A NOTE ON THE BORSUK CONJECTURE

Z.A. Melzak¹

(received December 26, 1966)

1. According to the still unproved conjecture of Borsuk

[1] a bounded subset A of the Euclidean n-space E^n is a union of n + 1 sets of diameters less than the diameter D(A) of A. Since A can be imbedded in a set of constant width D(A), [2], it may be assumed that A is already of constant width. If in addition A is smooth, i.e., if through every point of its boundary ∂A there passes one and only one support plane of A, then the truth of Borsuk's conjecture can be proved very easily [3]. The question arises whether Borsuk's conjecture holds also for arbitrary smooth convex bodies, not merely for those of constant width. Since it is not known whether a smooth convex body K can be imbedded in a smooth set of constant width D(K), the answer is not immediate. In this note we show that the answer is affirmative.

THEOREM 1. A smooth convex body K in E^n is a union of n + 1 sets of diameters < D(K).

The theorem is not particularly surprising and the proof is elementary, but the method of proof is novel and may be of some interest. Our main tool is visibility sets; roughly speaking, these are subsets of ∂K , visible from a point outside K. Small Latin letters o, p, q, ... will denote points, xy will stand for the straight closed segment joining x to y, and |xy| for its length.

2. Let K be any convex body in E^n , that is, a compact convex subset of E^n with nonempty interior. Let x be a point outside K and put

Canad. Math. Bull. vol. 10, no. 1, 1967

¹ During the writing of this note the author held a Fellowship of the National Research Council.

$$V(\mathbf{x}, \mathbf{K}) = \{ \mathbf{y} : \mathbf{y} \in \partial \mathbf{K} , \mathbf{xy} \cap \mathbf{K} = \{ \mathbf{y} \} \},$$
$$U(\mathbf{x}, \mathbf{K}) = \{ \mathbf{y} : \mathbf{y} \in \partial \mathbf{K} , \mathbf{xy} \cap (\mathbf{K} - \partial \mathbf{K}) = \phi \} ;$$

on account of the obvious physical analogy, these may be called the sets of visibility and of semivisibility, of K from x.

To prove Theorem 1 it suffices to represent ∂K as a union of n + 1 sets, say B_1, \ldots, B_{n+1} , of diameter < D(K). For if that is done, let o be any point in the interior of K and let F_i be the closed convex hull of $B_i \cup \{o\}$. It follows then that

$$D(F_i) = \max(\sup) |xy|, \sup |ox| < D(K),$$

$$x, y \in B_i \qquad x \in B_i$$

so that

$$K = \bigcup_{i=1}^{n+1} F_i, D(F_i) < D(K) \quad (i = 1, ..., n+1).$$

To obtain the desired decomposition of ∂K , inscribe K into a simplex with the vertices x_1, \ldots, x_{n+1} , and let U_i be the i-th semivisibility set $U(x_i, K)$. If x is any point in ∂K and N a plane supporting K at x, then the vertices x_1, \ldots, x_{n+1} cannot all lie strictly on the same side of N as K. Therefore there is a vertex, say x_1 , such that either $x_1 \in N$ or x_1 is strictly separated from K by N. In either case it follows that $n+1 = x \in U_i$; hence $\partial K = \bigcup_{i=1}^{n+1} U_i$.

To complete the proof we show that the hypothesis of smoothness of K implies $D(U_i) < D(K)$ (i = 1,...,n+1). Suppose to the contrary that $D(U_i) = D(K)$ for some i. Then U_i contains points p and q, such that $|pq| = D(U_i) = D(K)$, and the planes P and Q, passing through p and q and orthogonal to pq, both support K. Suppose, without loss of generality, that $|x_ip| \ge |x_iq|$, so that x_ip is not contained in P and lies on the

same side of P as K. The sets x_p and K are convex and have no interior points in common, they can therefore be separated by a plane R supporting K. As p lies in ∂K , R supports K at p. Since x_p lies on the same side of P as K, P and R are distinct. However, this contradicts the smoothness of K because P and R are two distinct planes supporting K at p, and the proof is complete.

REFERENCES

- 1. K. Borsuk, Drei Satze ueber die n-dimensionale Euklidische Sphaere. Fund. Math., vol. 20 (1933), pages 177-190.
- T. Bonnesen and W. Fenchel, Theorie der Konvexen Koerper. Chelsea, New York (1948).
- H. Hadwiger, Mitteilung. Comment. Math. Helv. vol. 19 (1946-47), pages 72-73.

University of British Columbia and Courant Institute of Mathematical Sciences