A NOTE ON THE BORSUK CONJECTURE

Z.A. Melzak ${ }^{1}$
(received December 26, 1966)

1. According to the still unproved conjecture of Borsuk [1] a bounded subset A of the Euclidean n-space E^{n} is a union of $n+1$ sets of diameters less than the diameter $D(A)$ of A. Since A can be imbedded in a set of constant width $D(A)$, [2], it may be assumed that A is already of constant width. If in addition A is smooth, i.e., if through every point of its boundary ∂A there passes one and only one support plane of A, then the truth of Borsuk's conjecture can be proved very easily [3]. The question arises whether Borsuk's conjecture holds also for arbitrary smooth convex bodies, not merely for those of constant width. Since it is not known whether a smooth convex body K can be imbedded in a smooth set of constant width $D(K)$, the answer is not immediate. In this note we show that the answer is affirmative.

THEOREM 1. A smooth convex body K in E^{n} is a union of $n+1$ sets of diameters $<\mathrm{D}(\mathrm{K})$.

The theorem is not particularly surprising and the proof is elementary, but the method of proof is novel and may be of some interest. Our main tool is visibility sets; roughly speaking, these are subsets of $\partial \mathrm{K}$, visible from a point outside K. Small Latin letters o, p, q, ... will denote points, xy will stand for the straight closed segment joining x to y, and $|x y|$ for its length.
2. Let K be any convex body in E^{n}, that is, a compact convex subset of E^{n} with nonempty interior. Let x be a point outside K and put
${ }^{1}$ During the writing of this note the author held a Fellowship of the National Research Council.

Canad. Math. Bull. vol. 10, no. 1, 1967

$$
\begin{aligned}
& V(x, K)=\{y: y \in \partial K, x y \cap K=\{y\}\}, \\
& U(x, K)=\{y: y \in \partial K, x y \cap(K-\partial K)=\phi\} ;
\end{aligned}
$$

on account of the obvious physical analogy, these may be called the sets of visibility and of semivisibility, of K from x.

To prove Theorem 1 it suffices to represent $\partial \mathrm{K}$ as a union of $n+1$ sets, say B_{1}, \ldots, B_{n+1}, of diameter $<D(K)$. For if that is done, let o be any point in the interior of K and let F_{i} be the closed convex hull of $B_{i} \cup\{0\}$. It follows then that

$$
\left.D\left(F_{i}\right)=\max \left(\sup _{x, y \in B_{i}}\right)|x y|, \sup _{x \in B_{i}}|o x|\right)<D(K),
$$

so that

$$
K=\bigcup_{i=1}^{n+1} F_{i}, D\left(F_{i}\right)<D(K) \quad(i=1, \ldots, n+1)
$$

To obtain the desired decomposition of $\partial \mathrm{K}$, inscribe K into a simplex with the vertices x_{1}, \ldots, x_{n+1}, and let U_{i} be the i-th semivisibility set $U\left(x_{i}, K\right)$. If x is any point in ∂K and N a plane supporting K at x, then the vertices x_{1}, \ldots, x_{n+1} cannot all lie strictly on the same side of N as K. Therefore there is a vertex, say x_{1}, such that either $x_{1} \in N$ or x_{1} is strictly separated from K by N. In either case it follows that
$x \in U_{i}$; hence $\partial K=\bigcup_{i=1}^{n+1} U_{i}$.
To complete the proof we show that the hypothesis of smoothness of K implies $D\left(U_{i}\right)<D(K)(i=1, \ldots, n+1)$. Suppose to the contrary that $D\left(U_{i}\right)=D(K)$ for some i. Then U_{i} contains points p and q, such that $|p q|=D\left(U_{i}\right)=D(K)$, and the planes P and Q, passing through p and q and orthogonal to $p q$, both support K . Suppose, without loss of generality, that $\left|x_{i} p\right| \geq\left|x_{i} q\right|$, so that $x_{i} p$ is not contained in P and lies on the
same side of P as K. The sets $x_{i} p$ and K are convex and have no interior points in common, they can therefore be separated by a plane R supporting K. As p lies in $\partial K, R$ supports K at p. Since $x_{i} p$ lies on the same side of P as K, P and R are distinct. However, this contradicts the smoothness of K because P and R are two distinct planes supporting K at p , and the proof is complete.

REFERENCES

1. K. Borsuk, Drei Satze ueber die n-dimensionale Euklidische Sphaere. Fund. Math., vol. 20 (1933), pages 177-190.

2. T. Bonnesen and W. Fenchel, Theorie der Konvexen
Koerper. Chelsea, New York (1948).
3. H. Hadwiger, Mitteilung. Comment. Math. Helv. vol. 19 (1946-47), pages 72-73.

University of British Columbia
and
Courant Institute of Mathematical Sciences

