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Abstract
Linguistic synesthesia as a productive figurative language usage has received little attention in the field of
Natural Language Processing (NLP). Although linguistic synesthesia is similar to metaphor concerning
involving conceptual mappings and showing great usefulness in the NLP tasks such as sentiment analysis
and stance detection, the well-studied methods of metaphor detection cannot be applied to the detection
of linguistic synesthesia directly. This study incorporates comprehensive linguistic features (i.e., character
and radical information, word segmentation information, and part-of-speech tagging) into a neural model
to detect linguistic synesthetic usages in a sentence automatically. In particular, we employ a span-based
boundary detection model to extract sensory words. In addition, a joint model is proposed to detect the
original and synesthetic modalities of the sensory words collectively. Based on the experiments, our model
is shown to achieve state-of-the-art results on the dataset for linguistic synesthesia detection. The results
prove that leveraging culturally enriched linguistic features and joint learning are effective in linguis-
tic synesthesia detection. Furthermore, as the proposed model leverages non-language-specific linguistic
features, the model would be applied to the detection of linguistic synesthesia in other languages.

Keywords: linguistic synesthesia; linguistic features; a neural network model; Chinese

1. Introduction
Processing of figurative languages has been one of the most challenging tasks in Natural Language
Processing (NLP). Among the different types of figurative meanings, metaphor and irony have
been studied extensively in NLP. The processing of metaphor and irony has been shown to make
significant contributions to tasks such as semantic parsing, sentiment and emotion analysis, stance
detection, etc. (Weitzel, Prati, and Aguiar 2016; Hercig and Lenc 2017; Zhang et al. 2019; Su, Wu,
and Chen 2021). However, linguistic synesthesia, as one of the most productive and frequently
used figurative languages, has not received much attention in computational linguistics so far.

Linguistic synesthesia is the use of words and expressions from one sensory modality to
describe concepts in a different sensory modality (Ullmann 1957; Williams 1976; Shen 1997).
Examples below illustrate the usages of linguistic synesthesia in English, Mandarin, and Turkish
respectively.
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2 Q. Zhao et al.

Figure 1. A hierarchical model for linguistic synesthesia (Williams 1976, see p. 463).

Figure 2. Transfer directionalities of linguistic synesthesia based on Mandarin corpus data (Zhao et al. 2019, see p. 9).

• Analogue recordings sound[HEARING/target] warmer[TOUCH/source] than digital.
(Strik Lievers 2015, see p. 79)

• ye4se4 nong2[TASTE/source] lv4[VISION/target]
leaf-color of intense taste green
“The color of leaves is deep green.”
(Zhao, Huang, and Long 2018, see pp. 1178-1179)

• yagmur-un ıslak[TOUCH/source] koku-su[SMELL/target]
rain-GEN wet scent-POSS[3SG]
“the wet smell of rain”
(Kumcu 2021), see p. 247)

In the field of linguistics, Williams (1976) proposed a hierarchical model for linguistic synes-
thesia in English, as shown in Figure 1. However, Zhao et al. (2019) found three types of
directionalities of linguistic synesthesia in Mandarin Chinese, including the unidirectional, bidi-
rectional, and biased-directional transfers between the senses, as demonstrated in Figure 2.
With respect to the neuro-cognitive characteristics of linguistic synesthesia, most linguistic stud-
ies on linguistic synesthesia considered it a type of metaphor (Shen 1997; Shen and Cohen
1998; Yu 2003; Popova 2005; Shen and Gil 2008; Strik Lievers 2017). However, Cacciari (2008)
and Ramachandran and Hubbard (2001) highlighted the neuro-biological nature of linguistic
synesthesia, where linguistic synesthesia was argued to pattern with neurological synesthesia con-
strained by “strong anatomical constraints” (Ramachandran and Hubbard 2001, see p. 18).a More
recently, Zhao et al. (2022) have clarified linguistic synesthesia as a type of conceptual metaphor,
where lexicalized concepts of sensory properties are involved, rather than the real-time sensory
input that is processed as in neurological synesthesia. Thus, similar to metaphor, linguistic synes-
thesia is also one of the important vehicles, through which we can further our understanding of
semantics and cognition.

However, compared to the studies on metaphor detection which have received notable results
(Turney et al. 2011; Bulat, Clark, and Shutova 2017; Su,Wu, and Chen 2021), very limited research
has yet been devoted to automatic linguistic synesthesia detection. Although linguistic synes-
thesia is similar to metaphor with conceptual mappings, linguistic synesthesia detection cannot
directly apply the metaphor detection methods without significant modifications. That is, lin-
guistic synesthesia involves conceptual mappings from one concrete sensory domain to another
concrete sensory domain, while metaphor generally exhibits conceptual mappings from concrete
domains to abstract domains (Zhao et al. 2022). Thus, there is a research gap in the computational

aNeurological synesthesia involves the association of perceptions in perceptual experiences whereby sensations in one
sensory modality can be perceived when a different modality is stimulated (e.g., tasting shapes), or perception in one sub-
modality can be obtained when another sub-modality is stimulated (e.g., perceiving colors from black-printed graphemes)
(Cytowic 2002; Simner and Hubbard 2013)
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analysis of linguistic synesthesia, where the task of automatic synesthesia detection has been given
little attention in NLP. Jiang et al. (2022)’s study is the only exception, which aimed to detect
linguistic synesthesia automatically in Mandarin Chinese through a radical-based neural model.
However, the study is only a pilot study, in which only radical information was incorporated. In
other words, the model proposed by Jiang et al. (2022) is language and writing system-dependent,
which cannot be easily applied to other languages. Thus, this study proposes a neural network
that leverages culturally enriched linguistic information including word segmentation and part-
of-speech (POS) features, which can be generalized to other languages. Specifically, two kinds of
linguistic features are utilized: the sub-lexical-level features including characters in the original
text and the main semantic symbols of the characters (i.e., radicals), and the word-level features
including segmented word sequences and their corresponding POS tags. Based on the extensive
linguistic studies on linguistic synesthesia (Strik Lievers 2015; Winter 2019a; Zhao 2020), content
words such as adjectives, verbs, nouns, and adverbs are frequently involved in linguistic synes-
thetic usages. In Chinese synesthesia particularly, the radical information in Chinese characters
could provide important clues for determining the sensory modalities of words (Zhao, Huang,
and Long 2018 Zhao, Huang, and Ahrens 2019; Zhao, Ahrens, and Huang 2022). Thus, this study
presumes that both the character information and the word information would contribute to the
neural model for the detection of linguistic synesthesia.

The task of linguistic synesthesia detection conducted by this study would contribute to both
computational analyses and linguistic studies of the phenomenon in the following respects. Firstly,
linguistic synesthesia involves sensory words and hence crucially reports the physical world as
perceived by the speaker, which thus facilitates contextualizing NLP representations in the real
world. More specifically, sensory information showing great usefulness in the task of sentiment
analysis, has been illustrated in Picard (2000), Xiang et al. (2021), and Zolyomi and Snyder (2021).
Thus, linguistic synesthesia encoding sensory information and showing regular patterns of sen-
sory inputs would also show usefulness in the task of sentiment analysis. For example, Zhong
et al. (2022) illustrated that the gustatory perceptions of la4wei4 “spicy taste” and ma2
“numbing” were described most frequently in terms of linguistic synesthesia using words related
to hurt and irritation, which were generally unpleasant (e.g., shao1zui3 “burning the mouth
(unpleasantly spicy)”). Secondly, one promising application of linguistic synesthesia detection is
concerned with the clinical pre-diagnosis for neurological synesthesia. That is, studies by Rizzo
(1989), Cytowic (2002), and Turner and Littlemore (2023) showed that people who could experi-
ence neurological synesthesia generally employed peculiar linguistic synesthetic descriptions (e.g.,
“tasting the shape”). Thirdly, most of the existing studies on linguistic synesthesia rely on the
extraction of synesthetic data manually or semi-automatically, which are time-consuming (Strik
Lievers 2015; Zhao, Huang, and Ahrens 2019; Kumcu 2021). The automatic methods to detect
linguistic synesthesia in natural language would improve the efficiency of data collection. Last but
not least, the computational models for linguistic synesthesia leveraging linguistic features could
test the correlations between linguistic features and the patterns of linguistic synesthesia attested
by linguistic studies, based on the extent to which a specific linguistic feature can improve the
performance of the models.

To summarize, this study aims to fill in the gap in automatic linguistic synesthesia detection.
The main contributions of our work can be summarized as follows:

• This study proposes a neural network model that leverages culturally enriched linguis-
tic information for linguistic synesthesia detection. As the word-level linguistic features
employed are not language-specific, our model could be generalized for the detection of
linguistic synesthesia in other languages.

• We construct a Chinese synesthesia dataset with rigorous annotations.
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• Comprehensive experiments show that our model outperforms the state-of-the-art base-
line models and achieves the best performance on the Chinese synesthesia dataset for the
task of Chinese synesthesia detection.

• In addition to facilitating data collection, our model shows various potential applications,
such as in the sentiment analysis, the clinical pre-diagnosis of neurological synesthesia, and
linguistic theories about figurative languages.

In what follows, Section 2 reviews the related work on the detection of metaphor and linguistic
synesthesia. Following that, a detailed description of the dataset and linguistic features is pre-
sented in Section 3. Section 4 and Section 5 focus on the proposed methods and the experiments
respectively. Section 6 summarizes the results of this study. After that, the last section presents the
limitations of this study and suggests future work.

2. Related work
2.1 Metaphor detection
Studies on the processing of metaphors have developed various models to automatically detect
metaphorical expressions in a sentence. These studies can be divided into three categories based
on the computational methods utilized: the feature-based approach, the shallow network-based
approach, and the contextualized approach.

Regarding the feature-based approach, various linguistic features related to metaphorical
expressions have been proposed and incorporated into (mostly) linear classifiers. The features
(mainly in English) include word abstractness and concreteness (Turney et al. 2011), word image-
ability (Broadwell et al. 2013), semantic supersenses (Tsvetkov et al. 2014), and property norms
(Bulat, Clark, and Shutova 2017). InMandarin Chinese, radical information and sensory informa-
tion were also employed (Chen et al. 2017, Wan et al. 2020). However, designing features based
on human knowledge is expensive, and low-frequency metaphorical features are often neglected.

With the development of neural networks, several studies proposed neural metaphor detec-
tion models using recurrent neural networks (RNNs) or convolutional neural networks (CNNs).
For instance, Wu et al. (2018) combined CNN and LSTM layers to utilize local and long-range
contextual information to identify metaphorical details. In addition to the POS and word clus-
tering information, Wu et al. (2018) also employed text information as linguistic features. Gao
et al. (2018) showed that relatively standard BiLSTMmodels that operated on complete sentences
worked well in the task of metaphor detection by formulating the task as sequence labeling or
classification. These models outperform linear classification models by a significant margin and
also avoid most of the feature annotation processes.

With respect to the contextualized approach, the contextualized language modeling coupled
with a transformer network can encode semantic and contextual information. It can thus detect
metaphors with fine-tuning training like other tasks. For instance, Su et al. (2021) introduced
a variety of linguistic features (i.e., global/local text context and POS features) into the field of
computational metaphor detection by leveraging powerful pre-training language models (i.e.,
RoBERTa). Gong et al. (2020) applied linguistic information from external resources such as
WordNet with a similar RoBERTa network. Choi et al. (2021) proposed a metaphor-aware late
interaction over the BERT (MelBERT) model, which leveraged the contextualized word represen-
tation and relevant linguistic metaphor identification theories to detect whether the target word
is metaphorical.

To summarize, the different approaches for metaphor detection vary in their computational
models. However, linguistic features are generally incorporated into the models, which show great
contributions to the improvements of the performances of the models on the detection tasks.
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2.2 Linguistic synesthesia detection
Different from extensive work on metaphor detection, there have been only several studies
reported to focus on the detection of linguistic synesthesia in natural language. These studies can
be classified into two categories: one is to employ semi-automatic methods, and the other is to
utilize automatic methods based on neural models. Strik Lievers et al. (2013) and Strik Lievers
and Huang (2016) proposed a semi-automatic approach to extract synesthetic expressions in
English and Italian. The approach needed a lot of manual strategies, such as compiling a list of
perception-related lexical items and manually selecting sentences that contained linguistic synes-
thesia. Following a similarmethod to Strik Lievers et al. (2013), Liu et al. (2015) extracted linguistic
synesthetic sentences for Mandarin Chinese. These semi-automatic approaches are expensive and
time-consuming.

With respect to detecting linguistic synesthesia via neural networks, a recent work by Jiang et al.
(2022) is the first to propose the task of Chinese synesthesia detection. The study provided a family
of baseline models for linguistic synesthesia detection. In addition, a radical-based neural model
was proposed for linguistic synesthesia detection. However, there have been notable limitations
of the work by Jiang et al. (2022) in the linguistic feature selection, the data annotation, and the
experiment design. From the feature engineering perspective, the study only incorporated the
radical information of Chinese characters as the linguistic feature into the model. Thus, Jiang
et al. (2022)’s model is language and writing system-dependent and cannot be easily generalized to
other languages. In addition, the orthographic information of the radical components in Chinese
orthography was not utilized appropriately by Jiang et al. (2022). That is, Jiang et al. (2022) relied
on the Xinhua dictionary which was designed for simplified Chinese characters to detect radical
information, while the dataset utilized by the study contained linguistic expressions in traditional
Chinese characters. In terms of the annotation process of linguistic synesthetic data by Jiang et al.
(2022), the annotators were not given rigorous training on how to decide linguistic synesthetic
usages before the annotation, except being provided with written instructions. With respect to the
experiment process, Jiang et al. (2022) used the golden label of sensory word extraction as the
input of sensory modality detection. However, a boundary detection model is generally used first
to detect the sensory word boundary.

This study leverages culturally enriched linguistic features for the automatic detection of lin-
guistic synesthesia. Specifically, apart from the radical information, the word segmentation and
POS features are incorporated, to ensure that the proposed model could be applied to other lan-
guages. In addition, a more compatible and conventionalized conceptual orthographic system for
Chinese traditional characters (i.e., Hantologyb) is utilized to detect radicals.c Furthermore, a lin-
guist is invited to give a detailed introduction to linguistic synesthesia, to ensure that annotators
have sufficient knowledge about the phenomenon before annotation. Last but not least, this study
refines the experiment setting by adopting a boundary detection model for word identification
(Huang et al. 2007) rather than employing the golden labels (i.e., the sensory words annotated in
the dataset) for linguistic synesthesia detection.

bHantology (Hanzi Ontology) is a language resource designed to contain three-level information for Chinese characters:
meanings of the characters, radicals of the characters, and meaning mappings to SUMO (The Suggested Upper Merged
Ontology) (Chou and Huang 2006, 2010), which can be accessed at: https://hantology.ling.sinica.edu.tw. For the application
of Hantology in the NLP analysis of Chinese, please refer to Chen et al. (2017, 2019) on metaphor detection and Chen et al.
(2021) on emotion classification.
cAs stated in Section 1, based on the previous studies on linguistic synesthesia, both the character information and the word

information would contribute to the neural model for the detection of linguistic synesthesia. The details of the relevance of
each feature for the detection task will be given in Section 3.2.
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Figure 3. The procedure for dataset acquisition.

3. Dataset and linguistic features
3.1 Dataset
This study followed a linguistic synesthesia identification procedure proposed by Zhao (2020)
to construct the dataset, which is adapted as Figure 3. Although no consensus has been reached
regarding the classification of human senses (Miller and Johnson-Laird 1976; Purves et al. 2001),
the Aristotelian five senses (i.e., touch, taste, vision, hearing, and smell) have generally been uti-
lized to analyze linguistic synesthesia (Strik Lievers 2015; Zhao, Huang, and Long 2018; Winter
2019a; Winter 2019b; Kumcu 2021). Based on the five sensory modalities, 664 sensory words
were extracted automatically from two Chinese lexical thesauri, includingHIT-CIR Tongyici Cilin
(Extended) (Che, Li, and Liu 2010) and HowNet (Dong and Dong 2003). In order to identify the
original sensory domain of each of the 664 sensory words, the etymological origins, the earlier
usages in Classic Chinese, the orthographic compositions of characters, and the comparison anal-
yses were employed collectively. The step was conducted by a Chinese linguist. For example, the
sensory adjective nong2 has two different orthographic writings in Classic Chinese: one is
with the radical denoting wine, which was used to describe the strong taste of wine; and the other
is with the radical denoting water, which was used to describe the visual sensation of dense dew
(Xu 156; Duan 1815). Thus, it is not easy to decide which sensory modality (i.e., taste or vision) is
the original domain for the adjective nong2. However, the adjective nong2 was used most
frequently to show a comparison with the adjective dan4 in Classic Chinese, whose original
meaning was paraphrased as “mild taste” in Chinese dictionaries (Xu 156; Duan 1815). Thus, the
comparison analysis demonstrated that taste was the most likely to be the original sensory domain
of the adjective nong2 as well.

After determining the original sensory domain of the sensory words, the sentences contain-
ing the words were extracted from the Sinica corpus (Chen et al. 1996).d Three undergraduate
students were trained to decide whether the usages of the sensory words were synesthetic before
the annotation. Then, we asked the three annotators to manually check whether the usages of
the sensory words belonged to the original sensory domains of the words: if yes, the usages were
marked as original usages; if not and the usages still described sensory perceptions, the usages
were marked as synesthetic usages. For the synesthetic usages, the target domains of the sensory
words were also annotated. Figure 4 shows an example of annotation for linguistic synesthesia
in Mandarin Chinese. Specifically, the sensory adjective bing1leng3 “cold” has its original
sensory modality as touch. However, the adjective was used to describe hearing in the expression

yi1ge4 bing1leng3 fen4nu4 de sheng1yin1 “a cold and angry voice”. Thus,
the sensory word bing1leng3 “cold” was marked with the linguistic synesthetic usage, and
its original and target modalities were annotated as touch and hearing respectively.

Through the annotation process, 187 sensory adjectives with both original and synesthetic
usages were identified, where 7,217 synesthetic sentences were annotated. Table 1 demonstrates

dThe Sinica corpus (The Academia Sinica Balanced Corpus) can be accessed at: http://lingcorpus.iis.sinica.edu.tw/modern/.
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Table 1. Inter-annotator agreements for annotation of linguistic synesthesia

Annotation Kappa score

Synesthesia Annotation Synesthetic usage 0.835
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TOUCH as the target 0.779
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TASTE as the target 0.854
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Domain Annotation VISION as the target 0.862
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HEARING as the target 0.884
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SMELL as the target 0.832

Table 2. Data distribution of the five sensory modalities in synesthetic and original sub-
datasets

Synesthetic sub-dataset Original sub-dataset

Sensory modality Type Token Type Token

TOUCH 69 2,361 69 2,361
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TASTE 20 2,097 20 2,097
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VISION 92 2,697 92 2,697
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HEARING 4 33 4 33
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SMELL 2 29 2 29

Total 187 7,217 187 7,217

Figure 4. An example of annotation of linguistic synesthesia in Chinese.

the inter-annotator agreements measured by the kappa scores (Fleiss 1971). Our annotation has
reached kappa scores of 0.779 to 0.884, which are all higher than that by Jiang et al. (2022) (i.e.,
0.757).

As original usages are generally more frequent than synesthetic usages for Mandarin sensory
adjectives (Zhao, Ahrens, and Huang 2022), 7,217 original usages were randomly extracted for
the 187 sensory adjectives, in accordance with the distribution of the five sensory modalities in the
collected linguistic synesthetic data. Thus, both synesthetic sub-dataset and original sub-dataset
were constructed, with the data distribution demonstrated in Table 2.e

eThe whole dataset can be accessed at: https://osf.io/73tyc/?view_only=b5a503ce329948f2a3d73fa67ffb26a8.
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3.2 Linguistic features
Linguistic features show significant usefulness in improving the performance of computational
models for automatic metaphor detection, as reviewed above. This current study incorporates
linguistic features including character information, word segmentation, and POS features into the
neural network model to detect linguistic synesthesia automatically in Mandarin Chinese.

Character features. Although the character is generally regarded as an orthographic unit, it can
also act as an important syntactic and semantic unit in Chinese (Xu 2005; Ye 2015). With respect
to the NLP tasks, Chen et al. (2017, 2019), Hou et al. (2019), and Chen et al. (2021) improved the
performances of the computational models by introducing the Chinese character as an indepen-
dent linguistic feature on metaphor detection, register classification, and emotion classification
respectively. The character is also an important linguistic feature for linguistic synesthesia detec-
tion, whose radical component provides a conventionalized clue for detecting the original sensory
domain of the lexical item represented by the character. Woon and Yun (1987) found that over
80 percent of Chinese characters were phono-semantic compounds, where a semantic component
(mostly a radical) indicated a broad category of the meaning of the character. For instance, the
radical of leng3 “cold” means ice, which indicates touch as the original domain for the adjec-
tive. Similarly, the radical of tian2 “sweet” is denoting the tongue, through which humans
experience gustatory perceptions. Thus, the original sensory domain of tian2 “sweet” is taste.
In addition, there are abundant sensory words with synesthetic usages in Mandarin, which only
contain one single character. Examples are such as leng3 “cold” in leng3 xiang1 “cold
fragrance” and tian2 “sweet” in tian2 bai2 “sweet white”.

Word segmentation features. Compounding is a productive morphological device for word
formation in Mandarin Chinese (Chao 1968; Huang and Shi 2016). Mandarin compound adjec-
tives can also be involved in linguistic synesthesia (Zhao 2020; Zhao, Ahrens, and Huang 2022).
For instance, themonosyllabic visual word da4 “big” can be duplicated as one single word
da4da4 “big” to describe hearing as in da4da4 de sheng1yin1 “a big sound”. Besides,
two different monosyllabic words can be combined as a compound word used for linguistic synes-
thesia. For instance, the monosyllabic word tian2 “sweet” and the monosyllabic word mei3
“tasty” can be compounded as a single word tian2mei3 “tasty”. The compound word
tian2mei3 “tasty” with taste as its original domain, can be used in linguistic synesthesia for vision,
as in tian2mei3 de zhang3xiang4 “a sweet appearance”. As one sub-task of this study
is to detect sensory words with linguistic synesthetic usages, the word segmentation information
would be of great usefulness to detect the boundary of the sensory words.

POS features. Linguistic synesthesia was found to show certain patterns on syntactic structures
(Strik Lievers 2015; Zhao, Ahrens, and Huang 2022). For instance, typical synesthetic expressions
in English and Italian are composed of a sensory adjective acting as the source and a noun as the
target (Strik Lievers 2015). Linguistic synesthetic expressions in Mandarin frequently exhibit the
syntactic combinations of “adjective + noun” (e.g., xuan1nao4 de se4cai3 “a loud
color”), “adverb + verb” (e.g., zhong4zhong4 de shuo1 “saying in a heavy voice”), and
“verb + noun” (e.g., wen2 dao4 hua1xiang1 “to smell the fragrance of flowers”) (Zhao
2020). On the contrary, function words (e.g., pronoun, preposition, conjunction, interjection, etc.)
have not yet been reported to show linguistic synesthetic usages. Thus, the POS information would
contribute to the computational models for linguistic synesthesia detection.

4. Proposedmethods
There are mainly three challenges in the automatic detection of linguistic synesthesia. Firstly, the
target modality of one sensory word may vary in its different contexts. For instance, the tactile
adjective jian1rui4 “sharp” has its target modality as vision when used for di4xing2
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Figure 5. The architecture of our proposed methods.

“terrain” while as hearing in the context of the description of sheng1yin1 “sound”. Hence, it
is necessary to capture both the sensory expressions of the sensory word and its contexts. Secondly,
one sensory word may not contain a single character, as Mandarin compounds can also be used
for linguistic synesthesia (see Section 3.2). Thus, it is necessary to detect the boundary of the
sensory word. Thirdly, there is an association between original and synesthetic sensory modali-
ties. For instance, taste is significantly correlated with smell, and vision is significantly associated
with hearing in Mandarin synesthesia (Zhao 2020). It therefore makes modeling the interaction
between sensory modalities necessary.

This study proposes a multi-linguistic feature-based end-to-end neural model to address the
three challenges, with the overall architecture of the methods shown in Figure 5. Specifically, the
linguistic features include both sub-lexical and word-level features. The sub-lexical-level feature
includes characters in the original text and the main semantic symbols of the characters (i.e., rad-
icals) obtained from an external knowledge base (i.e., Hantology). The word-level information
includes segmented word sequences and their corresponding POS tags, which can be obtained
directly from the Sinica corpus or by using the existing Chinese word segmentation/POS tagging
system like Jieba tokenizerfor Stanford CoreNLP.g For modeling the sensory word extraction and
linguistic synesthesia detection simultaneously, our model includes the following three steps:

• Text representation: building multi-linguistic features based on the text representation
and using different features to capture the relationship between sensory words and their
contexts.

• Sensory word extraction via boundary detection: extracting sensory words based on a
span-based boundary detection model.

• Joint sensory modality detection: predicting the original sensory modality of the sensory
words and classifying the actual sensory modality (i.e., the synesthetic sensory modality) in
the text collectively, based on the sensory words extracted in the previous steps and their
contexts.

fhttps://github.com/fxsjy/jieba
ghttps://github.com/elisa-aleman/StanfordCoreNLP_Chinese
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Sensory word extraction task

(a) (b)

Joint sensory modality detection task

Figure 6. An example for two sub-tasks: sensory word extraction and joint sensory modality detection.

4.1 Task definition
Given a raw text of Chinese charactersC = {c1, c2, . . . , cn}, the desired output contains the sensory
word and its related sensory modalities from both the original and target domains. Thus, the
linguistic synesthesia detection task is divided into a two-part model with two sub-tasks: sensory
word extraction and joint sensory modality detection (see Figure 5)

• Sensory word extraction: its goal is to extract the sensory word in the given raw text,
modeled as the sequence labeling task. As shown in the annotated example in Figure 6(a),
the input of this sub-task is the raw Chinese sequence C, and the output of this sub-task is
the sensory word bing1leng3 “cold,” since the word is used in linguistic synesthesia
for hearing rather than touch in the given text.

• Joint sensorymodality detection: its goal is to predict the original and synesthetic sensory
modalities of the previously extracted sensory word, modeled as the text classification task.
As shown in the annotated example in Figure 6(b), the input consists of the raw Chinese
sequence C and the extracted sensory word from the previous sub-task, and the output is
the original sensory modality as touch and the synesthetic sensory modality as hearing for
the word bing1leng3 “cold.”

4.2 Text representation
In the process of building the text representation, the model uses four different text representa-
tion methods for the original text, namely “character”, “character + radical”, “character + radical
+ word”, and “character + radical + word + pos tag”. Among them, the radical is the part of
the Chinese character that specifies the meaning category. For example, the main radical of the
Chinese character chi1 “eat” is “mouth”. Therefore, we integrate radicals into the text rep-
resentation. In addition, the word segmentation and the POS information used in this model
are based on the original annotations in the Sinica corpus. Formally, given a Chinese raw text
C, it contains n characters, i.e., C = {c1, c2, . . . , cn}, where each character ci is an independent
item. Then, the characters are mapped into the radicals respectively by looking up Hantology,
i.e., H = {h1, h2, . . . , hm}. As to the word segmentation information in the Sinica corpus, we
convert the original text C into a word sequence of m length as W = {w1,w2, ..,wm}, and the
corresponding POS sequence is P = {p1, p2, . . . , pm}.

Our model includes two parts, i.e., the sensory word extraction and the sensory modality detec-
tion. However, the explicit information in the sensorymodality detection task contains the sensory
word e obtained from the sensory word extraction task, so the textual representations of the two
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parts are not the same. We thus utilize BERT (Devlin et al. 2019) to learn the representation RE
for the sensory word extraction and RP for the sensory modality detection, with the details as:

• Character is the basic token-level information of the raw input. We use “[SEP]” token to
separate the characters C and the extracted sensory word e for RP to notify BERT that the
sensory word has distinct significance when compared to other characters in the C. The
text representations under the “character” feature are formulated as follows:
RE = BERT([CLS]C[SEP]), RP = BERT([CLS]C[SEP]e)

• Character+ Radical consists of token-level characters C and radical informationH in the
input. We use “[SEP]” to separate the characters, radical information, and the extracted
sensory word. This approach enables the integration of radical information within the
encoded representation, as each character is mapped to its respective radical in a one-
to-one manner. The text representations under the “character + radical” feature are
formulated as follows:
RE = BERT([CLS]C[SEP]H), RP = BERT([CLS]C[SEP]H[SEP]e)

• Character+Radical+Word also incorporates word-level segmentation due to the neces-
sity of tokenization in the Chinese language, such as word ambiguity. We also use “[SEP]”
to divide different parts of the input. The text representations under the “character + rad-
ical + word” feature are formulated as follows:
RE = BERT([CLS]C[SEP]H[SEP]W), RP = BERT([CLS]C[SEP]H[SEP]W[SEP]e)

• Character + Radical + Word + POS tag also focuses on word-level features, because
sensory words are generally used as adjectives or adverbs in linguistic synesthetic usages.
Similarly, we use “[SEP]” token to concatenate the different kinds of features in the
encoder input. The text representations under the “character + radical + word + pos tag”
feature are formulated as follows:
RE = BERT([CLS]C[SEP]H[SEP]W[SEP]P), RP = BERT([CLS]C[SEP]H[SEP]W[SEP]P
[SEP]e)

Note that “[CLS]” and “[SEP]” are more than ad hoc feature-marking tokens initiated in the
pre-training procedure of BERT. The token “[CLS]” (classification) is the classification result of
the entire sentence, and its hidden vector is influenced by all other words in the sentence. On the
other hand, the token “[SEP]” (separation) instantiates the boundary between lexical units in a
sentence. Huang et al. (2007) proposed the boundary detectionmodel for word segmentation, and
Li et al. (2012) showed that boundary detection wasmuchmore efficient and required less training
data than word identification. Modeling these two concepts explicitly allows us to fully leverage
the contextual information in BERT. By leveraging BERT’s multi-head attention mechanism and
pre-trained knowledge, each attention head learns unique patterns and relationships from various
parts of the given input. This helps us to create linguistically enriched text representations that
capture the deep connections between tokens and linguistic features.

4.3 Sensory word extraction via boundary detection
We then propose a boundary detectionmodel to detect the boundary of sensory words. Therefore,
the sensory word extraction is reformulated as the task of identifying the start and end indices of
the sensory word (Hu et al. 2019; Wang et al. 2019). Given a sequence RE from the text repre-
sentation, we apply two separate feed-forward neural networks to create different representations
(rs/re) for the start/end of the spans. A sigmoid is introduced to produce the probability of each
token being selected as the start/end of the scope:

rs = FFNN(Ws · RE + Bs)

Ss = Sigmoid(rs) (1)
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re = FFNN(We · RE + Be)

Se = Sigmoid(re) (2)

where Ws, We and Bs, Be are weights and biases in the model parameters, and Ss and Se are the
outputs of the sensory word extraction model, which are used to predict the start and end tokens
of the boundary of the extracted sensory word.

4.4 Joint sensory modality detection
Given the text representation RP and the sensory word extraction learned from the previous sub-
section, we propose a joint model to detect the sensory word’s original and synesthetic sensory
modalities simultaneously. Specifically, we first feed RP into two separate feed-forward neural
networks and obtain two representations, i.e., (ro/ra) for the original modality and the actual
synesthetic modality, respectively:

ro = FFNN (Wo · RP + Bo)

ra = FFNN (Wa · RP + Ba)
(3)

whereWo,Wa and Bo, Ba are weights and biases in themodel parameters.We then employ distinct
attention layers to capture the relationship between different sensory modalities and the original
texts and leverage attention to enhance the performance of the model by emphasizing key input
elements, thereby improving accuracy in our task.

atto = Softmax

(
ro · RPT√

dRP

)
RP

atta = Softmax

(
ra · RPT√

dRP

)
RP

(4)

where dRP is the dimension of the representation RP. After obtaining the hidden representation
(atto/atta), we use two softmax layers to predict the original and synesthetic sensory modalities as
follows:

Mo = Softmax([ro; atto]) (5)

Ma = Softmax([rs; atta]) (6)

where ro is concatenated with atto, and rs is concatenated with atta.Mo andMa are the outputs of
the sub-task, corresponding to the predicted original modality and the predicted actual synesthetic
modality, respectively.

An example is shown in Table 3, to illustrate how linguistic features are represented and con-
tribute to the detection of linguistic synesthesia. Specifically, the radical “ear” of the character

sheng1 “sound” is closely related to hearing, while the radical “metal generally used for
making weapons in ancient China” suggests touch as the most relevant sensory modality. The
inconsistency of the sensory modalities (hearing vs. touch) within a sentence indicates a high like-
lihood of linguistic synesthetic usages. In addition, the word segmentation helps our model to
identify the two characters dun4dun4 “blunt” as a word, rather than the single character
dun4 “blunt”. Besides, the POS information is employed to detect dun4dun4 “blunt” as the
synesthetic word, as the sensory adjective involves linguistic synesthesia most frequently. Based on
the comprehensive linguistic information of the character, radical, word segmentation, and POS
features, the sensory word dun4dun4 “blunt” with linguistic synesthetic usages is identified,
whose original domain as touch and target domain as hearing are detected jointly, as shown in
Figure 7.
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Table 3. An example for representation of linguistic featuresh

Input Plain text
“The sound is still blunt.”

Linguistic Features Key characters and radicals [ear: HEARING];
[metal generally used for making weapons: TOUCH]

Word segmentation+ pos tag /Na /D /D /SHI /VH /T

Figure 7. An example of linguistic synesthesia detection.

4.5 Training
We train the sensorymodality detection with the sensory word extraction in a unified architecture.

Loss of the sensory word extraction. We minimize the negative log-likelihood loss to train
the sensory word extraction model, and parameters are updated during the training process. In
particular, the loss is the sum of two parts: the start token loss and the end token loss,

LS = −
∑

ys log(Ss)−
∑

ye log(Se) (7)

where ys and ye are the ground truth start and end positions for the sensory word extraction
model.

Loss of the sensory modality detection. Our training objective of the sensory modality
detection is to minimize the cross-entropy loss with a l2-regularization term,

LP = −
∑

yo logMo −
∑

ya logMa + λ

2
||θy||2 (8)

where yo and ya are the pre-defined labels for the original and actual sensory modalities,
respectively. And λ is a parameter for l2-regularization.

Therefore, the final loss is demonstrated as:

L = λ1LS + λ2LP (9)

where λ1 and λ2 are the trainable weight parameters, and λ1 + λ2 = 1.

h/Na, /D, /SHI, /VH, and/T are the POS tags based on the Sinica corpus, referring to the common noun, the adverbial,
Chinese special verb “BE”, the stative intransitive verb, and the particle respectively.
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5. Experiments
5.1 Experiment settings
One challenge in linguistic synesthesia detection is to find a large-scale dataset that includes rich
linguistic synesthetic usages. Based on our collected Mandarin synesthesia dataset, the extraction
and detection tasks both have 11,484 sentences in the training set, 1,460 sentences in the test-
ing set, and 1,456 sentences in the development set (roughly following the 8:1:1 ratio). We have
double-checked that there is no overlap between the testing dataset used in the sensory word
extraction task and the testing dataset in the sensory modality detection task. In addition, the
sensory words in the training set did not appear in the testing set.

This study used the BERT-base-Chinese as our pre-trained model. The optimizer chosen is
Adam (Kingma and Ba 2015), and the parameters of BERT and other models are optimized sep-
arately. Besides, this study utilized a lower learning rate of 1e-5 with a training batch size of 16.
For LSTM-based baselines, we used the 50-dimensional character embeddings, which were pre-
trained on Chinese Giga-Word using Skip-gram word2vec (Mikolov et al. 2013) and fine-tuned
during the model training. All experiments were conducted on a single NVIDIA GeForce RTX
1080 Ti (11GB memory). It is important to note that different from Jiang et al. (2022) using the
golden data of the sensory word for linguistic synesthesia detection, this study considered the
pipeline setting and used the prediction results of sensory word extraction for linguistic synesthe-
sia detection. The selected evaluation metrics (i.e., Precision, Recall, F1 score) were calculated via
the scikit-learn and SeqEvali packages.

5.2 Baseline selection
The task of sensory word extraction aims to extract the perception-related word from a sentence.
Generally speaking, it can be considered a sequence labeling task. On the other hand, linguistic
synesthesia detection aims to detect the original and synesthetic sensory modalities of the given
sensory word. Therefore, this task can be separated into two sub-tasks: original sensory modality
detection and synesthetic sensory modality detection. These two sub-tasks can be considered two
text classification tasks.

Firstly, our work chooses the following baselines for both the sensory word extraction task and
the sensory modality detection task:

• E2EB-iLSTM: a relatively standard end-to-end BiLSTMmodel for detecting the metaphor-
ical use of words in context proposed by Gao et al. (2018).

• MelBERT: originally developed for the metaphor detection task, namely the metaphor-
aware late interaction over BERT (i.e., MelBERT) (Choi et al. 2021). The model leveraged
the contextualized word representation and linguistic features to detect whether the target
word is metaphorical.

Then, the following models are developed by this study as baselines only for the task of sensory
word extraction:

• BiLSTM + CRF: as BiLSTM + CRF (Lample et al. 2016) is widely used in many sequence
labeling tasks, we adopt it as an essential baseline for sensory word extraction. In particular,
we apply a bidirectional LSTM (Schuster and Paliwal 1997) as the textual encoder and the
conditional random fields (CRF) (Lafferty, McCallum, and Pereira 2001) as the decoder.

ihttps://pypi.org/project/seqeval/
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• BERT+CRF: instead of training a model from scratch, we also adopt the framework of
fine-tuning a pre-trained language model on a downstream task (Radford et al. 2018). In
this framework, we adopt BERT (Devlin et al. 2019) as the textual encoder and use CRF as
the decoder.

• BERT+MRC: it is the same pre-training and fine-tuning model as BERT+CRF. Instead
of CRF as the decoder, we formulate it as a machine reading comprehension (MRC) task
(Chen and Wu 2020). Specifically, we first utilize the original raw text as the input passage
to the BERT encoder. Then, we follow Li et al. (2020) to employ two separate feed-forward
layers over the text representation to generate distinct representations for the start and end
of the spans. This allows our model to effectively identify and locate the relevant spans of
the sensory word.

In addition, for sensory modality detection, we select several state-of-the-art models in
metaphor detection, aspect-based sentiment analysis, and other related text classification tasks:

• SR-BiLSTM: similar to the standard LSTM model struggling to detect the important part
for metaphor detection, SR-BiLSTM (Sensory-Related BiLSTM) is implemented by our
study based on a minor modification of the TD-LSTM model originally designed for
aspect-based sentiment analysis (Tang et al. 2016). The baseline model uses an attention
mechanism that can capture the critical part of a sentence in response to a sensory word
(Wang et al. 2016) and a bidirectional LSTM (Schuster and Paliwal 1997) as the encoder of
the sensory word and the content of the sentence. Then, SR-BiLSTM employs an attention
mechanism to explore the connection between the sensory word and the content.

• PF-BERT: due to the importance of the context of the sensory word in linguistic synesthesia
detection, we model the preceding and the following contexts surrounding the sensory
word. Therefore, contexts in both directions can be used as feature representations for
synesthesia detection. In particular, we build a baseline model called PF-BERT (Preceding
and Following BERT), which uses two BERT neural networks (Devlin et al. 2019) to model
the preceding and the following contexts respectively.

• MrBERT: themetaphor-relation BERTmodel (MrBERT) explicitly models the relationship
between a verb and its grammatical, sentential, and semantic contexts (Song et al. 2021).
The model is employed to frame sensory modality detection as a relation extraction task,
which enables modeling the synesthetic relation between a sensory word and its context
components and uses the relation representation for determining linguistic synesthesia of
the word.

The baseline models mentioned above can be roughly divided into two groups based on the
type of encoder they use: LSTM-based models and BERT-based models. The primary difference
between LSTM-based and BERT-based models lies in the design and learning technique. LSTM is
a traditional neural network for sequential data that focuses on short-term dependencies. BERT,
on the other hand, is a trending and powerful large language model that has been pre-trained
on a large amount of data and knowledge, allowing it to capture long-term dependencies and
complex contextual information. Furthermore, the models only for extraction tasks can also be
roughly categorized into the CRF-based model and the MRC-based model in terms of the type
of decoder they utilize. After obtaining the text representation from the encoder, the CRF-based
model will calculate the conditional probabilities of the output sequence, taking into account label
dependencies. In contrast, theMRC-based model will focus on detecting the span boundary of the
required output, aiming to identify the relevant answer within the given passage.
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Table 4. The results of sensory word extraction

Method F1

LSTM-based BiLSTM+CRF 71.5
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E2EB-iLSTM 74.6
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BERT-based BERT+CRF 77.9
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BERT+MRC 78.3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MelBERT 80.2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ours character 78.4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

character+radical 81.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

character+radical+word 81.0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

character+radical+word+pos tag 81.1

5.3 Results and discussion
This section presents the results of experiments for both the task of sensory word extraction
and the task of joint sensory modality detection. After that, we show an analysis of factors that
contribute to the performance of our model.j

5.3.1 Sensory word extraction
As shown in Table 4, the transformer-based models outperform the LSTM-based models for sen-
sory word extraction. Specifically, ourmodels and the three selected BERT-based baselines achieve
more than 3 points higher than the LSTM-based models in the F1 score. These results show the
effectiveness of BERT-based models for learning the sentence representation for sensory word
extraction, regardless of whether the decoder is CRF or MRC. On the other hand, comparing the
results of the BiLSTM+CRF model with the BERT+CRF model reveals that contextual infor-
mation is quite useful in CRF-based extraction tasks. In addition, compared to the BERT+CRF
model, the BERT+MRCmodel performs better, which shows that the boundary detection-based
model is more effective than the traditional sequence labelingmodel. Thirdly, our proposedmodel
achieves a state-of-the-art result (with the F1 score of 81.1) and outperforms other baselinemodels
significantly (p < 0.05).

In terms of the four different linguistic features leveraged, the usage of Hantology contributes
to the task of sensory word extraction significantly, resulting in a 2.9 percent improvement over
the character-only model. However, adding the word segmentation and POS tagging features into
the radical-incorporated model does not show an improvement in the performance of the model.
These results prove that the task of sensory word extraction is sensitive to the sub-lexical-level
knowledge that specifies the semantic and cognitive category of what is denoted by the character.
These results also echo the work by Chen et al. (2017), which leveraged the radical information
for the classification of ontological categories to improve the performance of the neural model for
metaphor detection.

The results that character and radical features play a crucial role in the task of sensory word
extraction have two important implications for the research on linguistic synesthesia. One is that
linguistic synesthesia is the most likely to be involved in the monosyllable word composed of
one character. In fact, Chen et al. (2019)’s experimental study and Zhao (2020)’s corpus-based

jAll the experimental results in this section represent the average of ten independent runs. We conducted t-tests to assess
the differences between our model and comparison models, consistently yielding a p-value smaller than 0.01 across all
comparisons. This statistical significance underscores the robustness and superiority of our model’s performance.

https://doi.org/10.1017/nlp.2024.9 Published online by Cambridge University Press

https://doi.org/10.1017/nlp.2024.9


Natural Language Processing 17

Table 5. The results of original modality detection, with F1 (weighted F1) calculated by taking the mean of all per-class F1
scores while considering the weight of each class

Original

Method TOUCH TASTE VISION HEARING SMELL F1

SR-BiLSTM 48.4 48.3 40.5 11.8 0.0 44.5


E2EB-iLSTM 45.4 49.3 57.2 0.0 0.0 50.2


PF-BERT 60.3 51.7 65.8 53.3 0.0 58.9


MelBERT 54.0 58.2 63.2 33.3 0.0 57.7


MrBERT 50.6 61.1 62.7 33.3 0.0 57.2


Ours(character) 60.1 58.5 60.2 27.3 0.0 58.6


Ours(character+radical) 61.0 65.8 63.6 33.3 0.0 62.3


Ours(character+radical+word) 55.6 63.8 64.0 46.2 5.1 60.2


Ours(character+radical+word+pos tag) 60.9 63.1 66.1 40.0 6.7 62.5

study also found a great numerical advantage of monosyllabic words (i.e., the word containing one
character) with linguistic synesthetic usages over compounding words (i.e., the word containing
more than one character). Thus, with respect to the sensory word extraction task for linguistic
synesthesia, the character boundary and the word boundary overlap in most cases. That may be
the reason why adding the word segmentation information does not improve the performance of
the model which has already incorporated the character information for sensory word extraction.
The other implication for studying linguistic synesthesia is that radical components of Chinese
characters conceptualize comprehensive and systematic sensory information that may imply a
culturally grounded conceptualization of semantics and cognition. For example, radicals denoting
instruments (e.g., ) are generally related to touch (e.g., ), radicals denoting the tongue (e.g.,
) are generally related to taste (e.g., ), radicals denoting the nose (e.g., ) are generally related

to smell (e.g., ), radicals denoting the light (e.g., ) are generally related to vision (e.g., ), and
radicals denoting the mouth (e.g., ) are generally related to hearing (e.g., ).k

5.3.2 Sensory modality detection
In terms of the task of sensory modality detection, our proposed model is compared with sev-
eral classification baseline models in Tables 5 and 6, where SR-BiLSTM, E2EB-iLSTM, PF-BERT,
MelBERT, and MrBERT are all state-of-the-art models for metaphor detection.

Based on the results in Tables 5 and 6, we find that:

• The performances of detection of the synesthetic modalities largely surpass those of
detection of the original modalities in all the models.

• Our proposed model outperforms other baseline models significantly (p < 0.05) and
reaches acceptable results in both the original modality detection and the synesthetic
modality detection. The results indicate that leveraging linguistic features and joint
learning is effective in linguistic synesthesia detection. With respect to the four features
leveraged, the model containing all the features (i.e., “character + radical + word + pos

kPlease note that although the mouth can also be used for tasting in perceptions, Chinese characters with the radical
denoting the mouth are predominantly related to hearing (see the appendices of Zhao (2020)).
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Table 6. The results of synesthetic modality detection, with F1 (weighted F1) calculated by taking themean of all per-class F1
scores while considering the weight of each class

Synesthetic

Method TOUCH TASTE VISION HEARING SMELL F1

SR-BiLSTM 43.7 54.2 63.8 64.9 0.0 54.8


E2EB-iLSTM 47.6 60.0 66.6 65.9 33.7 59.3


PF-BERT 70.4 67.2 76.4 81.6 49.5 73.2


MelBERT 66.8 71.3 74.9 78.1 24.3 70.7


MrBERT 62.0 67.2 74.1 81.9 48.4 70.3


Ours(character) 66.2 64.2 73.9 81.2 56.9 71.0


Ours(character+radical) 71.2 76.3 76.6 77.3 45.2 74.1


Ours(character+radical+word) 74.0 71.4 77.8 81.2 45.8 75.0


Ours(character+radical+word+pos tag) 71.5 72.0 78.1 82.5 50.5 75.1

tag”) achieves the best performances in the detection for both original modalities and
synesthetic modalities.

• It is hard for themodels to predict hearing and smell, especially for the detection of original
sensory modalities.

• Notably, Jiang et al. (2022)’s work reported higher performances in both original modality
detection and synesthetic modality detection. The improvements can be attributed to their
use of golden standard annotations for the initial phase of the sensory word extraction
task, which involves identifying the boundaries of words that evoke sensory experiences.
The approach inadvertently enhanced the perceived accuracy of results in both original
modality detection and synesthetic modality detection. Our model is designed as a sequen-
tial process aimed at automatically detecting and interpreting sensory-related words, such
as those pertaining to taste or smell. The first step is to determine the boundaries of these
sensory words. Subsequently, we ascertain the specific sense they relate to. In line with
best practices for pipeline models, our model should not have access to the correct answers
for the initial step during its operation, as the accurate label of the first task should not
influence the prediction of the second task.

The result that the performances of the models for the detection of synesthetic modalities
are better than those for the detection of original modalities may be caused by several factors.
Firstly, detecting the original sensory modality mainly relies on the semantics of the sensory word,
where the radical information makes a great contribution to the proposed model. However, the
synesthetic sensory modality can be inferred from both the sensory word and the context. As
demonstrated in Table 3, an inconsistency in the sensory modalities in a sentence can suggest a
linguistic synesthetic usage, where an adjective generally shows the source modality and a noun
the target modality. In addition, there are directional patterns between the five sensory modalities
for linguistic synesthesia, as shown in Figure 2. That is, the probability of each sensory modality
being used for another sensory modality is different. Zhao (2020)’ corpus-based study showed
that 84.9 percent of tactile adjectives were used for vision, 76.2 percent of gustatory adjectives
for smell, and 87.9 percent of visual adjectives for hearing, while a very limited number of audi-
tory and olfactory adjectives were used for other sensory modalities. Thus, the target synesthetic
modality can also be inferred from the original sensory modality. With respect to hearing and
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Table 7. The results of our proposed model with the sub-set of testing data with respect to the original
modality, where “(Num.)” means the number of data from one original modality to one synesthetic modality

Synesthetic(Num.)

Original TOUCH TASTE VISION HEARING SMELL F1

TOUCH 75.1(231) 66.7(15) 68.7(134) 85.3(74) 76.2(10) 74.6
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TASTE 4.9(5) 78.6(207) 77.4(135) 84.7(38) 40.0(31) 75.0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VISION 70.5(118) 22.2(1) 81.9(264) 75.1(136) 44.4(9) 76.9
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HEARING –(0) 54.5(6) –(0) –(0) 57.1(2) 56.2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SMELL –(0) 60.0(11) –(0) –(0) 53.3(11) 56.7
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Figure 8. Influence of the size of the training data.

smell, as they are the most likely to act as the target domain in linguistic synesthesia, the perfor-
mances of our proposed model for detecting hearing and smell as the synesthetic target modality
are improved drastically, as shown in Table 6.

5.3.3 Analysis of factors
Table 7 presents an analysis of the number of data from one original modality to one synesthetic
modality. In particular, the sensory modalities of hearing and smell have very limited numbers
of linguistic synesthetic data. However, the sparse data on hearing and smell mirrors the crucial
characteristic of human cognition that hearing and smell are hardly used as the target domains of
linguistic synesthesia cross-linguistically (Strik Lievers 2015; Zhao 2020).

As sensory labeling and synesthesia labeling are usually expensive, we would like to test whether
our model can still reach a reasonable performance with less data. Figure 8 shows the impact of
the size of the training data on the performance of our model. Thus, our model is generally stable
regardless of the size of the training data and themodality. This suggests that the linguistic features
leveraged by this study contribute to a more robust model in linguistic synesthesia detection. In
addition, the performances of both the BERT model and our proposed model increase with the
size of the training data, which is in line with the general text classification models.
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6. Conclusion
This study refines the NLP task called Chinese synesthesia detection proposed by Jiang et al.
(2022). In particular, we construct a large-scale manually annotated Chinese synesthesia dataset,
which will be released in the open resource platform of OSF. Based on the dataset, we incorporate
culturally enriched linguistic features (i.e., character and radical information, word segmentation
information, and POS tagging features) into a neural network model to detect linguistic synesthe-
sia automatically. In terms of identifying the boundary of sensory words and jointly detecting the
original and synesthetic sensory modalities of the words, our proposed model achieves state-of-
the-art results on the dataset for linguistic synesthesia detection through extensive experiments.
Furthermore, this study shows several linguistic features that are useful in the detection of lin-
guistic synesthesia. That is, except for the radical information that is dependent on the Chinese
writing system, the word segmentation and POS features could also be incorporated for the detec-
tion of linguistic synesthesia in other languages. Thus, our proposed model would be applied to
the detection of linguistic synesthesia in other languages.

7. Limitations and future work
One of the limitations of this study is that our proposedmodel performs poorly with the subsets of
the testing data for hearing and smell due to the data sparsity. Our future work will investigate how
to integrate few-shot learning or data-augmenting methods in these two sparse data categories for
linguistic synesthesia detection.

Secondly, the model, leveraging non-language-specific linguistic features, can detect linguistic
synesthesia in various languages. However, evaluating it solely on Chinese may limit its gener-
alizability due to its reliance on sensory-rich Chinese characters. This reliance could hinder its
applicability across different languages, especially if key linguistic features are missing or inaccu-
rately annotated. Future research should explore techniques like data augmentation or few-shot
learning within a large languagemodeling framework to address limited annotated resources. This
could enhance the model’s versatility for application in diverse linguistic contexts.

Thirdly, our model is specifically designed for transformers based on the encoder structure
and is not suitable for the encoder-decoder architecture of transformers, such as T5 (Raffel et al.
2020), GPT (Radford et al. 2018), etc. A potential limitation of our approach is that it is cur-
rently incompatible with these types of models, which may limit its applicability in scenarios
where encoder-decoder models are preferred for their generative capabilities. Moving forward,
a significant area for future work will be to explore strategies for integrating the model with the
decoder component of these architectures and expanding the range of models that can benefit
from the enrichment of sensory information.
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