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Geometric Preliminaries

In this chapter we discuss certain geometric preliminaries required for studying
the geodesic X-ray transform on a general compact Riemannian manifold
(M,g) with boundary. We will discuss the concept of a compact non-trapping
manifold with strictly convex boundary. We will also introduce the exit time
function τ , the geodesic vector field X, the geodesic flow ϕt , the scattering
relation α, and the vector fields X⊥ and V . The chapter will conclude with
a discussion of conjugate points and with the important notion of a simple
manifold, including several equivalent definitions.

3.1 Non-trapping and Strict Convexity

Let (M,g) be a compact, connected, and oriented Riemannian manifold with
smooth boundary ∂M and dimension n ≥ 2. We will denote the inner product
induced by the metric g on tangent vectors by 〈v,w〉g and the norm by |v|g .
The subscript g will often be omitted for brevity.

Geodesics travel at constant speed, so we fix the speed to be one. We
pack positions and velocities together in what we call the unit sphere bundle
SM . This consists of pairs (x,v), where x ∈ M and v ∈ TxM with norm
|v|g = 1. Given (x,v) ∈ SM , let γx,v denote the unique geodesic determined
by (x,v) so that γx,v(0) = x and γ̇x,v(0) = v. For any (x,v) ∈ SM,

the geodesic γx,v is defined on a maximal interval of existence that we denote
by [−τ−(x,v),τ+(x,v)] where τ±(x,v) ∈ [0,∞], so that

γx,v : [−τ−(x,v),τ+(x,v)] → M

is a smooth curve that cannot be extended to any larger interval as a smooth
curve in M .
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3.1 Non-trapping and Strict Convexity 53

Definition 3.1.1 We let

τ(x,v) := τ+(x,v).

Thus τ(x,v) is the exit time when the geodesic γx,v exits M .

Exercise 3.1.2 Give examples of compact manifolds (M,g) with boundary
and points (x,v) ∈ SM where the following holds:

(a) The first time when γx,v hits ∂M is different from the exit time τ(x,v).
(b) τ(x,v) is not continuous on SM .
(c) τ±(x,v) = ∞.
(d) τ−(x,v) is finite but τ+(x,v) = ∞.

If some geodesic has infinite length, one needs to be careful when studying
the geodesic X-ray transform since the integral of a smooth function over such
a geodesic may not be finite. For the most part of this book, we will be working
on manifolds where this issue does not appear.

Definition 3.1.3 We say that (M,g) is non-trapping if τ(x,v) < ∞ for all
(x,v) ∈ SM . Equivalently, there are no geodesics in M with infinite length.

Example 3.1.4 Compact subdomains in R
n and in hyperbolic space are non-

trapping, and so are the small spherical caps in Example 2.5.4. Large spherical
caps, catenoid-type surfaces, and flat cylinders have trapped geodesics (see
Examples 2.5.5–2.5.7).

Unit tangent vectors at the boundary of M constitute the boundary ∂SM of
SM and will play a special role. Specifically,

∂SM := {(x,v) ∈ SM : x ∈ ∂M}.
We will need to distinguish those tangent vectors pointing inside (‘influx
boundary’) and those pointing outside (‘outflux boundary’), so we define two
subsets of ∂SM as

∂±SM := {(x,v) ∈ ∂SM : ±〈v,ν(x)〉g ≥ 0},
where ν denotes the inward unit normal vector to the boundary (cf. Figure 3.1).
The convention of using the inward unit normal instead of the outward unit
normal will eliminate some minus signs in the volume form dμ in Section 3.6
and certain other places. We also denote

∂0SM := ∂+SM ∩ ∂−SM .

Note that one has ∂0SM = S(∂M).
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54 Geometric Preliminaries

Figure 3.1 Influx and outflux boundaries.

Definition 3.1.5 The geodesic X-ray transform of a function f ∈ C∞(M) on
a compact non-trapping manifold (M,g) with smooth boundary is the function
If defined by

If (x,v) =
∫ τ(x,v)

0
f (γx,v(t)) dt, (x,v) ∈ ∂+SM . (3.1)

The idea is that if M is non-trapping, then any geodesic γ going through
some point (y,w) ∈ SM has an initial point (x,v) = γy,w(−τ−(y,w)). We
must have (x,v) ∈ ∂SM , since if we had (x,v) ∈ SM int then the geodesic
could be extended further in both directions. Moreover, we must have (x,v) ∈
∂+SM since any geodesic starting at a point in ∂SM\∂+SM could be extended
further for small negative times.

The argument in the preceding paragraph shows that on non-trapping
manifolds, there is a one-to-one correspondence between the set of unit speed
geodesics and the set ∂+SM of their initial points. Parametrizing geodesics
by their initial points in ∂+SM means that we are using the fan-beam
parametrization of geodesics.

Remark 3.1.6 Note that the fan-beam parametrization is different from the
parallel-beam parametrization that we used in Chapter 1, and also from the
parametrization used in Section 2.4 for geodesics of a radial sound speed under
the Herglotz condition based on their closest point to the origin.

https://doi.org/10.1017/9781009039901.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009039901.006


3.1 Non-trapping and Strict Convexity 55

Since f is smooth and the point γx,v(t) depends smoothly on (x,v), the
formula (3.1) shows that the regularity properties of If are decided by the
regularity properties of the exit time function τ(x,v). If the boundary of M is
not strictly convex, it can happen that τ is discontinuous. On the other hand,
if ∂M is strictly convex then τ will be continuous and in fact smooth in most
places, and the theory will be particularly clean.

For a precise definition of when the boundary ∂M is strictly convex, we will
use the second fundamental form of ∂M that describes how ∂M sits inside M .
Recall that the (scalar) second fundamental form is the bilinear form on T ∂M

given by

�x(v,w) := −〈∇vν,w〉g,
where x ∈ ∂M and v,w ∈ Tx∂M . Here ∇ is the Levi-Civita connection of g,
and on the right-hand side ν is extended arbitrarily as a smooth vector field in
M (recall that ∇XY |x only depends on X|x and the value of Y along any curve
η(t) with η̇(0) = X|x , so that �x(v,w) does not depend on the choice of the
extension of ν).

Definition 3.1.7 We shall say that ∂M is strictly convex if �x is positive
definite for all x ∈ ∂M .

The combination of non-trapping with strict convexity of the boundary
will produce several desirable properties. In fact, many results in this book
will be stated either for compact non-trapping manifolds with strictly convex
boundary, or for simple manifolds, which satisfy the additional condition that
geodesics do not have conjugate points.

We already encountered the notion of strict convexity in Section 2.5, where
this notion was related to the behaviour of tangential geodesics. We wish to
show that a similar characterization exists in the general case. To do this, it is
convenient to introduce the following notions.

Lemma 3.1.8 (Closed extension) Let (M,g) be a compact manifold with
smooth boundary. There is a closed (=compact without boundary) connected
manifold (N,g) having the same dimension as M so that (M,g) is isometri-
cally embedded in (N,g).

Proof (Special case) The lemma has an easy proof in the special case where M

is a subset of Rn. In that case it is enough to consider some cube N = [−R,R]n

with M ⊂ N int, and to extend g smoothly as a 2R-periodic positive definite
symmetric matrix function in N . Identifying the opposite sides of N , we see
that (N,g) becomes a torus with (M,g) embedded in its interior. Then (N,g)

is the required extension.

https://doi.org/10.1017/9781009039901.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009039901.006


56 Geometric Preliminaries

Exercise 3.1.9 Prove Lemma 3.1.8 in general, by considering the double of
the manifold M .

If (N,g) is a closed extension of (M,g), we continue to write γx,v(t) for the
geodesic in (N,g). One benefit of working with a closed extension is that now
γx,v(t) is well defined and smooth for all t ∈ R.

Lemma 3.1.10 (Boundary defining function) Let (M,g) be a compact man-
ifold with smooth boundary, and let (N,g) be a closed extension. There is a
function ρ ∈ C∞(N), called a boundary defining function, so that ρ(x) =
d(x,∂M) near ∂M in M , and

M = {x ∈ N : ρ ≥ 0},
∂M = {x ∈ N : ρ = 0},

N \ M = {x ∈ N : ρ < 0}.

One has ∇ρ(x) = ν(x) for all x ∈ ∂M .

Exercise 3.1.11 Prove Lemma 3.1.10.

The following result shows that the second fundamental form of ∂M is
given by the Riemannian Hessian of ρ, defined in terms of the total covariant
derivative ∇ by

Hess(ρ) = ∇2ρ = (
∂xj ∂xkρ − �l

jk∂xl ρ
)
dxj ⊗ dxk .

Moreover, strict convexity of the boundary can indeed be characterized by the
behaviour of tangential geodesics.

Lemma 3.1.12 (Strictly convex boundary) If (M,g) is a compact manifold
with smooth boundary and ρ is as in Lemma 3.1.10, then for any (x,v) ∈
∂0SM , one has

−�x(v,v) = Hessx(ρ)(v,v) = d2

dt2
ρ(γx,v(t))

∣∣∣
t=0

.

Thus ∂M is strictly convex if and only if any geodesic in N starting from
some point (x,v) ∈ ∂0SM satisfies d2

dt2 ρ(γx,v(t))
∣∣
t=0 < 0. In particular, any

geodesic tangent to ∂M stays outside M for small positive and negative times,
and any maximal M-geodesic going from ∂M into M stays in M int except for
its end points.

The proof will follow from the next lemma, which will also be useful later.
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3.1 Non-trapping and Strict Convexity 57

Lemma 3.1.13 Let ρ be as in Lemma 3.1.10, and consider the smooth function

h : SN × R → R, h(x,v,t) = ρ(γx,v(t)).

If (x,v) ∈ SN and if t0 is such that x0 := γx,v(t0) ∈ ∂M , then one has

h(x,v,t0) = 0,

∂h

∂t
(x,v,t0) = 〈ν(x0),γ̇x,v(t0)〉,

∂2h

∂t2
(x,v,t0) = 〈∇γ̇x,v(t0)∇ρ,γ̇x,v(t0)〉 = Hessx0(ρ)(γ̇x,v(t0),γ̇x,v(t0)).

Proof Write γ (t) = γx,v(t). Since ρ|∂M = 0 one has h(x,v,t0) = 0.
Moreover, using that ∇ρ|∂M = ν we compute

∂h

∂t
(x,v,t0) = dρ|x0(γ̇ (t0)) = 〈ν(x0),γ̇ (t0)〉.

Finally, one has

∂2h

∂t2
(x,v,t0) = d

dt
(dρ|γ (t)(γ̇ (t)))

∣∣∣
t=t0

= d

dt
〈∇ρ|γ (t),γ̇ (t)〉

∣∣∣
t=t0

= 〈∇γ̇ (t)∇ρ,γ̇ (t)〉 + 〈∇ρ,∇γ̇ (t)γ̇ (t)〉|t=t0 .

The last term is zero since γ is a geodesic (i.e. ∇γ̇ (t)γ̇ (t) = 0). The
definition of the total covariant derivative ∇ gives that 〈∇γ̇ (t)∇ρ,γ̇ (t)〉|t=t0 =
∇2ρ(γ̇ (t0),γ̇ (t0)), which finishes the proof.

Proof of Lemma 3.1.12 Let (x,v) ∈ ∂0SM and write γ (t) = γx,v(t) and
h(x,v,t) = ρ(γ (t)). By Lemma 3.1.13 one has

h(x,v,0) = 0,

∂h

∂t
(x,v,0) = 0,

∂2h

∂t2
(x,v,0) = 〈∇v∇ρ,v〉 = Hessx(ρ)(v,v).

But ∇ρ|∂M = ν, which shows that 〈∇v∇ρ,v〉 = −�x(v,v). This proves the
required formula.

Now ∂M is strictly convex ⇐⇒ �x(v,v) > 0 for all (x,v) ∈ ∂0SM ⇐⇒
∂2
t h(x,v,0) < 0 for all (x,v) ∈ ∂0SM . By the Taylor formula,

ρ(γ (t)) = h(x,v,t) = −1

2
�x(v,v)t

2 + O(t3)

when |t | is small. This shows that for small positive and negative times
ρ(γ (t)) < 0, i.e. γx,v(t) is in N \ M .
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58 Geometric Preliminaries

3.2 Regularity of the Exit Time

We will now discuss in detail the regularity of the fundamental exit time
function τ on a compact non-trapping manifold (M,g) with strictly convex
boundary. Note that by definition, τ |∂−SM = 0.

Example 3.2.1 Let M = D be the closed unit disk in the plane, and let g = e

be the Euclidean metric. Take x = (0,−1) and let vθ = (cos θ, sin θ). An easy
geometric argument shows that

τ(x,vθ ) =
{

2 sin θ, θ ∈ [0,π ],
0, θ ∈ [−π,0]

.

Thus τ is continuous on ∂SM but fails to be continuously differentiable in
tangential directions. However, the odd extension of τ |∂+SM with respect to
(x,v) 
→ (x, − v),

τ̃ (x,vθ ) :=
{

2 sin θ, θ ∈ [0,π ],
2 sin θ, θ ∈ [−π,0],

is clearly smooth on ∂SM .

Exercise 3.2.2 Verify the claims in Example 3.2.1.

We will now show that the properties of the exit time function in Example
3.2.1 are valid in general.

Lemma 3.2.3 Let (M,g) be a compact non-trapping manifold with strictly
convex boundary. Then τ is continuous on SM and smooth on SM \ ∂0SM .

Proof The proof that τ is continuous is left as an exercise. Let (N,g) be a
closed extension of (M,g) and let ρ be a boundary defining function as in
Lemma 3.1.10. Define h : SN ×R → R, h(x,v,t) := ρ(γx,v(t)) as in Lemma
3.1.13. Then

∂h

∂t
(x,v,t) = dρ(γ̇x,v(t)) = 〈∇ρ(γx,v(t)),γ̇x,v(t))〉.

Assume that (x,v) ∈ SM \ ∂0SM , and set y := γx,v(τ (x,v)) ∈ ∂M . Since
y is the final point of the geodesic, one must have γ̇x,v(τ (x,v)) ∈ ∂−SM

(otherwise the geodesic could be extended further). By strict convexity, one
must also have γ̇x,v(τ (x,v)) /∈ ∂0SM (since otherwise τ(x,v) = 0 and (x,v)

would be in ∂0SM).
Thus γ̇x,v(τ (x,v)) ∈ ∂SM \ ∂+SM , i.e. 〈γ̇x,v(τ (x,v)),ν〉 < 0. Since ∇ρ

agrees with ν on ∂M , we see that

∂h

∂t
(x,v,τ (x,v)) < 0.
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Since h(x,v,τ (x,v)) = 0 and h is smooth, the implicit function theorem
ensures that τ is smooth in SM \ ∂0SM .

The set ∂0SM , where geodesics are tangential to ∂M and τ is not smooth,
is often called the glancing region. This terminology comes from the theory of
boundary value problems for hyperbolic equations (Hörmander, 1983–1985,
chapter 24).

Exercise 3.2.4 Show that τ is continuous in SM .

Exercise 3.2.5 Show that τ is indeed not smooth at the glancing region ∂0SM .

The next result shows that the odd extension of τ |∂+SM is smooth on ∂SM .

Lemma 3.2.6 (Odd extension of τ on ∂SM) Let (M,g) be a compact non-
trapping manifold with strictly convex boundary and define τ̃ : ∂SM → R by

τ̃ (x,v) :=
{

τ(x,v), (x,v) ∈ ∂+SM,

−τ(x, − v), (x,v) ∈ ∂−SM .

Then τ̃ ∈ C∞(∂SM); in particular, τ |∂+SM : ∂+SM → R is smooth.

Proof As before we let h(x,v,t) := ρ(γx,v(t)) for (x,v) ∈ ∂SM and t ∈ R.
Note that by Lemma 3.1.13, with the choice t0 = 0, one has

• h(x,v,0) = 0;
• ∂h

∂t
(x,v,0) = 〈ν(x),v〉;

• ∂2h

∂t2 (x,v,0) = Hessx(ρ)(v,v).

Hence the Taylor formula shows that for some smooth function R(x,v,t), we
can write

h(x,v,t) = 〈ν(x),v〉t + 1

2
Hessx(ρ)(v,v)t

2 + R(x,v,t)t3

= tF (x,v,t),

where F is the smooth function

F(x,v,t) := 〈ν(x),v〉 + 1

2
Hessx(ρ)(v,v)t + R(x,v,t)t2.

Since h(x,v,τ̃ (x,v)) = 0, we have τ̃F (x,v,τ̃ ) = 0 and hence

F(x,v,τ̃ (x,v)) = 0. (3.2)

Here we used that τ̃ (x,v) = 0 implies 〈ν(x),v〉 = 0 by strict convexity.
Moreover,

∂F

∂t
(x,v,0) = 1

2
Hessx(ρ)(v,v).
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But for (x,v) ∈ ∂0SM , Hessxρ(v,v) = −�x(v,v) < 0 by strict convexity.
Thus by the implicit function theorem, τ̃ is smooth in a neighbourhood
of ∂0SM . Since τ̃ is smooth in ∂SM \ ∂0SM by Lemma 3.2.3, the result
follows.

Remark 3.2.7 Note that we can define τ̃ on all SM by setting τ̃ (x,v) :=
τ(x,v)− τ(x, − v). The restriction of this function to ∂SM coincides with the
definition of τ̃ given by Lemma 3.2.6. It turns out that in fact τ̃ ∈ C∞(SM).
This stronger result is proved in Lemma 3.2.11.

Define

μ(x,v) := 〈ν(x),v〉, (x,v) ∈ ∂SM .

This expression appears in Santaló’s formula, which is an important change of
variables formula on SM (see Section 3.6). We record the following result for
later purposes.

Lemma 3.2.8 Let (M,g) be a compact non-trapping manifold with strictly
convex boundary. The function μ/τ̃ extends to a smooth positive function on
∂SM whose value at (x,v) ∈ ∂0SM is

�x(v,v)

2
.

Proof Using (3.2) we can write

μ(x,v) = −1

2
Hessx(ρ)(v,v)τ̃ − R(x,v,τ̃ )τ̃ 2,

and hence for (x,v) ∈ ∂SM \ ∂0SM near ∂0SM, we can write

μ/τ̃ = −1

2
Hessx(ρ)(v,v) − R(x,v,τ̃ )τ̃ .

But the right-hand side of the last equation is a smooth function near ∂0SM

since R and τ̃ are; its value at (x,v) ∈ ∂0SM is �x(v,v)/2. Finally, observe
that μ and τ̃ are both positive for (x,v) ∈ ∂+SM \ ∂0SM and both negative for
(x,v) ∈ ∂−SM \ ∂0SM .

Even more precise regularity properties of the exit time function τ near
∂0SM can be obtained from the next lemma. This will be the main tool when
studying regularity properties of solutions to transport equations. The proof
is motivated by the theory of Whitney folds, cf. (Hörmander, 1983–1985,
Appendix C.4) and Section 5.2.
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Lemma 3.2.9 Let (M,g) be compact with smooth boundary, let (x0,v0) ∈
∂0SM , and let ∂M be strictly convex near x0. Assume that M is embedded in
a compact manifold N without boundary. Then, near (x0,v0) in SM , one has

τ(x,v) = Q(
√
a(x,v),x,v),

−τ(x, −v) = Q(−
√
a(x,v),x,v),

where Q is a smooth function near (0,x0,v0) in R×SN , a is a smooth function
near (x0,v0) in SN , and a ≥ 0 in SM .

Proof This follows directly by applying Lemma 3.2.10 to h(t,x,v) =
ρ(γx,v(t)) near (0,x0,v0), where ρ is a boundary defining function for M

as in Lemma 3.1.10.

Lemma 3.2.10 Let h(t,y) be smooth near (0,y0) in R × R
N . If

h(0,y0) = 0, ∂th(0,y0) = 0, ∂2
t h(0,y0) < 0,

then one has

h(t,y) = 0 near (0,y0) when h(0,y) ≥ 0 ⇐⇒ t = Q(±
√
a(y),y),

where Q is a smooth function near (0,y0) in R × R
N , a is a smooth function

near y0 in R
N , and a(y) ≥ 0 when h(0,y) ≥ 0. Moreover, Q(

√
a(y),y) ≥

Q(−√
a(y),y) when h(0,y) ≥ 0.

Proof We use the same argument as in Hörmander (1983–1985, Theorem
C.4.2). Using that ∂2

t h(0,y0) < 0, the implicit function theorem gives that

∂th(t,y) = 0 near (0,y0) ⇐⇒ t = g(y),

where g is smooth near y0 and g(y0) = 0. Write

h1(s,y) := h(s + g(y),y).

Then ∂sh1(0,y) = 0 and ∂2
s h1(0,y0) < 0. Thus by the Taylor formula we have

h1(s,y) = h1(0,y) − s2F(s,y),

where F is smooth near (0,y0) and F(0,y0) > 0. We define

r(s,y) := sF (s,y)1/2,

https://doi.org/10.1017/9781009039901.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009039901.006


62 Geometric Preliminaries

and note that r(0,y0) = 0, ∂sr(0,y0) > 0. Thus the map (s,y) 
→ (r(s,y),y)

is a local diffeomorphism near (0,y0), and there is a smooth function S near
(0,y0) so that

r(s,y) = r̄ ⇐⇒ s = S(r̄,y).

Moreover, ∂rS(0,y0) > 0. Define the function

h2(r,y) := h1(0,y) − r2.

Now

h(t,y) = h1(t − g(y),y) = h1(0,y) − (t − g(y))2F(t − g(y),y)

= h2(r(t − g(y),y),y).

Thus h(t,y) = 0 is equivalent with

r(t − g(y),y)2 = h1(0,y) = h(g(y),y). (3.3)

We claim that

h(g(y),y) ≥ 0 near y0 when h(0,y) ≥ 0. (3.4)

If (3.4) holds, then we may solve (3.3) to obtain

h(t,y) = 0 near (0,y0) when h(0,y) ≥ 0

⇐⇒ r(t − g(y),y) = ±
√
h(g(y),y).

The last condition is equivalent with

t − g(y) = S
(
±
√
h(g(y),y),y

)
.

This proves the lemma upon taking Q(r,y) = g(y) + S(r,y) and a(y) =
h(g(y),y) (note that r 
→ Q(r,y) is increasing since ∂rS(0,y0) > 0). To
prove (3.4), we use the Taylor formula

h(g(y) + s,y) = h(g(y),y) + ∂th(g(y),y)s + G(s,y)s2

where G(0,y0) < 0. Choosing s = −g(y) and using that ∂th(g(y),y) = 0
shows that h(g(y),y) ≥ h(0,y) near y = y0, and thus (3.4) indeed holds.

Lemma 3.2.11 Let (M,g) be a compact non-trapping manifold with strictly
convex boundary. Then the functions

τ̃ (x,v) := τ(x,v) − τ(x, − v) and T (x,v) := τ(x,v)τ (x,−v)

are smooth in SM .
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Proof Given the properties of τ in Lemma 3.2.3 we just have to prove
smoothness near a glancing point (x0,v0) ∈ ∂0SM . By Lemma 3.2.9 given
(x,v) ∈ SM near (x0,v0) ∈ ∂0SM, we have

τ̃ (x,v) = Q
(√

a(x,v),x,v
)

+ Q
(
−
√
a(x,v),x,v

)
.

Since we can write Q(r,x,v)+Q(−r,x,v) = H(r2,x,v), where H is smooth
near (0,x0,v0) (see Exercise 3.2.12), we deduce that

τ̃ (x,v) = H(a(x,v),x,v),

thus showing smoothness of τ̃ . The statement for T follows by taking products,
rather than sums.

Exercise 3.2.12 If f ∈ C∞(R) satisfies f (t) = f (−t) for all t ∈ R, show
that there is h ∈ C∞(R) with f (t) = h(t2) for all t ∈ R.

Remark 3.2.13 Using Lemma 3.2.11, it is possible to write the functions Q

and a from Lemma 3.2.9 in terms of τ̃ and T . Indeed, since τ satisfies the
quadratic equation

τ(τ − τ̃ ) = T ,

we have

τ = τ̃ + √
τ̃ 2 + 4T

2
,

with τ̃,T ∈ C∞(SM). Thus Q(t,x,v) = (τ̃ (x,v) + t)/2 and a = τ̃ 2 + 4T .

3.3 The Geodesic Flow and the Scattering Relation

Let (M,g) be a compact, connected, and oriented Riemannian manifold with
boundary ∂M and dimension n ≥ 2. By Lemma 3.1.8 we may assume that
(M,g) is isometrically embedded into a closed manifold (N,g) of the same
dimension.

The geodesics of (N,g) are defined for all times in R. We pack them into
what is called the geodesic flow. For each t ∈ R this is a diffeomorphism

ϕt : SN → SN,

defined by

ϕt (x,v) := (γx,v(t),γ̇x,v(t)).

This is a flow, i.e. ϕt+s = ϕt ◦ ϕs for all s,t ∈ R. The flow has an infinitesimal
generator called the geodesic vector field and denoted by X. This is a smooth
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section of T SN that can be regarded as the first-order differential operator
X : C∞(SN) → C∞(SN) given by

(Xu)(x,v) := d

dt
(u(ϕt (x,v)))

∣∣∣∣
t=0

, (3.5)

where u ∈ C∞(SN). Observe that X : C∞(SM) → C∞(SM). The non-
trapping property can be characterized using the operator X as follows:

Proposition 3.3.1 Let (M,g) be a compact manifold with strictly convex
boundary. The following are equivalent:

(i) (M,g) is non-trapping;
(ii) X : C∞(SM) → C∞(SM) is surjective;

(iii) there is f ∈ C∞(SM) such that Xf > 0.

Proof If (i) holds, let f = −τ̃ where τ̃ is smooth by Lemma 3.2.11. By
Exercise 3.3.3 Xf > 0, thus (i) �⇒ (iii). Clearly (iii) �⇒ (i): if there is
a geodesic in M with infinite length, since Xf ≥ c > 0, integrating along it
we would find f (ϕt (x,v)) − f (x,v) ≥ ct for all t > 0, which is absurd since
f is bounded. The implication (ii) �⇒ (iii) is obvious, so it remains to prove
that (i) �⇒ (ii).

Given h ∈ C∞(SM), we need to find u ∈ C∞(SM) with Xu = h. Consider
(M,g) embedded in a closed manifold (N,g). Since strict convexity and Xf >

0 are open conditions, there is a slightly larger compact manifold M1 with
M ⊂ M int

1 ⊂ N and such that ∂M1 is strictly convex and (M1,g) is non-
trapping. Let τ1 denote the exit time of M1 and given h ∈ C∞(SM), extend it
smoothly to SM1. For (x,v) ∈ SM , set

u(x,v) := −
∫ τ1(x,v)

0
h(ϕt (x,v)) dt .

Since τ1|SM is smooth, u ∈ C∞(SM). A calculation shows that Xu = h and
thus X : C∞(SM) → C∞(SM) is surjective.

Remark 3.3.2 The assumption of ∂M being strictly convex is not necessary.
See Duistermaat and Hörmander (1972, Theorem 6.4.1) for a proof of the same
result for arbitrary vector fields.

Exercise 3.3.3 Let (M,g) be a compact non-trapping manifold with strictly
convex boundary. Show that

Xτ̃ = −2,

where τ̃ is the function from Lemma 3.2.11.
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Definition 3.3.4 Let (M,g) be a non-trapping manifold with strictly convex
boundary. We define the scattering relation as the map α : ∂SM → ∂SM given
by

α(x,v) := ϕτ̃(x,v)(x,v).

Lemma 3.3.5 Let (M,g) be a compact non-trapping manifold with strictly
convex boundary. Then α is a diffeomorphism ∂SM → ∂SM whose fixed
point set is ∂0SM . One has

α(∂±SM) = ∂∓SM,

α ◦ α = Id.

Proof By Lemma 3.2.6, the map α is smooth on ∂SM . By definition of τ̃ we
see that α : ∂+SM → ∂−SM and α : ∂−SM → ∂+SM . One can check that
τ̃ ◦ α = −τ̃ , which shows that α ◦ α = Id and that α is a diffeomorphism
whose fixed point set is ∂0SM .

Exercise 3.3.6 Check that τ̃ ◦ α = −τ̃ .

3.4 Complex Structure

In this section we discuss the fact that on an oriented two-dimensional mani-
fold M , a Riemannian metric g induces a complex structure and thus (M,g)

becomes a Riemann surface. In fact, there is a one-to-one correspondence
between conformal classes of Riemannian metrics and complex structures
on M . In this way we can talk about holomorphic functions and harmonic
conjugates in (M,g). We also discuss the important notion of isothermal
coordinates (both local and global) on two-dimensional manifolds.

3.4.1 Generalities

We begin with some generalities.

Definition 3.4.1 (Complex manifold) An N -dimensional complex manifold is
a 2N -dimensional smooth (real) manifold with an open cover Uα and charts
ϕα : Uα → C

N such that ϕβ ◦ ϕ−1
α is holomorphic ϕα(Uα ∩ Uβ) → C

N .
The charts ϕα are called complex or holomorphic coordinates. The atlas
{(Uα,ϕα)}α is called a complex atlas. Two complex atlases are called equiv-
alent if their union is a complex atlas. A complex structure is an equivalence
class of complex atlases.

Definition 3.4.2 (Surface) A one-dimensional complex manifold is called a
surface (or Riemann surface).
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By Theorem 3.4.9, we will also use the term surface for any oriented two-
dimensional (real) Riemannian manifold (M,g).

Definition 3.4.3 (Almost complex structure) If M is a differentiable manifold,
an almost complex structure on M is a (1,1) tensor field J such that the
restriction Jp : TpM → TpM satisfies J 2

p = −Id for any p in M . If g is a
Riemannian metric on M , we say that J is compatible with g if g(Jv,Jw) =
g(v,w) for all v,w ∈ TpM .

If M is a complex manifold, let z = (z1, . . . ,zN) be a holomorphic chart
Uα → C

N , and write zj = xj + iyj with xj and yj real. There is a canonical
almost complex structure J on M , defined for holomorphic charts by

J

(
∂

∂xj

)
= ∂

∂yj
, J

(
∂

∂yj

)
= − ∂

∂xj
.

Conversely, if M is a differentiable manifold equipped with an almost complex
structure J (so it is necessarily even dimensional and orientable), then by the
Newlander–Nirenberg theorem M has the structure of a complex manifold,
having J as its canonical almost complex structure, if J satisfies an additional
integrability condition.

Definition 3.4.4 (Holomorphic functions) If M is a complex manifold with
complex charts ϕα : Uα → C

N , a C1 function f : M → C is called holomor-
phic (respectively antiholomorphic) if f ◦ ϕ−1

α is holomorphic (respectively
antiholomorphic) from ϕα(Uα) ⊂ C

N to C for any α.

It is clear that all local properties of holomorphic functions in domains of
C

N are valid also for holomorphic functions on complex manifolds.

3.4.2 Complex Structures in Two Dimensions

Let now (M,g) be a two-dimensional oriented (real) manifold with Rieman-
nian metric g. In this case everything becomes very simple. In particular, the
almost complex structures correspond to rotation by 90◦.

Definition 3.4.5 (Rotation by 90◦) For any v ∈ TxM , let v⊥ ∈ TxM be the
unique vector (the rotation of v by 90◦ counterclockwise) such that

|v⊥|g = |v|g, 〈v,v⊥〉 = 0,

and (v,v⊥) is a positively oriented basis of TxM when v �= 0.

Exercise 3.4.6 Show that in local coordinates, if g(x) = (gjk(x)), the vector
v⊥ is given by v⊥ = g(x)−1/2(−(g(x)1/2v)2,(g(x)

1/2v)1), where A1/2 is the
square root of a positive definite matrix A.
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Lemma 3.4.7 (Almost complex structures) If (M,g) is an oriented two-
dimensional manifold, then J is an almost complex structure compatible with
g if and only if

J (v) = ±v⊥, v ∈ TM .

Proof Let J be an almost complex structure compatible with g. Given p ∈ M

and v ∈ TpM , the fact that J is compatible with g implies that |Jv| = |v|.
Moreover, one has

〈Jv,v〉 = −〈Jv,J 2v〉 = −〈v,Jv〉,
which implies that 〈Jv,v〉 = 0. Thus Jv is orthogonal to v and has the
same length as v. Since TpM is two dimensional, one must have Jv = ±v⊥.
Conversely, Jv = ±v⊥ clearly satisfies J 2 = −Id and 〈Jv,Jw〉 = 〈v,w〉.

We wish to find a complex structure on M associated with J (v) = v⊥. The
following fundamental result, proved by Gauss in 1822 in the real-analytic
case, will yield complex coordinates that are compatible with J . We will prove
later in Theorem 3.4.16 that if M is simply connected, then there exist global
isothermal coordinates.

Theorem 3.4.8 (Isothermal coordinates) Let (M,g) be an oriented two-
dimensional manifold. Near any point of M there are positively oriented local
coordinates x = (x1,x2), called isothermal coordinates, so that the metric has
the form

gjk(x) = e2λ(x)δjk,

where λ is a smooth real-valued function.

Given the existence of isothermal coordinates, it is easy to show that any
2D Riemannian manifold has a complex structure. The proof uses the basic
complex analysis fact that a smooth bijective map ϕ between open subsets of
R

2 is holomorphic if and only if it is conformal and orientation preserving.
Recall that ϕ being conformal means that

ϕ∗h = ch

for some smooth positive function c where h is the Euclidean metric on R
2.

Theorem 3.4.9 (Complex structure induced by g) Let (M,g) be an oriented
2D manifold, and let (Uα) be an open cover of M so that there are isothermal
coordinate charts ϕα : Uα → R

2. Then ϕ−1
β ◦ ϕα is holomorphic ϕα(Uα ∩

Uβ) → R
2 whenever Uα ∩ Uβ �= ∅. Thus the charts (Uα,ϕα) induce a

complex structure on M corresponding to J (v) = v⊥. This complex structure
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is independent of the choice of the isothermal coordinate charts, and hence it
is uniquely determined by g.

Proof The fact that gjk(x) = e2λ(x)δjk in isothermal coordinates can be
rewritten as (

ϕ−1
α

)∗
g = e2λαh,

where h is the Euclidean metric in R
2. Suppose that Uα ∩ Uβ �= ∅ and let

� = ϕβ ◦ϕ−1
α . Then � is a smooth map from an open set of R2 to R

2, and one
has

�∗h =
(
ϕ−1
α

)∗
ϕ∗
βh =

(
ϕ−1
α

)∗ (
e
−2ϕ∗

βλβ g
)

= e2(λα−�∗λβ)h.

Since h is the Euclidean metric, the identity �∗h = ch, where c = e2(λα−�∗λβ)

is a positive smooth function, means that � is a conformal bijective map
between open sets in R

2. Since isothermal coordinate charts are positively
oriented, � is orientation preserving. Thus � must be holomorphic. This
proves that any atlas consisting of isothermal coordinate charts is a complex
atlas. It is also clear from this argument that if one uses different isothermal
coordinate charts, then one obtains an equivalent atlas.

It remains to show that the almost complex structure J given by isothermal
coordinates satisfies J (v) = v⊥. But in isothermal coordinates J (∂x1) = ∂x2 =
(∂x1)

⊥ and J (∂x2) = −∂x1 = (∂x2)
⊥, so one must have J (v) = v⊥.

If (M,g) is a two-dimensional oriented Riemannian manifold, we will
always use the complex structure induced by g on M . In fact the complex
structure only depends on the conformal class

[g] = {cg ; c ∈ C∞(M) positive},
and conversely any complex structure on M arises from some conformal class.

Theorem 3.4.10 (Complex structures vs conformal classes) Let M be an
oriented two-dimensional manifold. There is a one-to-one correspondence
between conformal classes of Riemannian metrics on M and complex struc-
tures on M .

Proof Isothermal coordinates for a metric g are also isothermal for cg: if
(ϕ−1)∗g = e2λh with h the Euclidean metric, then (ϕ−1)∗(cg) = e2μh

for μ = λ + 1
2 log((ϕ−1)∗c). Thus the complex structure on M obtained in

Theorem 3.4.9 is the same for g and cg.
Conversely, suppose that M is equipped with a complex structure. We wish

to produce a metric g that induces this structure. Such a metric can be defined
locally: if p ∈ M and if (U,ϕ) is a complex coordinate chart near p, we can
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define g = ϕ∗h in U where h is the Euclidean metric in ϕ(U) ⊂ R
2. More

generally, if M is covered by complex coordinate charts (Uα,ϕα) and if (χα) is
a locally finite partition of unity subordinate to the cover (Uα), we can define

g =
∑

χαϕ
∗
αh.

Then g is a Riemannian metric on M . The complex coordinate charts (Uα,ϕα)

above are isothermal for g, since(
ϕ−1
α

)∗
g =

∑
β

((
ϕ−1
α

)∗
χβ

)(
ϕβ ◦ ϕ−1

α

)∗
h =

∑
β

((
ϕ−1
α

)∗
χβ

)
cαβh = ch

for some positive smooth functions cαβ and c. Here we used that ϕβ ◦ ϕ−1
α is

holomorphic, hence conformal, and thus satisfies (ϕβ ◦ ϕ−1
α )∗h = cαβh. This

shows that the complex structure on M induced by g is the same as the original
one.

It remains to prove Theorem 3.4.8. It is convenient to consider rotations on
T ∗M instead of TM .

Definition 3.4.11 (Hodge star) For any ξ ∈ T ∗
x M, let �ξ ∈ T ∗

x M be the
rotation of ξ by 90◦ counterclockwise, i.e.

�ξ := ((
ξ�
)⊥) 

,

where �, are the musical isomorphisms associated with g.

Clearly �ξ is the unique covector so that |�ξ |g = |ξ |g , 〈ξ, � ξ〉 = 0, and
(ξ, � ξ) is a positively oriented basis of T ∗

x M when ξ �= 0. The operator �

is just the Hodge star operator specialized to 1-forms on a two-dimensional
manifold. We can identify the almost complex structure J (v) = v⊥ with the
operator �.

Proof of Theorem 3.4.8 Let p ∈ M . We wish to show that there are smooth
functions u and v near p so that

|du|g = |dv|g > 0, 〈du,dv〉 = 0 near p. (3.6)

Since du and dv are linearly independent at p, the inverse function theorem
shows that choosing x1 = u, x2 = v, and λ = − log |du|g yields the required
coordinate system near p.

The equations (3.6) state that du and dv should be orthogonal and have the
same (positive) length. Since M is two dimensional, it follows that dv must be
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the rotation of du by 90◦ (either clockwise or counterclockwise). Thus, given
u with du|p �= 0, it would be enough to find v such that

dv = �du, (3.7)

where � is the Hodge star operator in Definition 3.4.11.
Now if the metric were Euclidean, the equations (3.7) would read

∂xu = ∂yv, ∂yu = −∂xv.

These are exactly the Cauchy–Riemann equations for an analytic function
f = u + iv in the complex plane. In particular, u and v would necessarily
be harmonic. The same is true in the general case: by Exercise 3.4.14, on a
two-dimensional oriented manifold one has

�gu = − � d � du.

Since d2 = 0, it follows from (3.7) that u and v have to be harmonic.
We use Lemma 3.4.13 which shows that there is a harmonic function u near

p with du|p �= 0. Then �du is a closed 1-form (since d(�du) = ��gu = 0),
and the Poincaré lemma shows that in any small ball near p one can find a
smooth function v satisfying (3.7). Since du|p �= 0, one has (3.6) in some
neighbourhood of p which proves the theorem.

We formulate part of the above proof as a lemma:

Lemma 3.4.12 (Harmonic conjugate) Let (M,g) be a simply connected
oriented 2-manifold. Given any u ∈ C∞(M) satisfying �gu = 0 in M , there
is v ∈ C∞(M) satisfying

dv = �du in M .

The function v, called a harmonic conjugate of u, is harmonic and unique
up to an additive constant. The function f = u + iv is holomorphic in the
complex structure induced by g. Conversely, the real and imaginary parts of
any holomorphic function are harmonic.

Lemma 3.4.13 Let (M,g) be a Riemannian n-manifold and let p ∈ M . There
is a harmonic function u near p with du|p �= 0.

Proof We will work in normal coordinates at p. Writing out the local
coordinate formula for �g , it follows that

�gu = �eu + Qu, Qu = ajk∂jku + bk∂ku,
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where �e is the Euclidean Laplacian and ajk,bk are smooth functions near 0.
Since in normal coordinates one has gjk(0) = δjk and ∂jgkl(0) = 0, it follows
that

ajk(0) = bk(0) = 0.

We will look for u in the ball Br = Br(0), where r > 0 is small, in the form

u(x) := x1 + w(x).

The idea is that if r is small, then �gx1 ≈ 0 in Br (since �g is close to �e and
�ex1 = 0), so there should be a solution of �gu = 0 close to x1. We choose
w as the solution of

�gw = −�gx1 in Br, w|∂Br = 0.

Clearly �gu = 0 in Br . In order to estimate w, note that w solves

�ew = −Qu in Br, w|∂Br = 0.

Writing wr(x) = w(rx) etc., we can rescale the previous equation to the unit
ball:

�ewr = −r2(Qu)r in B1, wr |∂B1 = 0.

For any m ≥ 0, we may use elliptic regularity for the Dirichlet problem to get
that

‖wr‖Hm+2(B1)
� r2‖(Qu)r‖Hm(B1)

with the implied constant independent of r . Now ajk(0) = bk(0) = 0 and
u = x1 + w, so a short computation gives that

r2‖(Qu)r‖Hm(B1)
� r3 + r‖wr‖Hm+2(B1)

.

If r is small enough, combining the last two equations gives

‖wr‖Hm+2(B1)
� r3.

Choosing m+2 > n/2+1, the Sobolev embedding gives ‖∇wr‖L∞(B1)
� r3,

which yields

‖∇w‖L∞(Br )
� r2.

If we choose r small enough, it follows that du|0 = dx1|0 + dw|0 �= 0.

Exercise 3.4.14 Prove the formula �gu = − � d � du used in the proof of
Theorem 3.4.8.
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3.4.3 Global Isothermal Coordinates

We will now prove the existence of global isothermal coordinates on simply
connected surfaces. This is part of the uniformization theorem for Riemann
surfaces, and reduces to the following result. (Recall that D denotes the unit
disk in R

2.)

Theorem 3.4.15 (Riemann mapping theorem for surfaces) Let (M,g) be a
compact oriented simply connected 2-manifold with smooth boundary. There
is a bijective holomorphic map

� : M int → D,

which extends smoothly as a diffeomorphism M → D.

The result can be reformulated as follows:

Theorem 3.4.16 (Global isothermal coordinates) If (M,g) is a compact
oriented simply connected 2-manifold with smooth boundary, then there are
global coordinates (x1,x2) in M so that in these coordinates

gjk(x) = e2λ(x)δjk,

where λ is a smooth real-valued function.

Remark 3.4.17 By Proposition 3.7.22 any compact non-trapping manifold
with strictly convex boundary is contractible. In particular, such manifolds
are simply connected. Thus by Theorem 3.4.16 any compact non-trapping 2-
manifold with strictly convex boundary is diffeomorphic to the unit disk and
admits global isothermal coordinates.

There are several proofs of this theorem. Our proof, following Farkas and
Kra (1992), will involve the Green function for the Laplacian in M and the fact
that simply connected surfaces satisfy the monodromy theorem. To state this
result, let ! be a Riemann surface without boundary. If γ : [0,1] → ! is a
continuous curve and f0 is analytic in a connected neighbourhood D0 of γ (0),
we say that f0 admits an analytic continuation along γ if for each t ∈ [0,1]
there is δt > 0 and an analytic function ft in a connected neighbourhood Dt

of γ (t), so that

fs = ft in Ds ∩ Dt whenever s ∈ [0,1] and |s − t | < δt .

Theorem 3.4.18 (Monodromy theorem) Let ! be a simply connected Riemann
surface without boundary. If f0 is analytic near some p ∈ ! and admits an
analytic continuation along any curve starting at p, then there is an analytic
function f in ! with f = f0 near p.
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We first construct a candidate for the map �.

Lemma 3.4.19 For any p ∈ M int, there is a holomorphic map

� : M int → D,

which extends smoothly as a smooth map M → D, so that p is a simple zero
of � and there are no other zeros of � in M .

Proof Let z be a complex coordinate chart in a neighbourhood U of p so that
z(p) = 0 and gjk = e2λ(x)δjk in these coordinates. Then locally near p the
function � = z has the property that p is a simple zero and there are no other
zeros. In order to obtain a global function in M with this property, we formally
look for � in the form � = ef where f is holomorphic in M \ {p}, near p one
has f = log z + h where h is harmonic, and Re(f )|∂M = 0. This argument is
only formal since Im(log z) is multivalued. To rectify this we instead construct
the real part u = Re(f ), which should be harmonic in M \ {p}, look like
log|z| + harmonic near p, and vanish on ∂M . This means that u is just (a
constant multiple of) the Green function for �g in M .

To construct u precisely, note that �g(log|z|) = e−2λ�e(log|z|) = 0 in
U \ {p}, where �e is the Laplacian in R

2. Fix a cut-off function β ∈ C∞
c (U)

with 0 ≤ β ≤ 1 and β = 1 near p. We define

u := β log|z| + u1,

where u1 is the solution of the Dirichlet problem

�gu1 = F in M, u1|∂M = 0,

and where F is the extension of −�g(β log|z|) ∈ C∞(M \ {p}) by zero to
p. Noting that F ∈ C∞(M), elliptic regularity ensures that u1 is a real-valued
function in C∞(M). Then we have the following desired properties:

u is harmonic in M \ {p}, u = log|z| + u1 near p, u|∂M = 0.

We want to prove that there is a holomorphic � in M int with |�| = eu. First
we show that such a function exists near p. In fact, since �gu1 = 0 near p,
by Lemma 3.4.12 there is a harmonic conjugate v1 of u1 in some small ball
centred at p. The function

� = zeu1+iv1

is holomorphic and satisfies |�| = eu near p.
The above argument already proves the result if M is contained in a complex

coordinate patch. In the general case, we wish to continue � analytically to
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M int. If γ : [0,1] → M int is any continuous curve with γ (0) = p, define
the set

I := {s ∈ [0,1] : � admits an analytic continuation along γ |[0,s]

so that |ft | = eu for t ∈ [0,s]}.

Clearly 0 ∈ I and I is open. To show that I is closed, let t0 ∈ [0,1] be such
that [0,t0) ⊂ I . There is an analytic function �̃ near γ (t0) with |�̃| = eu: if
γ (t0) = p one can take �̃ = �, and if γ (t0) �= p one can take �̃ = eu+iv

in a small ball Ũ centred at γ (t0) where v is a harmonic conjugate in Ũ of the
smooth harmonic function u. Choose ε > 0 so that γ ([t0 − ε,t0]) ⊂ Ũ . Since
t0 − ε ∈ I , � admits an analytic continuation along γ |[0,t0−ε]. We continue
this for t ∈ [t0 − ε,t0] by choosing Dt = Ũ and ft = �̃. It remains to show
that ft0−ε = �̃ near γ (t0 − ε). But |ft0−ε| = |�̃| = eu near γ (t0 − ε), which
means that the holomorphic function ft0−ε/�̃ has modulus 1 near γ (t0 − ε)

(this is true also if γ (t0 − ε) = p, since both the numerator and denominator
vanish simply at p). Thus ft0−ε/�̃ is a constant eiθ ∈ S1 near γ (t0 − ε)

(it must have vanishing derivative by the open mapping theorem). Replacing
�̃ by eiθ �̃ above shows that � admits an analytic continuation along
γ |[0,t0] so that |ft | = eu. Thus I is closed, and connectedness implies that
I = [0,1].

We have proved that � admits an analytic continuation along any curve
in M int. By the monodromy theorem, there is an analytic function � in M int

extending �, and one has |�| = eu in M int. In particular, � has a simple zero
at p and no other zeros in M int. Near any boundary point one has � = eu+iv

where the local harmonic conjugate v of u can be continued smoothly to ∂M ,
showing that � extends smoothly to M . Since |�||∂M = eu|∂M = 1, the
maximum principle implies that � maps M to D.

Remark 3.4.20 We sketch an alternative to the analytic continuation argu-
ment in the proof above, following Hubbard (2006). After constructing the
Green function u, one could proceed by constructing a multivalued harmonic
conjugate v for u in M \ {p}. The harmonic conjugate should formally
satisfy dv = �du in M \ {p}. To solve the last equation, we fix q ∈ M \ {p}
and define

v(x) :=
∫
γq,x

�du, x ∈ M \ {p}, (3.8)

where γq,x is a smooth curve from q to x in M \ {p}. (Note that M \ {p}
is connected since M is.) Of course the value v(x) depends on the choice of
γq,x . If γ̃q,x is another such curve and if γ is the concatenation of γq,x and the
reverse of γ̃q,x , then γ is a closed curve in M \ {p}.
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We now invoke the following topological fact: since M is simply connected
and two dimensional, any closed curve γ in M \ {p} is homologous to a small
circle centred at p winding k times around p for some k ∈ Z. Since �du is
closed in M \ {p} and u = log|z| + harmonic near p, an easy computation
gives that ∫

γ

�du ∈ 2πZ.

This shows that (3.8) defines v(x) modulo 2πZ. It follows that eiv is a well-
defined smooth function in M \ {p}, and � = eu+iv is holomorphic in M \
{p}. It is also bounded near p, and hence extends to the desired holomorphic
function � near p.

Proof of Theorem 3.4.16 We shall show that the map from Lemma 3.4.19
gives the desired map �. First observe that by construction we have �(∂M) ⊂
∂D and let γ denote a parametrization of ∂M . An application of the argument
principle shows that � : M int → D is a bijection: indeed since � has a unique
simple zero at p, the index of the curve � ◦ γ around zero is one and thus
there is a unique solution to �(z) = w for any w ∈ D. A standard complex
analysis argument gives that � : M int → D is a biholomorphism. It remains to
show that the smooth extension � : M → D is a diffeomorphism. We already
know that the Jacobian determinant of � is non-zero for any z ∈ M int and
we claim that it is also non-zero for z ∈ ∂M . Since � is smooth on M , it
satisfies the Cauchy–Riemann equations on M and thus it suffices to show that
some directional derivative of � at z ∈ ∂M is non-zero. But this is clearly the
case since the harmonic function log |�| attains its global maximum at every
point of ∂M . It follows that the map �|∂M : ∂M → ∂D is a diffeomorphism
since it has degree one. This gives that � : M → D is a bijection with smooth
inverse.

3.5 The Unit Circle Bundle of a Surface

We consider now the unit sphere bundle SM when dim M = 2. Many of
the results in this section have natural counterparts in higher dimensions as
discussed in Section 3.6, but when dim M = 2 there is a special structure that
simplifies many arguments.

3.5.1 The Vector Fields X, X⊥, and V

When dimM = 2 the manifold SM is three dimensional, and there is a very
convenient frame of three vector fields on SM that will be used throughout this
book. We will first consider this frame in the case of the Euclidean metric.
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Example 3.5.1 (Frame of T SM in the Euclidean disk) Let M = D ⊂ R
2 and

let g = e be the Euclidean metric. Then

SM = {(x,vθ ) : x ∈ M, θ ∈ [0,2π)} = M × S1,

where vθ = (cos θ, sin θ). We identify (x,vθ ) with (x,θ). The geodesic vector
field acting on functions u = u(x,θ) on SM has the form

Xu(x,θ) = d

dt
u(x + tvθ,θ)

∣∣∣
t=0

= vθ · ∇xu(x,θ).

Write (vθ )⊥ = (sin θ, − cos θ) for the rotation of vθ by 90◦ clockwise, and
define another vector field

X⊥u(x,θ) = (vθ )⊥ · ∇xu(x,θ).

The vector fields X and X⊥ encode all possible x-derivatives of a function on
SM . We define a third vector field V by

V u(x,θ) = ∂θu(x,θ).

Now the vectors {X,X⊥,V } are linearly independent at each point of SM and
thus give a frame on T SM . It is easy to compute the commutators of these
vector fields:

[X,V ] = X⊥, [V,X⊥] = X, [X,X⊥] = 0.

Let now (M,g) be a two-dimensional oriented Riemannian manifold. We
wish to define analogues of the vector fields X⊥ and V in the example above.

Definition 3.5.2 (Rotation by 90◦ clockwise) For any (x,v) ∈ SM , we define

v⊥ := −v⊥.

Definition 3.5.3 Define the vector field X⊥ : C∞(SM) → C∞(SM) by

X⊥u(x,v) = d

dt
(u(ψt (x,v)))

∣∣∣
t=0

,

where ψt(x,v) = (γx,v⊥(t),W(t)) and W(t) is the parallel transport of v along
the curve γx,v⊥(t).

Moreover, define the vertical vector field V : C∞(SM) → C∞(SM) by

V u(x,v) = d

dt
u(ρt (x,v))

∣∣∣
t=0

,

where ρt (x,v) = (x,eit v) and eit v denotes the rotation of v by angle t

counterclockwise in (TxM,g(x)), i.e.

eit v := (cos t)v + (sin t)v⊥.
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Exercise 3.5.4 If the metric is Euclidean, show that ψt(x,v) = (x + tv⊥,v)

and eit vθ = vθ+t and thus X⊥ and V have the forms given in Example 3.5.1.

The next result gives all the commutators of the vector fields X,X⊥,V .
These are also called the structure equations (of the Lie algebra of smooth
vector fields on SM).

Lemma 3.5.5 (Commutator formulas) One has

[X,V ] = X⊥,

[X⊥,V ] = −X,

[X,X⊥] = −KV,

where K is the Gaussian curvature of (M,g).

One way to prove Lemma 3.5.5 is by local coordinate computations. For
later purposes it will also be useful to have explicit forms of the three vector
fields in local coordinates. Since M is two dimensional, it is particularly
convenient to use the isothermal coordinates (x1,x2) introduced in Theorem
3.4.8. This induces special coordinates (x1,x2,θ) on SM , and the following
local coordinate formulas are valid.

Lemma 3.5.6 (Special coordinates on SM) Let (x1,x2,θ) be local coordinates
on SM where (x1,x2) are isothermal coordinates on M and θ is the angle
between a unit vector v and ∂/∂x1, i.e.

v = e−λ

(
cos θ

∂

∂x1
+ sin θ

∂

∂x2

)
.

In these coordinates one has the formulas

X = e−λ

(
cos θ

∂

∂x1
+ sin θ

∂

∂x2
+

(
− ∂λ

∂x1
sin θ + ∂λ

∂x2
cos θ

)
∂

∂θ

)
,

X⊥ = −e−λ

(
− sin θ

∂

∂x1
+ cos θ

∂

∂x2
−

(
∂λ

∂x1
cos θ + ∂λ

∂x2
sin θ

)
∂

∂θ

)
,

V = ∂

∂θ
.

Remark 3.5.7 We will use the special coordinates (x1,x2,θ) on SM several
times throughout this book. Note that (x1,x2,θ) are not isothermal coordinates
on SM , since the Sasaki metric G introduced in Definition 3.5.10 is not even
diagonal in these coordinates (one can check that G(∂x1,∂θ ) = −∂x2λ and
G(∂x2,∂θ ) = ∂x1λ).

Exercise 3.5.8 Prove Lemma 3.5.6.
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Exercise 3.5.9 Prove Lemma 3.5.5 by using Lemma 3.5.6 and the fact
that the Gaussian curvature of a metric gjk = e2λ(x)δjk is K = −�gλ =
−e−2λ(∂2

1λ + ∂2
2λ).

3.5.2 Integration on SM

Above we introduced the fundamental vector fields X,X⊥,V on the unit sphere
bundle of a two-dimensional manifold. These vector fields encode all possible
derivatives of functions in SM . We will now discuss how to integrate functions
on SM . We will consider the case dimM = 2, but all the results in this
subsection have natural counterparts in higher dimensions as discussed in
Section 3.6.

Let (M,g) be a compact oriented Riemannian surface with smooth bound-
ary. The manifold (M,g) has a volume form dV 2 induced by the Riemannian
metric. In local coordinates,

dV 2 = |g(x)|1/2 dx1 ∧ dx2.

For any x ∈ M , the metric g induces a Riemannian metric (inner product)
g(x) on TxM . The subset SxM = {v ∈ TxM : |v|g = 1} also becomes a
Riemannian manifold. Denote by dSx the volume form of (SxM,g(x)).
Defining a volume form requires a choice of orientation on SxM , but we make
the natural choice that SxM is oriented according to the orientation of the
surface.

Now the integral of a function f ∈ C(SM) over SM is just∫
M

∫
SxM

f (x,v) dSx(v) dV
2(x).

This integral induces a natural volume form (or measure) on SM called the
Liouville form. We shall denote it by d!3. At a point (x,v) ∈ SM it can be
written as

d!3 = dV 2 ∧ dSx .

In the special coordinates (x1,x2,θ) in Lemma 3.5.6, one has dV 2 =
e2λ(x) dx1 ∧ dx2 and dSx = dθ (to see the latter, note that ∂θ corresponds
to e−λ(x)(− sin θ, cos θ) on T SxM that has unit length). Thus

d!3 = e2λ(x) dx1 ∧ dx2 ∧ dθ . (3.9)

We will next show that d!3 is actually the volume form of a canonical
Riemannian metric on SM .
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Definition 3.5.10 The Sasaki metric G on SM is the unique Riemannian
metric on SM for which the vector fields {X,X⊥,V } are orthonormal at each
point of SM .

Clearly, the Sasaki metric satisfies

G(aX + bX⊥ + cV ,ãX + b̃X⊥ + c̃V ) = aã + bb̃ + cc̃.

Defining the volume form dVG of the Sasaki metric requires an orientation on
SM . We already chose an orientation on SxM , and then SM is oriented so that
(X,−X⊥,V ) is a positively oriented basis at each point of SM .

Lemma 3.5.11 dVG = d!3.

Proof The volume form dVG is the unique 3-form on SM that satisfies
dVG(X,−X⊥,V ) = 1. On the other hand, a short computation using (3.9)
and Lemma 3.5.6 shows that

d!3(X,−X⊥,V ) = 1.

Thus it follows that d!3 = dVG.

Similarly as above, the integral of h ∈ C(∂SM) over ∂SM is∫
∂M

∫
SxM

h(x,v) dSx(v) dV
1(x),

where dV 1 is the volume form of (∂M,g). This integral induces a volume form
on ∂SM given by

d!2 := dV 1 ∧ dSx .

The Sasaki metric on SM induces a metric G on ∂SM , and d!2 coincides
with the volume form of (∂SM,G). This follows as in Lemma 3.5.11 since
d!2(w,∂θ ) = 1 when w is a positively oriented unit vector in T ∂M .

The volume forms on SM and ∂SM induce L2 inner products

(u,w)SM =
∫
SM

uw̄ d!3,

(h,r)∂SM =
∫
∂SM

hr̄ d!2.

We denote the corresponding L2 spaces by L2(SM) and L2(∂SM).
The next result establishes basic integration by parts formulas related to the

vector fields X, X⊥, and V . In particular, it shows that X, X⊥, and V are for-
mally skew-adjoint operators. Recall that ν is the inward unit normal of ∂M .
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Proposition 3.5.12 (Integration by parts) Let u,w ∈ C1(SM). Then

(Xu,w)SM = −(u,Xw)SM − (〈v,ν〉u,w)∂SM,

(X⊥u,w)SM = −(u,X⊥w)SM − (〈v⊥,ν〉u,w)∂SM,

(V u,w)SM = −(u,Vw)SM .

Proof We only prove the first formula. Consider coordinates (x,θ) as in
Lemma 3.5.6. Then

(Xu,w)SM =
∫
M

∫ 2π

0
eλ
(

cos θ
∂u

∂x1
+ sin θ

∂u

∂x2

+
(
− ∂λ

∂x1
sin θ + ∂λ

∂x2
cos θ

)
∂u

∂θ

)
w̄ dx dθ .

Integrating by parts in x and θ , we see that the terms obtained when the
x-derivatives hit eλ and when the θ -derivative hits sin θ and cos θ add
up to zero. The resulting expression is −(u,Xw)SM − (〈v,ν〉u,w)∂SM as
required.

Remark 3.5.13 Recall that if (N,g) is a compact manifold with boundary, if
Y is a real vector field on N and u,w ∈ C∞

c (N int), one has

(Yu,w)L2(N) = −(u,Yw + divg(Y )w)L2(N),

where divg(Y ) = |g|−1/2∂j (|g|1/2Y j ) is the metric divergence. Moreover, the
Lie derivative of the volume form dVg satisfies

LY (dVg) = divg(Y ) dVg .

Thus Proposition 3.5.12 implies that X, X⊥, and V are divergence free with
respect to the Sasaki metric, and they all preserve the volume form d!3.

Next we state Santaló’s formula, which is a fundamental change of variables
formula on SM . The proof boils down to the fact that X is divergence free.
Recall the notation μ(x,v) = 〈ν(x),v〉 for (x,v) ∈ ∂SM .

Proposition 3.5.14 (Santaló’s formula) Let (M,g) be a compact non-trapping
surface with strictly convex boundary. Given f ∈ C(SM) we have∫

SM

f d!3 =
∫
∂+SM

∫ τ(x,v)

0
f (ϕt (x,v))μ(x,v) dt d!2.
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Proof We give the proof for f ∈ C∞
c (SM int) (the general case follows by

approximation). For any (x,v) ∈ SM define

uf (x,v) :=
∫ τ(x,v)

0
f (ϕt (x,v)) dt . (3.10)

Since τ ∈ C(SM) ∩ C∞(SM \ ∂0SM), clearly uf ∈ C(SM) ∩ C∞(SM \
∂0SM) and uf |∂−SM = 0. But if f has compact support in the interior of
M , then uf vanishes near tangential directions and thus uf is in fact smooth.
A simple computation shows that

Xuf = −f . (3.11)

We now apply Proposition 3.5.12 as follows:∫
SM

f d!3 = −(Xuf ,1)SM = (μuf ,1)∂SM =
∫
∂SM

uf (x,v)μ(x,v) d!2.

The result follows by inserting the formula (3.10) and using the fact that
uf |∂−SM = 0.

Exercise 3.5.15 Prove (3.11), and show that Santaló’s formula holds for
f ∈ C(SM) (in fact for f ∈ L1(SM)) using that it has been proved for
f ∈ C∞

c (SM int).

3.6 The Unit Sphere Bundle in Higher Dimensions

In this section we present some aspects of the geometry of the unit sphere
bundle in arbitrary dimensions. We use this to describe how the strict convexity
of ∂M reflects at level of the geodesic vector field and to give a proof
of Santaló’s formula in any dimension. We shall also use some of these
preliminaries when discussing the various definitions of simple manifolds and
in Section 5.2 to give an alternative proof for the main regularity result for
transport equations.

Let (M,g) be a compact Riemannian manifold with unit sphere bundle
π : SM → M . For details of what follows, see, for example, Knieper (2002);
Paternain (1999). It is well known that SM carries a canonical metric called the
Sasaki metric. If we let V denote the vertical subbundle given by V = ker dπ ,
then there is an orthogonal splitting with respect to the Sasaki metric:

T SM = RX ⊕ H ⊕ V .
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The subbundle H is called the horizontal subbundle. Elements in H(x,v)

and V(x,v) are canonically identified with elements in the codimension one
subspace {v}⊥ ⊂ TxM . A vector in RX ⊕ H is canonically identified with
the whole TxM . In order to describe these identifications, we first introduce
the connection map K : T(x,v)SM → TxM . Given ξ ∈ T(x,v)SM , consider any
curve Z : (−ε,ε) → SM such that Z(0) = (x,v) and Ż(0) = ξ and write
Z(t) = (α(t),W(t)). Then

Kξ := DtW |t=0,

where D stands for the covariant derivative of the vector field W along α given
by the Levi-Civita connection. Using dπ and K, we set

V := ker dπ, H̃ := kerK.

It is straightforward to check that

dπ |H̃(x,v)
: H̃(x,v) → TxM, and K|V(x,v) : V(x,v) → {v}⊥

are linear isomorphisms and thus ξ ∈ T(x,v)SM may be written as

ξ = (ξH,ξV ), (3.12)

where ξH = dπ(ξ) and ξV = Kξ . In this splitting, the geodesic vector field
has a very simple form

X(x,v) = (v,0). (3.13)

Using the splitting, one can also define the Sasaki metric G of SM as

〈ξ,η〉G := 〈ξH,ηH 〉g + 〈ξV ,ηV 〉g . (3.14)

Finally using the Sasaki metric, we decompose orthogonally H̃ = RX ⊕ H
and we obtain the desired identifications of H(x,v) and V(x,v) with {v}⊥.
The canonical contact 1-form ααα is uniquely defined by ααα(X) = 1 and kerααα =
H ⊕ V . Its differential dααα defines a symplectic form on H ⊕ V , which can be
shown to be

dααα(ξ,η) = 〈ξV ,ηH 〉g − 〈ξH,ηV 〉g . (3.15)

The next lemma identifies the tangent spaces to ∂SM and S∂M = ∂0SM

using this splitting.

Lemma 3.6.1

T(x,v)∂SM = {(ξH,ξV ) : ξH ∈ Tx∂M, ξV ∈ {v}⊥};
T(x,v)∂0SM = {(ξH,ξV ) : ξH ∈ Tx∂M, ξV ∈ {v}⊥,

〈ξV ,ν(x)〉 = �x(v,ξH )}.
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Proof To prove the first statement consider a curve Z : (−ε,ε) → ∂SM with
Z(0) = (x,v) and ξ = Ż(0). Then if we write Z(t) = (α(t),W(t)) with
α : (−ε,ε) → ∂M , we see that ξH = dπ(ξ) = α̇(0) ∈ Tx∂M . Differentiating
〈W(t),W(t)〉 = 1 at t = 0 we get that 〈ξV ,v〉 = 0. The first statement follows
by counting dimensions.

To prove the second statement we need to take a curve Z : (−ε,ε) → ∂0SM

that gives the additional equation 〈W(t),ν(α(t))〉 = 0. Differentiate this at
t = 0, to get, using the definition of the connection map K,

〈ξV ,ν(x)〉 + 〈v,∇ξH ν〉 = 0.

This is equivalent to 〈ξV ,ν(x)〉 − �x(v,ξH ) = 0 and the result follows.

3.6.1 The Geodesic Vector Field and Strict Convexity

When does X fail to be transversal to ∂SM? Using Lemma 3.6.1 and (3.13)
we see that this happens if and only if (x,v) ∈ ∂0SM . In addition, the
characterization of T(x,v)∂0SM tells us that X is always transversal to ∂0SM

under the assumption that the boundary ∂M is strictly convex.
We summarize this in the following lemma:

Lemma 3.6.2 The geodesic vector field X is transversal to ∂SM\∂0SM . If ∂M
is strictly convex, then X is transversal to ∂0SM . We always have X(x,v) ∈
T(x,v)∂SM for (x,v) ∈ ∂0SM .

The picture described by the lemma will be helpful later on when discussing
regularity results for the transport equation and it may be visualized in
Figure 3.2.

Exercise 3.6.3 Show that the horizontal vector (ν(x),0) is a unit normal vector
to ∂SM in the Sasaki metric. Moreover, show that the inner product of this
vector with X is precisely the function μ introduced before Lemma 3.2.8.

3.6.2 Volume Forms and Santaló’s Formula

Let (M,g) be a compact, connected, and oriented Riemannian manifold with
smooth boundary, of dimension n = dimM ≥ 2. We wish to discuss integra-
tion of functions on SM and ∂SM . The manifold (M,g) has a volume form
dV n induced by the Riemannian metric. In local coordinates,

dV n = |g(x)|1/2 dx1 ∧ · · · ∧ dxn.

For any x ∈ M , the metric g induces a Riemannian metric (inner product)
g(x) on TxM . The subset SxM = {v ∈ TxM : |v|g = 1} also becomes a
Riemannian manifold. Denote by dSx the volume form of (SxM,g(x)).
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Figure 3.2 In the 2D case, ∂SM is a 2-torus (assuming M is a disk) and the
glancing region ∂0SM is given by two circles. The figure shows the geodesic
vector field X being transversal to ∂SM \∂0SM and at ∂0SM , X becomes tangent
to ∂SM but remains transversal to ∂0SM if ∂M is strictly convex.

Now the integral of a function f ∈ C(SM) over SM is just∫
M

∫
SxM

f (x,v) dSx(v) dV
n(x).

This integral induces a natural volume form (or measure) on SM called the
Liouville form. We shall denote it by d!2n−1. At a point (x,v) ∈ SM it can be
written as

d!2n−1 = dV n ∧ dSx .

This form can also be interpreted as the volume form of the Sasaki metric
on SM or the volume form associated with the contact form of the geodesic
flow. Liouville’s theorem in classical mechanics asserts that the geodesic flow
preserves d!2n−1. In terms of the Lie derivative LX this can be written as
follows:

Lemma 3.6.4 LX(d!2n−1) = 0.

Similarly, the integral of h ∈ C(∂SM) over SM is∫
∂M

∫
SxM

h(x,v) dSx(v) dV
n−1(x),

where dV n−1 is the volume form of (∂M,g). This integral induces a volume
form on ∂SM given by

d!2n−2 := dV n−1 ∧ dSx,
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where dV n−1 is the volume form of (∂M,g). This is just the volume form
of the Sasaki metric restricted to ∂SM . Restricting d!2n−2 to ∂±SM gives
the natural volume form on these sets. The next lemma will be useful when
proving Santaló’s formula.

Lemma 3.6.5 We have j∗iνd!2n−1 = −d!2n−2, where ν = (ν,0) is the
horizontal lift of the unit normal ν and j : ∂SM → SM is the inclusion map.
Moreover, j∗iXd!2n−1 = −μd!2n−2.

Proof Consider a positively oriented orthonormal basis (ξ1, . . . ,ξ2n−2) of
T(x,v)∂SM . Since ν is the inward unit normal in the Sasaki metric, by definition
of boundary orientation, we have

d!2n−1(ν,ξ1, . . . ,ξ2n−2) = −1,

which gives the first claim. Writing X = (X−μν)+μν and noting that X−μν

is tangent to ∂SM , the second claim follows.

The volume forms on SM and ∂SM induce L2 inner products

(u,w)L2(SM) =
∫
SM

uw̄ d!2n−1,

(h,r)L2(∂SM) =
∫
∂SM

hr̄ d!2n−2.

One has corresponding L2 spaces L2(SM) and L2(∂SM), with norms induced
by the inner products.

Next we state and prove Santaló’s formula. Recall that μ(x,v) = 〈ν(x),v〉
for (x,v) ∈ ∂SM .

Proposition 3.6.6 (Santaló’s formula) Let (M,g) be a compact non-trapping
manifold with strictly convex boundary. Given f ∈ C(SM) we have∫

SM

f d!2n−1 =
∫
∂+SM

dμ(x,v)

∫ τ(x,v)

0
f (ϕt (x,v)) dt,

where dμ = μd!2n−2.

The proof will be very similar to the proof in two dimensions that we
have already seen. We shall need the following lemma, which is an easy
consequence of Stokes’ theorem (its proof is left as an exercise).

Lemma 3.6.7 Let N be a compact manifold with boundary, " a volume form,
Y a vector field, and u ∈ C∞(N). Then∫

N

Y(u)" = −
∫
N

uLY" +
∫
∂N

j∗(uiY"),

where j : ∂N → N is the inclusion map.
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Proof of Proposition 3.6.6 Recall that τ ∈ C(SM). Given f ∈ C∞
c (SM),

define for (x,v) ∈ SM ,

uf (x,v) :=
∫ τ(x,v)

0
f (ϕt (x,v)) dt . (3.16)

Clearly uf ∈ C(SM) and uf |∂−SM = 0. But if f has compact support in the
interior of M , then uf is in fact smooth. A simple computation shows that

Xuf = −f . (3.17)

We now apply Lemma 3.6.7 for the case N = SM , Y = X, and u = uf . Since
LXd!2n−1 = 0 and uf |∂−SM = 0, we deduce∫

SM

f d!2n−1 = −
∫
∂+SM

j∗
(
uf iXd!2n−1

)
.

The proposition now follows from the fact that j∗iXd!2n−1 = −μd!2n−2

(Lemma 3.6.5) and Exercise 3.5.15.

The next proposition shows that there is a natural positive smooth density
that is preserved by the scattering relation. It also shows that the scattering
relation is an orientation reversing diffeomorphism.

Proposition 3.6.8 Let (M,g) be a non-trapping manifold with strictly convex
boundary. Then

α∗
(
μd!2n−2

)
= μd!2n−2.

Moreover

α∗
(μ

τ̃
d!2n−2

)
= −μ

τ̃
d!2n−2.

Proof Recall that α(x,v) = ϕτ̃(x,v)(x,v), thus using the chain rule we obtain
for ξ ∈ T(x,v)∂SM:

dα|(x,v)(ξ) = dτ̃ (ξ)X(α(x,v)) + dϕτ̃(x,v)(ξ). (3.18)

Let us compute α∗j∗iXd!2n−1 = (jα)∗iXd!2n−1. For this, take a basis
{ξ1, . . . ,ξ2n−2} of T(x,v)∂SM and write

(jα)∗iXd!2n−1(ξ1, . . . ,ξ2n−2)

= d!2n−1(X(α(x,v)),dα|(x,v)(ξ1), . . . ,dα|(x,v)(ξ2n−2))

= d!2n−1(X(α(x,v)),dϕτ̃ (x,v)(ξ1), . . . ,dϕτ̃ (x,v)(ξ2n−2))

= d!2n−1(X(x,v),ξ1, . . . ,ξ2n−2),
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where in the third line we used (3.18) and in the fourth we used that the
geodesic flow preserves d!2n−1. Thus

α∗j∗iXd!2n−1 = j∗iXd!2n−1,

and the first identity in the proposition follows from Lemma 3.6.5. The second
identity follows from τ̃ ◦ α = −τ̃ and Lemma 3.2.8.

3.7 Conjugate Points and Morse Theory

In this section we review basic properties of conjugate points (see e.g. Lee
(1997); Jost (2017)). The following two facts will be important for later
applications:

• Absence of conjugate points implies positivity of the index form. This will
imply the positivity of certain terms in the Pestov identity used in the proof
of injectivity of the geodesic X-ray transform on simple manifolds.

• Absence of conjugate points implies that the exponential map is a global
diffeomorphism onto a simple manifold. This gives an analogue of polar
coordinates, which can be used to prove that the normal operator of the
geodesic X-ray transform is an elliptic pseudodifferential operator.

We will also state some related facts coming from Morse theory.

3.7.1 Conjugate Points and Jacobi Fields

Let (M,g) be a Riemannian manifold, and let γ : [a,b] → M be a geodesic
segment. A family of curves (γs)s∈(−ε,ε) depending smoothly on s is called a
variation of γ through geodesics if each γs : [a,b] → M is a geodesic (not
necessarily unit speed) and if γ0 = γ . We say that the variation γs fixes the end
points if γs(a) = γ (a) and γs(b) = γ (b) for s ∈ (−ε,ε).

Intuitively, conjugate points are related to situations where a family of
geodesics starting at a fixed point converges to another point after finite time.
The following is a basic example of this behaviour.

Example 3.7.1 (Family of geodesics joining the south and north pole) Let Sn,
n ≥ 2 be the sphere and consider the geodesic segment

γ : [−π/2,π/2] → Sn, γ (t) = (cos t)e1 + (sin t)en+1.

Define

γs : [−π/2,π/2] → Sn, γs(t) = (cos t)((cos s)e1 + (sin s)e2) + (sin t)en+1.
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Then (γs) is a variation of γ through geodesics that fixes the end points −en+1

(south pole) and en+1 (north pole).

Any smooth variation (γs) of γ has a variation field ∂sγs(t)|s=0, which is
a smooth vector field along γ . If (γs) is a variation through geodesics, then
each γs(t) satisfies the geodesic equation. Consequently the variation field
∂sγs(t)|t=0 satisfies the linearized geodesic equation, also known as the Jacobi
equation. Below we write Dt = ∇γ̇ (t) for the covariant derivative along γ (t)

and use the curvature operator

Rγ J := R(J,γ̇ )γ̇ ,

where R(X,Y )Z is the Riemann curvature tensor of (M,g).

Lemma 3.7.2 (Jacobi equation) Let γ : [a,b] → M be a geodesic segment,
and let (γs) be a variation of γ through geodesics. Then the variation field
J (t) = ∂sγs(t)|s=0 satisfies the Jacobi equation

D2
t J (t) + Rγ J (t) = 0, t ∈ [a,b].

Conversely, if J (t) is a smooth vector field along γ satisfying the Jacobi
equation, then there is a variation (γs) of γ through geodesics so that
∂sγs(t)|t=0 = J (t).

Proof Write �(s,t) = γs(t), so that � : (−ε,ε)× [a,b] → M is smooth. Then
J (t) = ∂s�(0,t), and we wish to compute D2

t J (t). Write Ds = ∇∂sγs . Since
∇ is torsion free, one has

Dt∂sγs(t) = Ds∂tγs(t).

Moreover, the definition of the Riemann curvature tensor gives that

DtDsW − DsDtW = R(∂tγs,∂sγs)W .

These facts imply that

D2
t J (t) = DtDt∂sγs(t)|s=0 = DtDs∂tγs(t)|s=0

= DsDt∂tγs(t))|s=0 + R(γ̇ (t),J (t))γ̇ (t).

One has Dt∂tγs(t) = 0 since each γs is a geodesic. Thus J (t) satisfies the
Jacobi equation.

For the converse, if J (t) solves the Jacobi equation it is enough to consider
a variation

γs(t) = expη(s)(tW(s)) = γη(s),W(s)(t),
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where η is a smooth curve with η(0) = γ (a), and W(s) is a smooth vector field
along η with W(0) = γ̇ (a). Then (γs) is a variation of γ through geodesics,
and its variation field Y (t) = ∂sγs(t)|s=0 satisfies Y (0) = η̇(0) and

DtY (0) = Ds∂tγs(t)|s=t=0 = DsW(0).

Now if we choose η and W so that η̇(0) = J (0) and DsW(0) = DtJ (0), then
both J (t) and Y (t) satisfy the Jacobi equation with the same initial conditions.
Uniqueness for linear ODEs shows that Y ≡ J .

Definition 3.7.3 (Jacobi field) A smooth vector field along γ that solves the
Jacobi equation is called a Jacobi field.

If a geodesic γ : [a,b] → M admits a variation through geodesics that fixes
the end points, then by Lemma 3.7.2 it also admits a Jacobi field vanishing at
the end points. This leads to the definition of conjugate points.

Definition 3.7.4 (Conjugate points) Let γ : [a,b] → M be a geodesic
segment. We say that the points γ (a) and γ (b) are conjugate along γ if there is
a nontrivial Jacobi field J : [a,b] → TM along γ satisfying J (a) = J (b) = 0.

Remark 3.7.5 If γ (a) and γ (b) are conjugate along γ , it follows from Lemma
3.7.2 (by choosing η(s) ≡ γ (a) in the proof) that there is a variation (γs) of
γ through geodesics that fixes the initial point γ (a) and almost fixes the end
point γ (b) in the sense that ∂sγs(b)|s=0 = 0.

The next lemma contains some basic properties of Jacobi fields. We say that
a Jacobi field is normal (respectively tangential) if J (t) ⊥ γ̇ (t) (respectively
J (t) ‖ γ̇ (t)) for all t .

Lemma 3.7.6 Let γ : [a,b] → M be a geodesic segment. Given any v,w ∈
Tγ (a)M, there is a unique Jacobi field with

J (a) = v, DtJ (a) = w.

The space of Jacobi fields along γ is a 2n-dimensional subspace of the set of
smooth vector fields along γ . The space of normal Jacobi fields is (2n − 2)-
dimensional, and the space of tangential Jacobi fields is span{γ̇ (t),t γ̇ (t)} and
hence 2-dimensional. The following conditions are equivalent:

(a) J is normal.
(b) J (t0) and DtJ (t0) are orthogonal to γ̇ (t0) at some t0.
(c) J (t1) ⊥ γ̇ (t1) and J (t2) ⊥ γ̇ (t2) for some t1 �= t2.

Proof The first claim follows from existence and uniqueness for linear ODEs.
The map (v,w) 
→ J is linear and bijective, showing that the space of Jacobi
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fields is 2n-dimensional. The geodesic equation Dt γ̇ (t) = 0 together with the
antisymmetry of the curvature tensor imply that

∂2
t 〈J,γ̇ 〉 = 〈

D2
t J,γ̇

〉 = 〈
D2

t J + R(J,γ̇ )γ̇ ,γ̇
〉
.

Thus for any Jacobi field, 〈J,γ̇ 〉 = ct + d for some c,d ∈ R, and taking
the t-derivative gives that 〈DtJ,γ̇ 〉 = c. It follows that (a), (b), and (c) are
equivalent. By part (b) one sees that the space of normal Jacobi fields is
(2n − 2)-dimensional, and it is easy to check that γ̇ (t) and t γ̇ (t) are linearly
independent tangential Jacobi fields.

The tangential Jacobi fields are not very interesting (they correspond to the
variations γs(t) = γ (t + s) and γs(t) = γ (est), which are just reparametriza-
tions of γ (t)). Thus we will focus on normal Jacobi fields.

3.7.2 Jacobi Fields in Dimension Two

If dimM = 2 there is a very simple description of Jacobi fields in terms
of solutions of the ODE ÿ(t) + K(γ (t))y(t) = 0, where K is the Gaussian
curvature. Recall that v⊥ is the rotation of v by 90◦ counterclockwise.

Lemma 3.7.7 (Jacobi fields in two dimensions) Let (M,g) be two dimensional
and γ : [a,b] → M a unit speed geodesic segment. The set of normal
Jacobi fields along γ is spanned by α(t)γ̇ (t)⊥ and β(t)γ̇ (t)⊥, where α,β ∈
C∞([a,b]) satisfy the equations

α̈(t) + K(γ (t))α(t) = 0, α(a) = 1, α̇(a) = 0,

β̈(t) + K(γ (t))β(t) = 0, β(a) = 0, β̇(a) = 1.

Proof We first observe that γ̇ (t)⊥ is parallel, i.e.

Dt

(
γ̇ (t)⊥

) = 0. (3.19)

In fact, since Dt γ̇ (t) = 0 we have〈
Dt γ̇

⊥,γ̇
〉 = ∂t

(〈
γ̇⊥,γ̇

〉) = ∂t (0) = 0,〈
Dt γ̇

⊥,γ̇⊥〉 = 1

2
∂t
(〈
γ̇⊥,γ̇⊥〉) = 1

2
∂t (1) = 0.

This proves (3.19).
When dimM = 2 the Jacobi equation reduces to

D2
t J (t) + K(γ (t))J (t) = 0.
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If α(t) and β(t) satisfy the given equations, it follows from (3.19) that
α(t)γ̇ (t)⊥ and β(t)γ̇ (t)⊥ solve the Jacobi equation. Since they are lin-
early independent and normal, they span the space of normal Jacobi fields
along γ .

We can also present an alternative derivation of the Jacobi equation based on
the structure equations given in Lemma 3.5.5 and the geodesic flow ϕt acting
on SM .

Let (M,g) be an arbitrary Riemannian surface that we assume oriented for
simplicity. Fix a point (x,v) ∈ SM . We adopt the following notation: let
X⊥(t) = X⊥(ϕt (x,v)) and X⊥ = X⊥(0) = X⊥(x,v), and similarly for X(t),
V (t) etc. Let ξ ∈ T(x,v)SM . We can write

ξ = aX − yX⊥ + zV

for some constants a,y,z ∈ R. Moreover, there exist smooth functions
a(t),y(t),z(t) satisfying

dϕt (ξ) = a(t)X(t) − y(t)X⊥(t) + z(t)V (t), (3.20)

subject to the initial conditions a(0) = a, y(0) = y and z(0) = z.

Proposition 3.7.8 The functions a(t), y(t), and z(t) satisfy the equations

ȧ = 0,

ẏ − z = 0,

ż + Ky = 0.

Proof We begin by applying dϕ−t to both sides of (3.20) to obtain

ξ = a(t)dϕ−t (X(t)) − y(t)dϕ−t (X⊥(t)) + z(t)dϕ−t (V (t)).

Differentiating both sides with respect to t and recalling the Lie derivative
formula LXY(ϕt ) = d

dt
(dϕ−t (Y (ϕt ))), we obtain

0 = d

dt
(ξ)

= ȧ(t)dϕ−t (X(t)) + a(t)dϕ−t ([X,X](t)) − ẏdϕ−t (X⊥(t))

− y(t)dϕ−t ([X,X⊥]) + żdϕ−t (V (t)) + z(t)dϕ−t ([X,V ](t)),

and then applying Lemma 3.5.5 and grouping like terms, we obtain

0 = dϕ−t [ȧ(t)X(t) + (z(t) − ẏ(t))X⊥(t) + (ż + K(t)y(t))V (t)].

Since dϕ−t is an isomorphism and {X(t),X⊥(t),V (t)} is a basis of each
tangent space Tϕt (x,v)SM the coefficients of X(t), X⊥(t), and V (t) must
vanish for all t , and this is precisely what we wanted to show.
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The proposition implies, in particular, that dϕt leaves the 2-plane bundle
spanned by {X⊥,V } invariant. Moreover, if ξ = −yX⊥ + zV , then

dϕt (ξ) = −y(t)X⊥(t) + ẏ(t)V (t),

where y(t) is uniquely determined by the Jacobi equation ÿ + Ky = 0
with initial conditions y(0) = y and ẏ(0) = z. We see that dπdϕt (ξ) =
−y(t)dπ(X⊥(t)) = y(t)γ̇⊥(t) is the normal Jacobi field J with initial
conditions J (0) = yγ̇⊥(0), J̇ (0) = zγ̇⊥(0).

Thus Jacobi fields and their covariant derivatives describe how the differen-
tial of the geodesic flow evolves. The same is true in higher dimensions. Using
the splitting described in Section 3.6, we may write for ξ ∈ T(x,v)SM ,

dϕt (ξ) = (Jξ (t),DtJξ (t)), (3.21)

where Jξ is the unique Jacobi field with initial conditions Jξ (0) = dπ(ξ) and
DtJξ (0) = Kξ , where K is the connection map.

Exercise 3.7.9 Prove (3.21).

3.7.3 Exponential Map

We discuss the exponential map on a compact manifold with boundary and
evaluate its derivative in terms of Jacobi fields.

Proposition 3.7.10 (Exponential map) Let (M,g) be a compact non-trapping
manifold with strictly convex boundary. For any x ∈ M define

Dx := {tv ∈ TxM : v ∈ SxM and t ∈ [0,τ (x,v)]}. (3.22)

The exponential map

expx : Dx → M, expx(tv) = γx,v(t)

is smooth. For any tv ∈ Dx and w ∈ TxM , one has

(d expx)|tv(tw) = J (t),

where J is the Jacobi field along γx,v with J (0) = 0 and DtJ (0) = w.

Proof The assumption on (M,g) guarantees that any point of Dx is the limit
of some sequence in (Dx)

int. Thus it is enough to verify the claims for any
smooth extension of expx to some larger manifold containing Dx (the values
of d expx on ∂Dx do not depend on the choice of the extension). Let (N,g)

be a closed extension of (M,g). Then geodesics on N are well defined for all
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time and the exponential map of N , expN
x : TxN → N , is smooth. It follows

that expx = expN
x |Dx is also smooth.

Given tv ∈ Dx and w ∈ TxM , consider the smooth curve η(s) = tv + stw

on TxN . By the definition of the derivative one has(
d expN

x

)|tv(tw) = d

ds
expN

x (η(s))

∣∣∣
s=0

.

Consider γs(r) = expN
x (r(v + sw)) = γx,v+sw(r). Then γs(r) is a varia-

tion of γx,v(r) through geodesics in N , hence J (r) = ∂sγs(r)|s=0 is a Jacobi
field along γx,v with J (0) = 0 and DrJ (0) = Ds(v+ sw)|s=0 = w. It follows
that (d expN

x )|tv(tw) = ∂sγs(t)|s=0 = J (t).

Corollary 3.7.11 Given tv ∈ Dx , the derivative d expx |tv is invertible if and
only if γx,v(t) is not conjugate to x along γx,v .

We will also need the Gauss lemma.

Proposition 3.7.12 (Gauss lemma) Let x ∈ M and tv ∈ Dx . For any w ∈
TxM one has

〈d expx |tv(v),d expx |tv(w)〉 = 〈v,w〉.
In particular, d expx |tv(w) ⊥ γ̇x,v(t) if and only if v ⊥ w.

Proof Note first that d expx |tv(v) = γ̇x,v(t), and by Proposition 3.7.10 one
has d expx |tv(tw) = Jw(t) where Jw(t) is the Jacobi field along γx,v with
Jw(0) = 0 and DtJw(0) = w. Define

f (t) := 〈d expx |tv(v),d expx |tv(tw)〉 = 〈γ̇x,v(t),Jw(t)〉.
Since Dt γ̇x,v(t) = 0, taking derivatives and using the Jacobi equation gives
that

f ′′(t) = 〈
γ̇x,v(t),D

2
t Jw(t)

〉 = −〈γ̇x,v(t),Rγ Jw(t)〉.
The symmetries of the curvature tensor imply that the last quantity is zero.
Thus f (t) is an affine function, and

〈d expx |tv(v),d expx |tv(tw)〉 = f (0) + f ′(0)t = t〈γ̇x,v(0),DtJw(0)〉
= t〈v,w〉.

This proves the result for t > 0, and the case t = 0 follows since
d expx |0 = id.

The following result shows that among curves that are exponential images
of curves in the domain of expx , the radial geodesics always minimize length.
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Proposition 3.7.13 (Minimizing curves in domain of expx) Let x ∈ M and
w ∈ Dx , let η0 : [0,1] → Dx be the curve η0(t) = tw, and let η : [0,1] → Dx

be any smooth curve with η(0) = 0 and η(1) = w. Then∫ 1

0
|(expx ◦ η0)

′(t)| dt ≤
∫ 1

0
|(expx ◦ η)′(t)| dt

with equality if and only if η is a reparametrization of η0.

Proof We may assume that w �= 0 and η(t) �= 0 for 0 < t ≤ 1 (if not, let t0
be the last time with η(t0) = 0 and replace η by η|[t0,1] rescaled to the interval
[0,1]). We write η(t) = r(t)ω(t) where r(t) = |η(t)| and |ω(t)| = 1. Then for
t > 0 one has

η̇(t) = ṙ(t)ω(t) + r(t)ω̇(t).

The condition |ω(t)| = 1 implies 〈ω(t),ω̇(t)〉 = 0. Using the Gauss lemma,
we obtain that

〈d expx |η(t)(ω(t)),d expx |η(t)(ω̇(t))〉 = 0,

|d expx |η(t)(ω(t))| = |d expx |η(t)(ω̇(t))| = 1.

Combining these facts gives that

|(expx ◦ η)′(t)|2 = |d expx |η(t)(η̇(t))|2 ≥ ṙ(t)2.

Thus the lengths satisfy∫ 1

0
|(expx ◦ η)′(t)| dt ≥

∫ 1

0
|ṙ(t)| ≥ r(1) − r(0) = |w|

=
∫ 1

0
|(expx ◦ η0)

′(t)| dt .

Equality holds if and only if ω̇(t) = 0 and ṙ(t) ≥ 0, which corresponds to the
case where η is a reparametrization of η0.

3.7.4 Index Form

Next we consider a bilinear form on γ related to the Jacobi equation.

Definition 3.7.14 (Index form) Let γ : [a,b] → M be a geodesic segment,
and let H 1(γ ) be the Sobolev space of vector fields along γ equipped with the
norm

‖Y‖H 1(γ ) =
(∫ b

a

(|Y (t)|2 + |DtY (t)|2) dt
)1/2

.
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Define H 1
0 (γ ) = {Y ∈ H 1(γ ) ; Y (a) = Y (b) = 0}. The index form of γ is the

bilinear form

Iγ (Y,Z) =
∫ b

a

(〈DtY,DtZ〉 − 〈Rγ Y,Z〉) dt,

defined for Y,Z ∈ H 1
0 (γ ).

The index form Iγ is the bilinear form associated with the elliptic operator
−D2

t − Rγ acting on H 1
0 (γ ) (i.e. with vanishing Dirichlet boundary values).

It arises as the second variation of the length or energy functionals. Namely,
if γs : [a,b] → M is a variation of a unit speed geodesic γ through geodesics
that fixes the end points, then

d2

ds2

∫ b

a

|γ̇s(t)|g dt

∣∣∣
s=0

= Iγ (Y,Y ), (3.23)

where Y (t) is the component of ∂sγs(t)|s=0 normal to γ̇ (t). Thus if γ

minimizes length between its end points among the curves γs , then necessarily
Iγ (Y,Y ) ≥ 0.

The main result for our purposes is that absence of conjugate points
guarantees that Iγ is positive definite.

Proposition 3.7.15 (Positivity of index form) Let γ : [a,b] → M be a
geodesic segment, and consider the index form Iγ on H 1

0 (γ ). Then

Iγ > 0 if and only if there is no pair of conjugate points on γ .

There are many possible proofs of the above proposition. We will give one
based on PDE (or in this case ODE) type ideas.

Proof For r ∈ (a,b], let Lr be the elliptic operator −D2
t − Rγ acting on

H 1
0 (γ |[a,r]). Then Lr has a countable set of Dirichlet eigenvalues λ1(r) ≤

λ2(r) ≤ · · · with corresponding L2([a,r])-normalized eigenfunctions Yj ( · ;r)
satisfying( − D2

t − Rγ

)
Yj ( · ;r) = λj (r)Yj ( · ;r) on (a,r), Yj (a;r) = Yj (r;r) = 0.

We will be interested in the smallest eigenvalue λ1(r), also given by the
Rayleigh quotient

λ1(r) = min
Y∈H 1

0 (γ |[a,r])\{0}
Iγ (Y,Y )

‖Y‖2
L2(γ )

.

Clearly Iγ > 0 if and only if λ1(b) > 0.
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We claim the following facts:

(1) λ1(r) > 0 for r close to a.
(2) λ1(r) is Lipschitz continuous and decreasing on (a,b].
(3) If λ1(r0) = 0, then γ (a) and γ (r0) are conjugate.

The result now follows: if there are no conjugate points, then λ1(r) is never
zero and hence λ1(r) is positive on (a,b], showing that Iγ is positive definite.
Conversely, if there is a pair of conjugate points then there is a nontrivial
Jacobi field J vanishing at some a′ and b′. Extending it by zero to [a,b]
gives a nontrivial vector field J in H 1

0 (γ ), and integrating by parts shows that
Iγ (J,J ) = 0. Thus Iγ is not positive definite.

Claim (1) above follows from a Poincaré inequality: if Y ∈ H 1
0 (γ |[a,a+ε]),

then∫ a+ε

a

|Y |2 dt =
∫ a+ε

a

∂t (t − a)|Y |2 dt = −2
∫ a+ε

a

(t − a)〈DtY,Y 〉 dt

≤ 2ε‖DtY‖‖Y‖ ≤ 2ε2‖DtY‖2 + 1

2
‖Y‖2.

Absorbing the last term on the right to the left gives ‖DtY‖ ≥ 1
2ε‖Y‖. If ε

is chosen small enough, we get that Iγ (Y,Y ) ≥ c‖Y‖2
L2 for some c > 0

whenever Y ∈ H 1
0 (γ |[a,a+ε]).

Claim (2) is standard: rescaling the interval [a,r] to [a,b], we see that λ1(r)

is related to the smallest eigenvalue of a second order self-adjoint elliptic
operator on H 1

0 (γ ) whose coefficients depend smoothly on r . Hence λ1(r) is
Lipschitz continuous and decreasing (both facts can be checked directly from
the Rayleigh quotient). Claim (3) is immediate from the definition of conjugate
points and elliptic regularity.

Exercise 3.7.16 Prove claim (2) in the proof of Proposition 3.7.15.

The proof of Proposition 3.7.15 combined with the second variation formula
(3.23) also gives the following result.

Proposition 3.7.17 (Geodesics do not minimize past conjugate points) If
γ : [a,b] → M is a geodesic segment having an interior point conjugate
to γ (a), then there is X ∈ H 1

0 (γ ) with Iγ (X,X) < 0 and γ is not length
minimizing.

The kernel of Iγ is the set of Jacobi fields vanishing at the end points,

J (γ ) = {J ∈ H 1
0 (γ ) : D2

t J + Rγ J = 0, J (a) = J (b) = 0}.
By elliptic regularity any J ∈ J (γ ) is C∞, and hence one can use H 1

0 vector
fields J in the definition of conjugate points.
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We will next state the Morse index theorem (cf. Jost (2017)) involving the
two indices

Ind(γ ) = dimV (γ ),

Ind0(γ ) = dimV0(γ ),

where V (γ ) (respectively V0(γ )) is a subspace of H 1
0 (γ ) with maximal

dimension so that the index form Iγ is negative definite (respectively negative
semidefinite).

Theorem 3.7.18 (Morse index theorem) Let γ : [a,b] → M be a geodesic
segment. Then there are at most finitely many times a < t1 < · · · < tN ≤ b so
that γ (tj ) is conjugate to γ (a) along γ . The indices Ind(γ ) and Ind0(γ ) are
finite, and they satisfy

Ind(γ ) =
∑

tj∈(a,b)

dimJ
(
γ |[a,tj ]

)
,

Ind0(γ ) =
∑

tj∈(a,b]

dimJ
(
γ |[a,tj ]

)
.

3.7.5 Morse Theory Facts

The classical Morse theory of the energy functional on loop spaces provides
several relevant results. These results are pretty standard on complete mani-
folds without boundary or closed manifolds. Given a compact manifold (M,g)

with strictly convex boundary, throughout this subsection, we will assume that
(N,g) is a no return extension with the following properties.

Lemma 3.7.19 (No return extension) Let (M,g) be a compact manifold with
strictly convex boundary. There is a complete manifold (N,g) of the same
dimension as M so that (M,g) is isometrically embedded in (N,g) and
geodesics leaving M never return to M . Moreover N \ M can be taken as
to be diffeomorphic to (0,∞) × ∂M , so that M is a deformation retract of N .

Exercise 3.7.20 Prove that this extension exists (for a proof see Bohr (2021,
Lemma 7.1)).

Proposition 3.7.21 Let (M,g) be a compact manifold with strictly convex
boundary. Then given any two points x,y ∈ M , any N -geodesic joining x

and y is completely contained in M . Moreover, there is a minimizing geodesic
in M connecting x to y.

Proof If γ : [0,1] → N is a geodesic with γ (0) = x and γ (1) = y, then
γ ([0,1]) ⊂ M since otherwise some γ (t0) would be outside M and then
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also γ (1) = y would be outside M , which is impossible. Moreover, since
(N,g) is complete, the Hopf–Rinow theorem ensures that there is a minimizing
geodesic in N connecting x and y and by the above argument this geodesic
stays in M .

Proposition 3.7.22 Let (M,g) be a compact non-trapping manifold with
strictly convex boundary. Then M is contractible.

Proof Since M is a deformation retract of N , it follows that M is contractible if
and only if N is. A classical result in Serre (1951, Proposition 13), proved using
Morse theory, asserts that if x,y ∈ N are distinct and if N is not contractible,
there are infinitely many geodesics connecting x to y. Let now x be fixed and
consider the map f : TxN → N,f (w) = expx(w). Sard’s theorem applied to
f shows that almost every y ∈ N is a regular value. In particular, such points
y are not conjugate to x. Moreover, given T > 0 there are only finitely many
w ∈ TxM with f (w) = y and |w| ≤ T . This shows that there are geodesics
connecting x to y with arbitrarily large length.

Since N is a no return extension, if we pick x and y in M , then M itself
admits geodesics of arbitrarily large length connecting x to y thus violating
the non-trapping property. It follows that M is contractible.

Remark 3.7.23 The proposition also follows from another well-known fact in
Riemannian geometry: a compact connected and non-contractible Riemannian
manifold with strictly convex boundary must have a closed geodesic in its
interior (Thorbergsson, 1978, Theorem 4.2). This is also proved with Morse
theory, but using the space of free loops.

Proposition 3.7.24 Let (M,g) be a compact Riemannian manifold without
conjugate points and with strictly convex boundary. Let γ be a geodesic with
end points x,y ∈ M . If α is any other smooth curve in M connecting x to y that
is homotopic to γ with a homotopy fixing the end points, then the length of α
is larger than the length of γ . Moreover, there is a unique geodesic connecting
x to y in a given homotopy class and this geodesic must be minimizing.

Proof We follow Guillarmou and Mazzucchelli (2018, Lemma 2.2) where this
very same proposition is proved. We let �(x,y) denote the Hilbert manifold
of absolutely continuous curves c : [0,1] → N with c(0) = x, c(1) = y and
finite energy

E(c) := 1

2

∫ 1

0
|ċ|2 dt .

It is well known that E : �(x,y) → R is C2 (Mazzucchelli, 2012, Proposition
3.4.3) and satisfies the Palais–Smale condition. The critical points of E are
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precisely the geodesics connecting x to y. Moreover, since there are no
conjugate points, the Morse index theorem 3.7.18 guarantees that the Hessian
of E at a critical point is positive definite (recall that N is a no return extension,
so it suffices to assume that M has no conjugate points). Thus all critical
points of E are local minimizers of E and are isolated. We now argue with
E restricted to the connected component of �(x,y) containing γ , which we
denote by �[γ ](x,y). This coincides with the set of paths connecting x to y and
homotopic to γ . We claim that γ is the unique minimizer of E|�[γ ](x,y). Indeed
a mountain pass argument shows that if there is another local minimizer, then
there is a geodesic σ ∈ �[γ ](x,y) that is not a local minimum of E|�[γ ](x,y)

(cf. Struwe (1996, Theorem 10.3) and Hofer (1985)). Again by the Morse
index theorem, σ must contain conjugate points, and since it must be entirely
contained in M, we get a contradiction.

3.8 Simple Manifolds

In this section we introduce the notion of simple manifold and we prove several
equivalent definitions. We start with the following:

Definition 3.8.1 Let (M,g) be a compact connected manifold with smooth
boundary. The manifold is said to be simple if

• (M,g) is non-trapping,
• the boundary is strictly convex, and
• there are no conjugate points.

Our main goal will be to establish the following theorem.

Theorem 3.8.2 Let (M,g) be a compact connected manifold with strictly
convex boundary. The following are equivalent:

(i) M is simple;
(ii) M is simply connected and has no conjugate points;

(iii) for each x ∈ M , the exponential map expx is a diffeomorphism onto its
image;

(iv) given two points there is a unique geodesic connecting them depending
smoothly on the end points;

(v) consider (M,g) isometrically embedded in a complete manifold (N,g).
Then M has a neighbourhood U in N such that any two points in U are
joined by a unique geodesic;

(vi) the boundary distance function dg|∂M×∂M is smooth away from the
diagonal.
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Remark 3.8.3 Conditions closely related to simplicity appear in Michel
(1981/82); Muhometov (1977), and the term ‘simple manifold’ goes back at
least to Sharafutdinov (1994). There may be other variations of the definition of
simple manifold in the literature not listed above, but as far as we can see, they
all follow easily from one of the statements above. An example is to say that
a compact manifold (M,g) is simple if ∂M is strictly convex, every geodesic
segment in M is minimizing and there are no conjugate points. Indeed, if every
geodesic segment in M is minimizing, then (M,g) is non-trapping since all
geodesic segments in M have length bounded by the diameter of M . We could
also say that (M,g) is simple if ∂M is strictly convex, every two points are
connected by a unique geodesic and there are no conjugate points.

We shall break down the proof of Theorem 3.8.2 into several propositions.
The first is:

Proposition 3.8.4 Let (M,g) be a simple manifold. Given x,y ∈ M , there is
a unique geodesic connecting x to y and this geodesic is minimizing.

Proof Since ∂M is strictly convex, Proposition 3.7.21 ensures that there is
a minimizing geodesic connecting x to y. Since M is non-trapping, it must
be simply connected by Proposition 3.7.22. Thus Proposition 3.7.24 implies
that there is only one geodesic connecting x to y and this geodesic must be
minimizing.

Proposition 3.8.5 Let (M,g) be simple. Given x ∈ M , let Dx ⊂ TxM be the
domain of the exponential map given in (3.22). Then

expx : Dx → M

is a diffeomorphism. In particular, M is diffeomorphic to a closed ball.

Proof The previous proposition asserts that if M is simple, then

expx : Dx → M

is a bijection. Since there are no conjugate points, Corollary 3.7.11 gives that
expx is a local diffeomorphism at any tv ∈ Dx . Hence expx : Dx → M is a
diffeomorphism. This implies, in particular, that M is diffeomorphic to a closed
ball in Euclidean space: if x is in the interior of M , then Dx is a closed star-
shaped domain around zero with smooth boundary and hence diffeomorphic
to a closed ball.

Proposition 3.8.6 Let (M,g) be a compact manifold with strictly convex
boundary. The following are equivalent:
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(i) (M,g) is simple;
(ii) M is simply connected and has no conjugate points.

Any of these two properties implies:

• Given two points in M , there is a unique geodesic connecting them and this
geodesic is minimizing.

Proof (i) �⇒ (ii): If M is simple, then it has no conjugate points by definition.
It is simply connected due to Proposition 3.7.22.

(ii) �⇒ (i): Suppose M has strictly convex boundary, is simply connected
and has no conjugate points. Proposition 3.7.24 implies that between two
points in M there is a unique geodesic and this geodesic must be minimizing.
It follows that all geodesics have length less than or equal to the diameter of
M , hence the manifold is non-trapping and (M,g) is simple.

Proposition 3.8.7 Let (M,g) be simple manifold. Any sufficiently small
neighbourhood U of M in N whose boundary is C2-close to that of M has
the property that U is simple.

Proof Clearly any sufficiently small neighbourhood U with ∂U C2-close to
∂M has the property that its closure U has strictly convex boundary and is
simply connected. To see that the property of having no conjugate points
persists when we go to U , let ρ be a boundary distance function for ∂M

and let Ur := ρ−1[−r,∞) with r ≥ 0. If we cannot find a neighbourhood
for M without conjugate points, there is a sequence rn → 0 and points
(xn,vn), (yn,wn) ∈ SUrn such that ϕtn(xn,vn) = (yn,wn), dϕtn(V(xn,vn)) ∩
V(yn,wn) �= {0} with tn > 0 and ϕt (xn,vn) ∈ SUrn for all t ∈ [0,tn] (conjugate
point condition, see (3.21)). By compactness we may assume that (xn,vn)

converges to (x,v) ∈ SM and (yn,wn) converges to (y,w) ∈ SM .
If the sequence tn is bounded, by passing to a subsequence we deduce that

there is t0 > 0 such that dϕt0(V(x,v)) ∩ V(y,w) �= {0} and thus M has
conjugate points (the sequence tn is bounded away from zero). Indeed, we
have unit vectors (in the Sasaki metric) ξn ∈ V(xn,vn) such that

dπ ◦ dϕtn(ξn) = 0,

and passing to subsequences if necessary we find a unit norm ξ ∈ V(x,v) for
which

dπ ◦ dϕt0(ξ) = 0.

If tn is unbounded, we may assume by passing to a subsequence that tn → ∞.
Since we are assuming that M is non-trapping there is T > 0 such that every
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geodesic in M has length ≤T . Since tn → ∞, there is n0 such that for all
n ≥ n0, ϕt (xn,vn) ∈ SUrn for all t ∈ [0,T + 1]. Thus ϕt (x,v) ∈ SM for all
t ∈ [0,T + 1] and we have produced a geodesic in M with length T + 1 which
is a contradiction.

Exercise 3.8.8 Use the continuity of the cut time function tc : SN → (0,∞)

(cf. Sakai (1996, chapter III, Proposition 4.1)) to give an alternative proof of
Proposition 3.8.7 (take the extension N to be closed): if geodesics on M have
no conjugate points and between two points there is only one, then cut points
do not occur in M (again cf. (Sakai, 1996, chapter III, Proposition 4.1)), i.e.
for all (x,v) ∈ SM , τ(x,v) < tc(x,v). This means that one can go a bit further
along any geodesic and by a uniform amount.

Exercise* 3.8.9 Construct an example of a compact surface with strictly
convex boundary such that any two points are joined by a unique geodesic,
but the surface is not simple. Such an example must have conjugate points
between points at the boundary.

3.8.1 Proof of Theorem 3.8.2 Except for Item (vi)

The equivalence between (i) and (ii) is the content of Proposition 3.8.6.
Proposition 3.8.5 gives that (i) implies (iii). To prove that (iii) implies (i), note
that if expx is a diffeomorphism for each x, then every geodesic is minimizing
by Proposition 3.7.13 and hence there are no geodesics with infinite length,
thus M is non-trapping. We also know that the differential of expx is a linear
isomorphism and hence there are no conjugate points (cf. Corollary 3.7.11).
The equivalence between (iii) and (iv) follows right away if we note that
γx,v(x,y)(1) = expx(v(x,y)) = y, where v(x,y) is defined uniquely if expx is
a bijection. Smooth dependence of the geodesic on end points is precisely the
statement that the map (x,y) 
→ v(x,y) is smooth. Let us complete the proof
by showing that (i) ⇐⇒ (v). Proposition 3.8.7 gives that (i) �⇒ (v). If we
assume (v) we see right away that M is non-trapping and also that it is free of
conjugate points (including boundary points) since U is a neighbourhood.

3.8.2 The Hessian of the Distance Function

The main purpose of this subsection is to complete the proof of Theorem 3.8.2
by establishing the equivalence of simplicity with item (vi) in the theorem.
This result will not be subsequently used in the text.

Let (N,g) be a complete Riemannian manifold, fix p ∈ N and let f (x) :=
d(p,x). It is well known that f is smooth away from {p} ∪ Cutp, where Cutp
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denotes the cut locus of p. It is also well known that the cut locus is a closed
set of measure zero. Consider the open set N0 := N \ ({p} ∪ Cutp) and define

Ip := {tv : t ∈ (0,tc(v)), v ∈ SpN},
where tc is the cut time function. Then

expp : Ip → N0

is a diffeomorphism; for a proof of these facts see Sakai (1996, chapter III,
Lemma 4.4). The gradient of f on the full measure open set N0 defines a
vector field W that has unit norm and hence gives a smooth section W : N0 →
SN0. The vector field W has the property of being geodesible, i.e. its orbits
are geodesics of g, or in other words ∇WW = 0, where ∇ is the Levi-Civita
connection of g.

Exercise 3.8.10 Prove that ∇WW = 0.

For each x ∈ N0, the Hessian of f at x, denoted by Hessx(f ), defines
a bilinear form on TxN . We shall consider its associated quadratic form for
v ∈ TxN with unit norm, and we write this as Hessx(f )(v,v). Moreover,

Hessx(f )(v,v) = d2

dt2

∣∣∣∣
t=0

f (γx,v(t)) = (X2f )(x,v),

where X is the geodesic vector field. In terms of the vector field W, we see right
away that

Hessx(f )(v,v) = 〈∇vW,v〉. (3.24)

Exercise 3.8.11 Using that W is a gradient, show that 〈∇vW,w〉 = 〈∇wW,v〉
for any v,w ∈ TxN . In other words, the linear map TxN # v 
→ ∇vW ∈ TxN

is symmetric.

In fact, since W has unit norm, 〈∇vW,W 〉 = 0 for any v ∈ TxN , and thus
βx(v) := ∇vW defines a symmetric linear map βx : W(x)⊥ → W(x)⊥.

Given x ∈ N0 we define a subspace E ⊂ T(x,W(x))SN0 by setting

E(x,W(x)) := dϕf (x)(V(p,w)), (3.25)

where (p,w) = ϕ−f (x)(x,W(x)). The subspace E is a Lagrangian subspace in
the kernel of the canonical contact form of SN with respect to the symplectic
form given by (3.15) (since V is Lagrangian and dϕt preserves the symplectic
form). Moreover, in terms of the horizontal and vertical splitting we may
describe E as

E(x,W(x)) = {(v,∇vW) : v ∈ W(x)⊥}. (3.26)
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In other words E is the graph of the symmetric linear map βx . To check the
equality in (3.26), we proceed as follows. Fix w ∈ Sp and t < tc(w). Let
x = πϕt (p,w) so that ϕt (p,w) = (x,W(x)). Consider a curve z : (−ε,ε) →
SpM with z(0) = w, so that ξ := ż(0) ∈ V(p,w). We let Jξ denote the
normal Jacobi field with initial conditions determined by ξ as explained when
discussing (3.21). Now write

ϕt (p,z(s)) = (πϕt (p,z(s)),W(πϕt (p,z(s))),

and differentiate this at s = 0 to obtain in terms of the vertical and horizontal
splitting that

dϕt (ξ) = (Jξ (t),∇Jξ (t)W).

This gives (3.26) right away.
We wish to use the following well-known fact. We only sketch the proof

leaving the details as exercise.

Proposition 3.8.12 Let (N,g) be a complete Riemannian manifold. Take x �=
y ∈ N . Then the distance function dg is smooth in a neighbourhood of (x,y) if
and only if x and y are connected by a unique geodesic that is minimizing and
free of conjugate points.

Sketch If the condition on geodesics holds, write d(x,y) = | exp−1
x (y)| and

smoothness of d follows. For the converse fix x and set f (y) := d(x,y). Then
if f is differentiable at y and there is a unit speed minimizing geodesic γ

connecting x to y, then ∇f (y) is the velocity vector of γ at y. If we have
more than one minimizing geodesic the gradient would take two different
values at the same point; absurd. For the conjugate points we have to go to
the second derivatives of d and see that if x and y are conjugate along the
unique minimizing geodesic joining them, then the Hessian blows up.

Exercise 3.8.13 Complete the proof of Proposition 3.8.12.

Now we come to the main result of this subsection that completes the proof
of Theorem 3.8.2.

Proposition 3.8.14 Let (M,g) be a compact manifold with strictly convex
boundary. Then M is simple if and only if the boundary distance function
dg|∂M×∂M is smooth away from the diagonal.

Proof Let (M,g) be a compact manifold with strictly convex boundary. We
consider (M,g) isometrically embedded in a no return extension (N,g) as in
Lemma 3.7.19.
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If M is simple, by Proposition 3.8.12 we know that the distance function dg

of N is smooth in a neighbourhood of (x,y) ∈ ∂M × ∂M for x �= y. Hence its
restriction to ∂M × ∂M is obviously smooth away from the diagonal.

The converse is more involved as we cannot use Proposition 3.8.12 directly
since we are only assuming that the restriction to ∂M × ∂M is smooth away
from the diagonal.

Take x,y ∈ ∂M with x �= y. We know (by strict convexity, see Proposition
3.7.21) that there is a minimizing geodesic between x and y. We claim there is
only one. Let f (z) = d(x,z) for z ∈ M and let h := f |∂M . We know that h
is C1 (away from x). Thus if γ : [0,#] → M is a unit speed length minimizing
geodesic joining x and y, then ∇h(y) is the orthogonal projection of γ̇ (#) onto
Ty∂M . Indeed f is always C1 on the interior of γ and

∇h(y) = projection

(
lim

t→#−
∇f (γ (t))

)
.

This shows that the minimizing geodesic between x and y is unique.
Let Ox be the open set in SxM given by those unit vectors pointing strictly

inside M and consider the map F : ∂M \ {x} → Ox , where F(y) is the initial
velocity vector of the (unique) minimizing geodesic from x to y. This map
is continuous and injective and by topological considerations it must also be
onto.

Exercise 3.8.15 Prove that F is surjective.

Thus every v ∈ Ox is the initial velocity of some minimizing geodesic
hitting the boundary. In particular, this implies that any geodesic starting on the
boundary and ending in the interior is minimizing and has no conjugate points.

The next step is to show that (M,g) is non-trapping. Indeed let p ∈ M

be an interior point. Consider the set of all geodesics that start at p and hit
the boundary. The set of their initial directions is open and closed (from
minimality and transversality to the boundary due to strict convexity), hence it
must be all SpM .

The final step in the proof is to show that there are no conjugate points on
the boundary. For this we will use the previous discussion on the Hessian of
the distance function.

Let p ∈ ∂M and consider as above f (x) = d(p,x). We have seen that
the interior of M is contained in N0. Take y ∈ ∂M and suppose that p and y

are conjugate. Consider a sequence of points yn along the unique minimizing
geodesic connecting p to y such that they are in the interior of M , but yn → y.
Using (3.25) we see that E(yn,W(yn)) converges to a Lagrangian subspace
at (y,W(y)) that intersects the vertical subspace non-trivially (note that W
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is defined at y). This in turn implies that there is a sequence of unit vectors
vn ∈ W(yn)

⊥, such that vn → v ∈ W(y)⊥ for which 〈∇vnW,vn〉 → ∞.
Going back to (3.24) we see that Hessyn(f ) blows up as yn → y.

We are assuming that h = f |∂M is smooth away from p, so to derive a
contradiction from the blow-up of the Hessian of f we need to observe that
∇WW = 0, and thus Hessyn(f )(W(yn),w) = 0 for any w ∈ TynM . But W(y)

is transversal to ∂M and thus the blow-up of the Hessian of h at y also holds
contradicting the fact that h must be C2 near y.
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