x a \in H$ for some $x \in H$ and b^{n} is b-regular and $\left(b^{n}\right)^{\prime} \in V\left(b^{n}\right)$;
(9) $x a=b y$ for some $x, y \in H$;
(10) $a x=y b$ for some $x, y \in H$;
(11) $H a H \cap H b H \neq \varnothing$.

Proof. That (1) implies (2) follows from the fact that γ is symmetric. Assume (2), namely that $b a^{m-1}\left(a^{m}\right)^{\prime} \in H$. Since H is self-conjugate,

$$
b^{n-1}\left(b^{n}\right)^{\prime} b a^{m-1}\left(a^{m}\right)^{\prime} b \in H .
$$

As H is closed we get $a^{m-1}\left(a^{m}\right)^{\prime} b \in H$. Hence (2) implies (3). Since H is full, self-conjugate we have $a^{m-1}\left(a^{m}\right)^{\prime} b^{n}\left(b^{n}\right)^{\prime} a \in H$. Now $a^{m-1}\left(a^{m}\right)^{\prime} b \in$ H implies $b^{n-1}\left(b^{n}\right)^{\prime} a \in H$. So (3) implies (4). If $b^{n-1}\left(b^{n}\right)^{\prime} a \in H$, we get $b b^{n-1}\left(b^{n}\right)^{\prime} a b^{n-1}\left(b^{n}\right)^{\prime} \in H$, so $a b^{n-1}\left(b^{n}\right)^{\prime} \in H$, which proves (1), (2), (3), (4) are equivalent.
(5) $\Rightarrow(6)$. Assume $a x b^{n-1}\left(b^{n}\right)^{\prime} \in H$. Since $x \in H$ we have $x b^{n-1}\left(b^{n}\right)^{\prime} b x \in H$ so $a x b^{n-1}\left(b^{n}\right)^{\prime} b x a^{m-1}\left(a^{m}\right)^{\prime} \in H$. Since H is closed, $b x a^{m-1}\left(a^{m}\right)^{\prime} \in H$.
(6) $\Rightarrow(7)$. If $b x a^{m-1}\left(a^{m}\right)^{\prime} \in H$ for some $x \in H$, then $b x a^{m-1}\left(a^{m}\right)^{\prime} x \in H$ and also $b^{n-1}\left(b^{n}\right)^{\prime} b x a^{m-1}\left(a^{m}\right)^{\prime} x b \in H$. Since H is closed, $a^{m-1}\left(a^{m}\right)^{\prime} x b \in H$.
(7) $\Rightarrow(8)$. Assume $a^{m-1}\left(a^{m}\right)^{\prime} x b \in H$, where $x \in H$. Since

$$
b^{n-1}\left(b^{n}\right)^{\prime} x a a^{m-1}\left(a^{m}\right)^{\prime} x b \in H
$$

and H is closed we get $b^{n-1}\left(b^{n}\right)^{\prime} x a \in H$.
(8) $\Rightarrow(9)$. If $b^{n-1}\left(b^{n}\right)^{\prime} x a \in H$ for some x in H, then $b^{n-1}\left(b^{n}\right)^{\prime} x a=y$, where $y \in H$ and hence $b^{n}\left(b^{n}\right)^{\prime} x a=b y$. Put $b^{n}\left(b^{n}\right)^{\prime} x=x_{1}$. Then $x_{1} a=b y$ for some $x_{1}, y \in H$.
(9) $\Rightarrow(10) . \quad x a=b y$ for some $x, y \in H$ implies $a^{m}\left(a^{m}\right)^{\prime} x a b^{n-1}\left(b^{n}\right)^{\prime} b=$ $a^{m}\left(a^{m}\right)^{\prime} b y b^{n-1}\left(b^{n}\right)^{\prime} b$, so $a\left(a^{m-1}\left(a^{m}\right)^{\prime} x a b^{n-1}\left(b^{n}\right)^{\prime} b\right)=\left(a^{m}\left(a^{m}\right)^{\prime} b y b^{n-1}\left(b^{n}\right)^{\prime}\right) b$, which says $a x_{1}=y_{1} b$ for some $x_{1}, y_{1} \in H$.
$(10 \Rightarrow(11)$. If $a x=y b$ for some $x, y \in H$ then $x a x y=x y b y$ so $H a H \cap H b H \neq$ \varnothing.
(11) $\Rightarrow(5) . H a H \cap H b H \neq \varnothing$ implies $h_{1} a h_{2}=t_{1} b t_{2}$ for some $h_{1}, h_{2}, t_{1}, t_{2} \in H$. Now $h_{1} a h_{2}=t_{1} a t_{2}$ implies $a^{m}\left(a^{m}\right)^{\prime} h_{1} a h_{2} b^{n-1}\left(b^{n}\right)^{\prime} b=a^{m}\left(a^{m}\right)^{\prime} t_{1} b t_{2} b^{n-1}\left(b^{n}\right)^{\prime} b$, so $a\left(a^{m-1}\left(a^{m}\right)^{\prime} h_{1} a h_{2} b^{n-1}\left(b^{n}\right)^{\prime} b\right)=\left(a^{m}\left(a^{m}\right)^{\prime} t_{1} b t_{2} b^{n-1}\left(b^{n}\right)^{\prime}\right) b$. Hence $a x=y b$ for some $x, y \in H$, which implies $a x b^{n-1}\left(b^{n}\right)^{\prime}=y b^{n}\left(b^{n}\right)^{\prime} \in H$. Hence (5) to (11) are equivalent.
(1) $\Rightarrow(9)$. If $a b^{n-1}\left(b^{n}\right)^{\prime}=y \in H$ then $a b^{n-1}\left(b^{n}\right)^{\prime} b=y b$, so $a x=y b$ for some $x, y \in H$.
(5) \Rightarrow (4). Now $a x b^{n-1}\left(b^{n}\right)^{\prime} \in H$ implies $a^{m-1}\left(a^{m}\right)^{\prime} a x b^{n-1}\left(b^{n}\right)^{\prime} a \in H$, so $b^{n-1}\left(b^{n}\right)^{\prime} a \in H$, which completes the proof.

THEOREM 4. If H is a full, eventually regular subsemigroup of an eventually regular semigroup S, then for any $a \in H, a^{n}$ is a-regular in H and $x \in V\left(a^{n}\right)$ imply $x \in H$.

Proof. Let a^{n} be a-regular and take any inverse $\left(a^{n}\right)^{\prime}$ of a^{n} in H. If $x \in V\left(a^{n}\right)$ then $x=x a^{n} x=\left(x a^{n}\right)\left(a^{n}\right)^{\prime}\left(a^{n} x\right) \in H$.

In [1], for any group congruence γ and any congruence ρ on a regular semigroup S, it is shown that $\gamma \vee \rho$ is equal to $\gamma \circ \rho \circ \gamma$. In the following theorem we prove the corresponding result for eventually regular semigroups.

THEOREM 5. If γ is a group congruence on S and ρ is any congruence on S, then $\gamma \vee \rho=\gamma \circ \rho \circ \gamma$.

Proof. It suffices to prove $\rho \circ \gamma \circ \rho \subseteq \gamma \circ \rho \circ \gamma$.
Let $(x, y) \in \rho \circ \gamma \circ \rho$. Then for some $a, b \in S$ we have $(x, a) \in \rho .(a, b) \in \gamma$, $(b, y) \in \rho$. let a^{m} be a-regular and let b^{n} be b-regular. From $(x, a),(b, y) \in \rho$ it follows that $\left(b^{n}\left(b^{n}\right)^{\prime} x, b^{n}\left(b^{n}\right)^{\prime} a\right),\left(b^{n}\left(b^{n}\right)^{\prime} a, y b^{n-1}\left(b^{n}\right)^{\prime} a\right) \in \rho$. Now $(a, b) \in \gamma$ implies $\left(\left(a^{m}\right)^{\prime} a^{m-1}, b^{n-1}\left(b^{n}\right)^{\prime}\right) \in \gamma$, since γ is a group congruence. Also we have $\left(x, b^{n}\left(b^{n}\right)^{\prime} x\right) \in \gamma,\left(b^{n}\left(b^{n}\right)^{\prime} x, y b^{n-1}\left(b^{n}\right)^{\prime} a\right) \in \rho$, and $\left(y b^{n-1}\left(b^{n}\right)^{\prime} a, y\left(a^{m}\right)^{\prime} a^{m}\right)$, $\left(y\left(a^{m}\right)^{\prime} a^{m}, y\right) \in \gamma$, so $(x, y) \in \gamma \circ \rho \circ \gamma$, and the theorem is proved.

In [3] the modularity relation M on a lattice was given by $a M b$ if $(x \vee a) \wedge b=$ $x \vee(a \wedge b)$ for all $x \leq b$; and M^{*} denotes its dual. An element $d \in L$ is right modular if $a M d$ for all $a \in L$. Proposition 2.3(ii) in [3] says that in a semigroup S, for $\gamma \in \Lambda(S)$, if $\gamma \vee \rho=\gamma \circ \rho \circ \gamma$ for all $\rho \in \Lambda(S)$ then γ is a dually right modular element.

COROLLARY. On an eventually regular semigroup S, each group congruence is a dually right modular element of $\Lambda(S)$.

THEOREM 6. For any congruence ρ and any group congruence γ on an eventually regular semigroup $S, a(\gamma \vee \rho) b$ if and only if xapby for some $x, y \in \operatorname{Ker} \gamma$.

Proof. As Theorems 4 and 6 in [1] have been shown to apply to S, the proof is the same as that of Theorem 7 in [1].

The following theorem corresponds to Theorem 8 in [1] for regular semigroups, which describes $\operatorname{Ker}(\gamma \vee \rho)$, for any group congruence γ and any congruence ρ.

THEOREM 7. For any congruence ρ and any group congruence γ on an eventually regular semigroup $S, \operatorname{Ker}(\gamma \vee \rho)=((\operatorname{Ker} \gamma) \rho) \omega$.

Proof. Take $x \in \operatorname{Ker}(\gamma \vee \rho)$. Then there exists $e \in E$ with $(x, e) \in \gamma \vee \rho$. From the previous theorem we get $(x p, q e) \in \rho$ for some $p, q \in \operatorname{Ker} \gamma$, since $q e \in$ $\operatorname{Ker} \gamma$ and $x p \in(\operatorname{Ker} \gamma) \rho$. Since $p \in \operatorname{Ker} \gamma \subseteq(\operatorname{Ker} \gamma) \rho$ we get $x \in((\operatorname{Ker} \gamma) \rho) \omega$. Conversely if $x \in((\operatorname{Ker} \gamma) \rho) \omega$, then $h x \in((\operatorname{Ker} \gamma) \rho)$ for some $h \in(\operatorname{Ker} \gamma) \rho$ from which it follows that $(h x, y) \in \rho$ and $\left(h, y_{1}\right) \in \rho$, for some $y, y_{1} \in \operatorname{Ker} \gamma$. Now
$y, y_{1} \in \operatorname{Ker} \gamma \operatorname{implies}(y, e),\left(y_{1}, e\right) \in \gamma$ for some $e \in E$, so $h x, h \in \operatorname{Ker} \gamma \vee \rho$. Thus $x \in \operatorname{Ker}(\gamma \vee \rho)$, since $\operatorname{Ker}(\gamma \vee \rho)$ is closed.

Corollary. $\gamma \vee \rho=S \times S$ if and only if $((\operatorname{Ker} \gamma) \rho) \omega=S$.
The next result corresponds to Lemma 4 of [1] for regular semigroups, and the proof is similar.

LEMMA 2. For any congruence ρ and any group congruence γ on an eventually regular semigroup $S, \operatorname{Ker}(\gamma \cap \rho)=\operatorname{Ker} \gamma \cap \operatorname{Ker} \rho$.

Let ρ be an idempotent-separating congruence on S and let γ be a group congruence on S. Corollary 4 of [1] states that if S is regular then $\operatorname{Ker} \gamma \cap \operatorname{Ker} \rho=$ E implies $\gamma \cap \rho=\iota$. This implication is not true in general for eventually regular semigroups, as the following example shows.

Let us take the three element null semigorup $S=\{a, b, 0\}$ with zero element 0 (that is, $x y=0$ for all $x, y \in S$) and put $\gamma=S \times S$, and let ρ be the congruence with partition $\{\{a, b\},\{0\}\}$. Then ρ (and γ) are idempotent-separating, $\rho \cap \gamma=\rho$, and $\operatorname{Ker} \rho \cap \operatorname{Ker} \gamma=\{0\}=E$.

Acknowledgement

We wish to thank the referee for giving us valuable suggestions for a better presentation of the results and also Dr. T. E. Hall for suggesting the counter example.

References

[1] D. R. LaTorre, Group congruences on regular semigroups, Semigroup Forum 24 (1982), 327-340
[2] P. M. Edwards, Eventually regular semigroups, Bull. Austral. Math. Soc. 28 (1983), 23-38.
[3] Peter R. Jones, Joins and meets of congruences on a regular semigroup, Semigroup Forum 30 (1984), 1-16.
[4] R. Feigenbaum, Kernels of regular semigroup homomorphisms (Doctoral dissertation, University of South Carolina, 1975).

Department of Mathematics
A. M. A. L. College

Anakapalle
A. P. 531001

India

