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This paper investigates the effect of anisotropic turbulence on generating leading-edge
aerofoil–turbulence interaction noise. Thin aerofoil theory is used to model an aerofoil
as a semi-infinite plate, and the scattering of incoming turbulence is solved via the
Wiener–Hopf technique. This theoretical solution encapsulates the diffraction problem
for gust–aerofoil interaction and is integrated over a wavenumber–frequency spectrum to
account for general incoming anisotropic turbulence. We develop a novel axisymmetric
wavenumber–frequency model that captures the wall-normal variation in turbulence
characteristics, differing from previous approaches. Then, the method of Gaussian
decomposition, in which the generalised spectra are approximated through the weighted
sum of individual Gaussian eddy models, is applied to fit the turbulence model to
experimental data. Comparisons with experimental data show good agreement for a range
of anisotropic ratios.
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1. Introduction

Leading-edge noise, also known as aerofoil–turbulence interaction noise, is produced
by the scattering of turbulent velocity fluctuations of a given incoming flow by the
aerofoil’s leading edge. It is a dominant noise mechanism for many applications, such
as wind turbines, cooling systems and turbofan engines. Regarding wind turbines, it is
known that the interaction of the blades with atmospheric turbulence causes unwanted
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noise, particularly at low frequencies (Buck, Oerlemans & Palo 2018). For engines with
multi-row rotor systems, the wake from turbulence interacting with rotor blades impinges
on the downstream blade and is a dominant noise source (Lyu, Ayton & Chaitanya
2019). Alongside these industrial reasons, we may also consider social reasons, such as
counteracting harmful noise pollution.

In the literature, two methods of particular interest have been developed experimentally
and analytically to reduce leading-edge noise. The first is using serrations on the leading
edge (Roger, Schram & De Santana 2013; Ayton & Kim 2018; Ayton & Paruchuri 2018;
Lyu & Ayton 2020; Teruna et al. 2021). Serrations have been shown to reduce noise across
various frequencies – however, the mathematical modelling can be more involved and
introduce aerodynamic difficulties such as drag and loss of lift.

The other popular approach is to use porous/impedance plates, in which either full
or partial porosity is introduced and shown to have acoustic benefits (Geyer, Sarradj
& Giesler 2012; Roger et al. 2013; Ayton et al. 2021a; Teruna et al. 2021). Currently,
there are limitations on how we model porosity mathematically and the need to balance
the aeroacoustic benefits of porosity with aerodynamic costs. The focus of this paper is
somewhat different; rather than modifying the aerofoil to reduce unwanted noise (thereby
impacting the aerodynamics), we introduce a novel methodology to understand how
altering the flow can affect the noise from an aerofoil.

We achieve our aim through a theoretical model of aerofoil–turbulence interaction noise.
Early work by Amiet describes how to derive a cross-power spectral density (cross-PSD)
of the surface pressure for an aerofoil in turbulent flow by considering first a single ‘gust’
component of the turbulent flow and then integrating it over a wavenumber–frequency
spectrum (Amiet 1975, 1976). The solution relates the turbulent velocity experienced by
the plate to the pressure jump along the plate via a transfer function g. It comprises two
parts: a gust-scattering solution and a turbulence spectrum. The first part requires details
of the aerofoil and its rigid boundary condition, whilst the latter requires details of the
incoming turbulence and any anisotropy.

Our modelling follows the same path as Amiet’s, and we first focus on the gust
scattering. Rather than employing Amiet’s method exactly, we use a more direct approach
to explicitly calculating the far field noise from a single gust without requiring Curle’s
integral. This is achieved using the Wiener–Hopf technique instead of Amiet’s approach
via Schwarzschild’s solution (Amiet 1975). To further assist theoretical progress, we
assume, as done so by Amiet, that the aerofoil is an infinitesimally thin leading edge
extending infinitely downstream, thus occupying x > 0, y = 0. We suppose the plate
extends infinitely in the spanwise z-direction. This geometric assumption is commonly
known as thin aerofoil theory. It has been shown to have good agreement with experimental
data in the case of thin aerofoils in (isotropic) turbulent streams.

Turning to the second part required for modelling leading-edge noise, we need a
turbulence spectrum detailing anisotropic fluctuations. Most prior theoretical work on
leading-edge noise only considers an isotropic spectrum, which may be constructed
via Gaussian decomposition (Wohlbrandt et al. 2016). Anisotropic turbulence has been
addressed via the axisymmetric spectrum (Kerschen & Gliebe 1981), but this has never
been incorporated into a theoretical prediction model. This paper combines these two
turbulence modelling approaches to develop an anisotropic Gaussian decomposition model
for upstream turbulence while addressing other considerations to mathematically and
physically model the turbulence. The literature is comparatively scarce on investigating
the effects of anisotropic turbulence in the context of leading-edge noise, with the key
research on this being Gea-Aguilera et al. (2015, 2016); Gea-Aguilera, Gill & Zhang
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(2017); Zhong & Zhang (2019) and Gea-Aguilera et al. (2021). In these papers, it is
found that modifying anisotropy has a noticeable effect on turbulence spectra due to
the redistribution of turbulence kinetic energy. Therefore, by modelling this, we may
better understand the physical phenomena causing changes in aerofoil noise. In practice,
turbulence is rarely isotropic, so accounting for anisotropy reflects the physical system
of interest. Although the previous authors have used anisotropic Gaussian kernels to
generate synthetic anisotropic turbulence, this approach did not consider an analytical
weighting function. This was developed in a prior study by the authors (Hales et al.
2022). Therefore, in this paper, we further develop the model to represent the underlying
physics of the problem better. Experimentally, we observed that the turbulent behaviour
varied significantly between the wall-normal direction and the streamwise and spanwise
directions; however, the differences in the features of the anisotropic turbulence were far
less significant between the streamwise and spanwise directions.

We will take a different approach in our turbulence modelling and assume the
‘axial’ direction (using terminology from the stated papers) is now the wall-normal
direction, whereas the ‘transverse’ direction consists of the streamwise and spanwise
plane containing the aerofoil. We will then apply the method of Gaussian decomposition
introduced by Wohlbrandt et al. (2016). However, we will adapt this to axisymmetric
turbulence by considering anisotropic kernels and verifying the analytical representations.
With this description of the turbulence, we can analyse the impact of our parameters
representing the ratio of turbulence parameters. We discuss our methodology for obtaining
data for the interaction of axisymmetric turbulence generated by a cylinder wake with a
flat-plate model. With this data, we present an initial test of the Gaussian decomposition
method by comparing various models for incident turbulence spectra with spectra
calculated from experimental predictions. Finally, we verify our model against this data
and outline more utility for our Gaussian decomposition, which can be included simply
in our overall PSD model and will demonstrate an even better agreement with the
experimental noise data.

2. Review of leading-edge noise

We first review the interaction of a general turbulent disturbance with a thin leading edge,
as depicted in figure 1 and solved by Amiet (1975, 1976), under the assumption that
nonlinearities such as turbulence–turbulence interactions can be neglected and the mean
flow Mach number is small. We invoke rapid distortion theory (RDT) to express the total
fluid velocity as

u = Uc + ∇φs + u(I), (2.1)

where Uc is the steady mean flow velocity as it impinges upon the leading edge (the
convection velocity), u(I) denotes the turbulent distribution and φs is a velocity potential
containing only scattered contributions from the leading edge. Without an edge φs = 0
(Goldstein 1978).

We can relate this velocity potential to pressure fluctuations via

ps = −ρ0
Dφs

Dt
, (2.2)

where
D
Dt

= ∂

∂t
+ Uc · ∇, (2.3)

ρ0 is the fluid density and t denotes time.
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Anisotropic gusts

Figure 1. Representation of the semi-infinite plate problem.

Knowing ps, we may calculate the PSD

Ψ (ω) = lim
T→∞

π

T
ps(ω)p∗

s (ω), (2.4)

where p∗
s denotes the complex conjugate, ω the angular frequency and T is the time over

which we measure our signal (Blake 1970). This quantity describes how the power of
the pressure jump is distributed across the frequency range when taking into account two
separate signals and averaging over time. Our model will be of the form

Ψ (ω, θ) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
g(k, θ)Φ22(k)δ

(
k1 − ω

U∞

)
dk1 dk2 dk3. (2.5)

The details of deriving this are left to Appendix A. Our model (2.5) consists of two key
components that need careful mathematical analysis. The turbulence spectrum Φ22(k)

and the transfer function g that accounts for scattering effects. This function g can be
considered a transfer function (Amiet 1976) and will be the focus of this section.

We will find g by analytically calculating the scattered field in § 2 before integrating
this over the whole of wavenumber space using our spectrum Φ22. While Amiet used
Schwarzschild’s solution, which will only give the solution on the surface, we will apply
the Wiener–Hopf technique to obtain the solution in R

2. This avoids propagating the
surface pressure to the far field via an additional integral and can provide the far field
nose directly.

2.1. Gust-scattering solution
For our simplified model, we will assume that the blade is a semi-infinite plate with
streamwise variable x, the spanwise variable z and the plate at y = 0. Figure 1 demonstrates
the physical problem. We will assume the plate is infinitely thin with an infinite span and
will seek the scattered solution of a single frequency of turbulence. We aim to find the
total far field scattered pressure occurring as our incoming gust impinges on the aerofoil,
g(k, θ), for use in (2.5).

Given our disturbance convects within a uniform steady mean flow with Mach number
M = Uc/c0, the three-dimensional convective wave equation for our scattered velocity
potential φs is (

D2

Dt2
− c2

0∇2
)

φs = 0. (2.6)

Our incoming disturbance for a single gust is given by

φi = w2 exp(ik · x − iωt). (2.7)
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Here, we have intrinsically non-dimensionalised our length and velocity by a length scale
L relating to our experimental set-up and by the convection velocity Uc, the velocity at
which turbulent eddies convect when impinging upon the leading edge. We assume our
scattered wave is time harmonic with a specific exponential dependence in the spanwise
direction; that is, we have a exp(i(k3z − ωt)) dependence on φs. Furthermore, we assume
our turbulence is frozen so that the acoustic wavenumber k = ω/c0 can be replaced with
the streamwise wavenumber k1 via k = Mk1 as per Taylor’s hypothesis.

Using these assumptions, we can rearrange (2.6) and obtain a convected Helmholtz
equation

(1 − M2)
∂2φs

∂x2 + ∂2φs

∂y2 + 2ik1M2 ∂φs

∂x
+ (M2k2

1 − k2
3)φs = 0. (2.8)

We also require the pressure jump Δ[p] = p(x, 0+) − p(x, 0−) for the total field upstream
of the plate to be zero by continuity,

Δ[φs] = 0 y = 0, x < 0, (2.9)

and zero through flow along the plate corresponding to

∂φs

∂y
= −ik2w2eik1x y = 0, x > 0. (2.10)

To eliminate the ∂φs/∂x term from our governing equation, we define β = √
1 − M2 and

use the convective transform

φ̃s(x, y) = φs(x, y) exp
(

ik1M2x
β2

)
, (2.11)

followed by the Prandtl–Glauert transformation

˜̃
φs(x, y) = φ̃s

(
x
β

, y
)

. (2.12)

Applying these transformations, we obtain a standard Helmholtz equation and retain the
Neumann boundary condition, but with slightly shifted wavenumbers

∂2 ˜̃
φs

∂x2 + ∂2 ˜̃
φs

∂y2 + k∗2 ˜̃
φs = 0, (2.13a)

Δ
[ ˜̃
φs

]
= 0, y = 0, x < 0, (2.13b)

∂
˜̃
φs

∂y
= −ik2w2eik̃x, y = 0, x > 0, (2.13c)

where we have denoted the ‘Prandtl–Glauert wavenumbers’ as

k̃ = k1

β3 , k∗ =
√

M2k2
1 − β2k2

3

β
. (2.14a,b)

These wavenumbers account for our convective flow and our temporal and spanwise
assumptions. We choose branch cuts for k∗ to ensure Im(k∗) ≥ 0. For the rest of the paper,
we drop the tildes and consider our problem in the new coordinates.
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2.2. The Wiener–Hopf solution
Following the standard Wiener–Hopf procedure and the application of Liouville’s theorem
via the edge conditions (see Appendix B for more details), we obtain the solution to (2.13)
as

φs(x, y) = −w2k2 sgn( y)

2πγ −
(
−k̃

) ∫ ∞

−∞
1

γ +(α)
(
α + k̃

) exp(−iαx − γ |y|) dα, (2.15)

where γ =
√

α2 − k∗2 with branch cuts taken so that γ (0) = −ik∗, and γ = γ +γ − is a
multiplicative Wiener–Hopf factorisation of this function, that is, γ +(α) = √

α + k∗ is
analytic in the upper half-complex plane and γ −(α) = √

α − k∗ is analytic in the lower
half-complex plane.

To relate this to the far field pressure, we first perform the steepest descent
approximation on our integral solution to find the velocity potential in the far field

D(k, θ) = lim
r→∞

√
rφs(x, y, k), (2.16)

where r =
√

x2 + y2 is the radial distance from the source. Omitting the details for brevity,
we find

D(k1, k3, θ) =
cos

(
θ

2

)
√

k∗ + k̃(k̃ − k∗ cos θ)
. (2.17)

We then undo our convective transform to return our solution back to being in terms of
pressure, that is we use the relation

ps = −ρ0

(
Uc

∂

∂x
− iω

)
φs

= −ρ0Uc

(
∂

∂x
− ik1

)
φs, (2.18)

however, we disregard the dimensional constants that scale the result since they will be
absorbed when we dimensionalise the PSD later in our results section.

After undoing our convective transform and applying (2.18), we obtain the transfer
function that we denote by g

g = M2k2
2

π

∣∣∣∣k1
1 − 2M2

1 − M2 + k∗ cos θ

∣∣∣∣2 ∣∣eik∗r∣∣2 ∣∣D(k1, k3, θ)
∣∣2

= M2k2
2

π
g̃(k1, k3, θ), (2.19)

from which our theoretical model for the spectral sound pressure level (SPL) would be

Ψ (ω, θ) = M2

π

∫ ∞

−∞

∫ ∞

−∞
k2

2 g̃
(

ω

Uc
, k3, θ

)
Φ22

(
ω

Uc
, k2, k3

)
dk2 dk3, (2.20)

here, we are implicitly assuming our shifted wavenumbers k∗, k̃ are evaluated at k1 = ω/Uc
due to frozen convection, where Uc is the convection velocity of eddies at the leading edge
of the plate.
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The k2 dependence in (2.20) occurs only through Φ22(k), so we can reduce the double
integral to a single integral by pre-integrating the spectrum.

We retain the term |eik∗r| because some k∗ may be complex. These subcritical gusts are
known to have little (but potentially some) contribution to the overall sound; therefore,
when evaluating (2.19), we pick r = 100 and still include them (Roger & Moreau 2005).
Since these subcritical gusts have Im(k∗) > 0, the gusts act as evanescent waves in the far
field.

3. Turbulence spectrum models

Having derived a solution to the transfer function g̃, we now need a fast and accurate
turbulence spectrum Φ22(k) to account for the properties of the incoming turbulence.

3.1. The isotropic vertical velocity turbulence spectrum
To give an understanding of the turbulence itself, we will briefly review the fundamental
statistical derivations behind the spectral functions. Many popular turbulence textbooks
will cover this in detail (Batchelor 1953; Tennekes & Lumley 1972; Hinze 1975).
Appendix C of Grasso et al. (2019) contains a succinct review within the context of noise
reduction.

The correlation tensor Rij is defined by

Rij(r) = ui(x, t)uj(x + r, t)

ui(x, t)uj(x, t)
, (3.1)

which describes average spatial velocity fluctuations over the spatial domain.
We define the full three-dimensional energy spectral density, Φij(k) to be the full spatial

Fourier transform of Rij(x). This function splits the correlation function’s behaviour
across the wavenumbers we are concerned with, k. Thus, we consider three-dimensional
turbulence with our gust solutions when integrating our model over all these wavenumbers.

The two most popular turbulence models are the von Kármán model (von Kármán
1948) and the Liepmann model (Liepmann, Laufer & Liepmann 1951), which differ by
the assumed energy scaling of the inertial subrange and are derived from empirical results
and dimensional arguments. An alternative model represents Hunt’s RDT (Hunt 1973), in
which the rapid distortion of turbulence is considered and studied, leading to a new Φ22
with a much steeper decrease in energy within the inertial subrange.

All three significant models are encompassed by the generalised von Kármán model
(Wilson 1997) which begins with the correlation function given as

R22(r; p) = 1

2p−7/2Γ ( p − 5
2 )

( r
L

)p−5/2
Kp−5/2

( r
L

)
, (3.2)

where Kp−5/2 is the modified Bessel function of the second kind of order p − 5
2 and L

is a characteristic length scale to be defined in terms of the integral length scale Λ. The
von Kármán model corresponds to p = 17/6 in (3.2), while the Liepmann model uses
p = 3 and the RDT model p = 11/3. At this point, unless specified, the von Kármán
model directly refers to the specific (p = 17

6 ) example of the umbrella term ‘generalised
von Kármán model’.
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We define the energy density spectrum to be

E(κ) = 1
2

∫
Φii(k) dA(κ), (3.3)

where we integrate over the surface of spheres of which dA is an element and tells us the
density of turbulence kinetic energy for each κ = |k| (Batchelor 1953).

For isotropic turbulence, we obtain the energy density spectrum for the generalised von
Kármán model to be

E(κ; p) = 2kTL( p)C( p)
(κL( p))4

(1 + (κL( p))2)p , (3.4)

where C( p) = Γ ( p)/Γ (5
2)Γ ( p − 5

2) is a normalising constant that ensures the total
integral over |k| is equal to the turbulent kinetic energy kT .

The turbulent kinetic energy is defined as

kT = 1
2 (u2

rms + v2
rms + w2

rms) (3.5)

where we use the notation (urms, vrms, wrms) to be the root mean square (r.m.s.) velocity in
each corresponding axial direction. For isotropic turbulence, u = v = w and so we can set
kT = 3u2

rms/2.
Using Batchelor’s formula relating the energy density spectrum to Φij, which holds

specifically for the case of isotropic turbulence, we find that the spectrum required for the
PSD is

Φ22(k; p) = E(κ; p)

4πκ4 (k2
1 + k2

3). (3.6)

The integral length scale Λ is defined via

Λ =
∫ ∞

0
R11(x) dx

= 3
2kT

∫ ∞

0

(∫
R3

Φ11(k)e−ik1x dk
)

, (3.7)

and the characteristic length scale used in (3.4) is given by (Durbin & Petterson 2001)

L( p) = ΛΓ ( p − 5
2 )√

πΓ ( p − 2)
= ΛL∗( p). (3.8)

Putting this together gives the generalised Φ22 for isotropic turbulence

Φ22(k; p) = 3u2
rmsCL5

4π

k2
1 + k2

3(
1 + L2|k|2)p . (3.9)

We compare the three models alongside the standard Gaussian model

ΦG
22(k) = u2

rmsL
5

π4 (k2
1 + k2

3) exp

(
−L2 |k|2

π

)
, (3.10)

in figure 2, where we plot the one dimensional turbulence spectrum Θ22(k1), given by

Θ22(k1; p) =
∫ ∞

−∞

∫ ∞

−∞
Φ22(k; p) dk2 dk3. (3.11)
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–
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Liepmann model
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Gaussian model

10–2

103

k1 (m–1)

Figure 2. Comparisons of the Θ22(k1) model (3.11) while using the generalised von Kármán model (3.9) and
varying p alongside the standard Gaussian model (3.10). Here, we use Λ = 0.0133 m, urms = 3.92 m s−1 as
the length scale and r.m.s. velocity used for each model.

3.2. An axisymmetric anisotropic model
We now turn to extend these models to anisotropic turbulence. A useful model
for anisotropic turbulence, more specifically axisymmetric turbulence, is presented in
Kerschen & Gliebe (1981) for modelling turbulent jet noise

Φij(k) = [k2δij − kikj]F + [(k2 − (kmλm)2)δij

− kikj − k2λiλj + kmλm(λikj + kiλj)]G, (3.12)

where the unit vector λ gives the direction of the mean flow. The functions F and G are
given by

F = 2lal4t u2
a

π2[1 + l2ak2
1 + l2t (k2

2 + k2
3)]

3/2
G =

(
2

u2
t

u2
a

− l2t
l2a

− 1
)

F. (3.13a,b)

The subscripts a, t, distinguish parameters based on axial and transverse directions, chosen
to represent the anisotropic behaviour in different spatial directions. Here, the la,t values
refer to the length scale equivalents to L and ua,t values refer to velocities equivalent to u
similar to the isotropic case.

Kerschen and Gliebe’s model was explicitly derived for jet turbulence (Kerschen &
Gliebe 1981), thereby the axial direction is taken to be the direction of the mean flow,
while the transverse direction is that of the plane normal to this, where it is assumed the
turbulence statistics are spatially uniform.

This model was adapted to leading-edge noise by Gea-Aguilera et al., in which the four
parameters la,t, ua,t are discussed in depth and formally defined (Gea-Aguilera et al. 2021).
The length scales are equal to integral length scales in the contextual direction. In contrast,
the axial velocity is set to be the r.m.s. velocity in the direction of the mean flow. However,
this paper notes that the ‘transverse velocity’ is defined arbitrarily in the original literature.
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It is defined as some velocity ut required to satisfy the condition

2
u2

t

u2
a

− l2t
l2a

≥ 0. (3.14)

This inequality is forced in Kerschen & Gliebe (1981) to ensure that the velocity correlation
tensor Rij is non-negative.

Following these definitions, the integral length scale conditions would require equality
between the two velocities within the transverse plane.

Our experimental study can be represented by design as axisymmetric around the plane
perpendicular to the cylinder. Thus, we take the axial direction λ as the y-direction (wall
normal), while we assume the plane containing our plate (x, z)-plane is the transverse
direction. For completeness, the three wavenumber-frequency spectra Φii, i = 1, 2, 3 can
be written as

Φ11(k) =
(

k2
2 +

(
2u2

r − l2r
)

k2
3

)
F

Φ22(k) =
(

k2
1 + k2

3

)
F

Φ33(k) =
(

k2
2 +

(
2u2

r − l2r
)

k2
1

)
F

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (3.15)

where F is given in (3.13a,b) and ur = ut/ua, lr = lt/la.
We now formally define

u2
t = u2

rms + w2
rms

2
, (3.16)

which satisfies the inequality (3.14) and ensures our model makes physical sense.
In individual measurements during a separate set of experiments, we used stereo-particle

image velocimetry (PIV) to obtain three velocity components in a cylinder wake. Data are
obtained at Reynolds numbers (based on cylinder diameter) ReD = 20 × 103 and 30 × 103

to and downstream locations x/D of 5 and 14. The experimental set-up and measurement
techniques are described in Dixon et al. (2022). The PIV data provide the turbulence
characteristics of the incoming anisotropic turbulent flow in the x and z directions, which
we need as input for our mathematical model. The results at different Reynolds numbers
and downstream locations both indicated that urms ≈ 1.2wrms, which we would expect;
therefore, we will make the simplification urms = wrms so that ut = urms and ua = vrms.

This approach is inspired by the contextual design of our experiment, which was
chosen to ensure significant ratios can be tested. This varies from the numerical study
(Gea-Aguilera et al. 2021) in which the ratios are inverted due to the axial direction being
the x-axis.

Implementing these initial changes into the axisymmetric framework gives the model

Φa
22(k; p) = u2

al4t laΓ ( p)

π3/2Γ
(

p − 5
2

) k2
1 + k2

3

[1 + l2t k2
1 + l2ak2

2 + l2t k2
3]p

. (3.17)

Here, we have normalised Φ22 for the turbulence kinetic energy requirement for
anisotropic spectra. Note that, in doing so, we will be using σ = 2/u2

r − l2t /l2a, to be
compared with the form σ = 2u2

r − Λ2
r that would be an equivalent definition for the
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model in Kerschen & Gliebe (1981) and Hales et al. (2022). The equation that our
normalised model must satisfy is∫

R3
Φii(k; p) dk = 2kT = u2

a(2 + u2
r ), (3.18)

where the sum Φii can be found using (3.15). It remains to relate our length scale
parameters la,t to turbulent integral length scales that may be measured in experiments.
We use the two equations

Λ
(1)
11 = π

u2
rms

∫ ∞

−∞

∫ ∞

−∞
Φ11(k1 = 0, k2, k3; p) dk2 dk3 (3.19)

and

Λ
(2)
22 = π

v2
rms

∫ ∞

−∞

∫ ∞

−∞
Φ22(k1, k2 = 0, k3; p) dk1 dk3. (3.20)

Note that for simplicity we define Λ1 ≡ Λ
(1)
11 and Λr ≡ Λ

(2)
22 /Λ

(1)
11 , so that the isotropic

limit is Λr → 1. Solving these to find our parameters la,t in terms of Λ1,r gives

la = Λ1ΛrL∗( p), lt = Λ1L∗( p), (3.21a,b)

with L∗ as in (3.8), while the condition (3.14) now becomes

2
u2

r
− 1

Λ2
r

� 0, (3.22)

which will be reasonable for all cases of anisotropy studied experimentally in the paper.
Putting all this together, we obtain the final anisotropic spectrum

Φa
22(k; p) = u2

a(L
∗( p)Λ1)

5ΛrΓ ( p)

π3/2Γ
(

p − 5
2

) k2
1 + k2

3

[1 + L∗2( p)Λ2
1
(
k2

1 + Λ2
r k2

2 + k2
3
)
]p

. (3.23)

As the introduction mentions, wall-normal velocity fluctuations generate pressure
fluctuations that can be attributed to the sound we hear. Our new approach, in which
anisotropic spectra are combined with an analytic transfer function as in (2.20), indicates
how leading-edge noise is generated physically. We aim to create a clearer model, adapted
to the context of leading-edge noise, in which the parameters of interest now relate
to the direction of flow for consistency with previous literature; however, all ratios
compare the wall-normal with the streamwise direction, and it is these ratios we aim to
understand.

3.3. Approximation by Gaussian decomposition
Evaluating (3.23) is often impractical. Any subsequent integral it appears in may
not have closed forms or may be challenging to compute efficiently and accurately.
An example of the former issue is E(κ), which is discussed in Appendix D. We
can thus use a Gaussian transform method to approximate turbulence spectra with
Gaussian kernel filters (Alecu, Voloshynovskiy & Pun 2005; Wohlbrandt et al. 2016).
This paper will use the terminology Gaussian decomposition when referring to this
model.
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To the authors’ knowledge, the method of Gaussian decomposition has been investigated
solely for isotropic turbulence, such as the models in § 3.1. Here, we extend the model to
the anisotropic case with two length scales la and lt.

The idea of Gaussian decomposition in the anisotropic case is to find an analytical
weighting function f that satisfies the integral equation

Φa
22(k; p) =

∫ ∞

0

∫ ∞

0
f (la, lt)Φ̃

a,G
22 (k) dlt dla, (3.24)

where Φ̃
a,G
22 is the anisotropic Gaussian kernel function

Φ̃
a,G
22 (k) = l3al4t u2

t (2 + u2
r )(k

2
1 + k2

3)

π4
(
(1 + σ)l2a + l2t

) exp

(
− l2ak2

2
π

)
exp

(
− l2t (k

2
1 + k2

3)

π

)
, (3.25)

which is a turbulence spectrum in its own right but scaled depending on the arbitrary
length scales la, lt, which we integrate over.

After finding f , we approximate the resulting integral equation by summation

Φa
22(k; p) ≈

N∑
m=0

f ( p; lm)�lmΦ
a,G
22 (k; p; lm), (3.26)

where the lm values are chosen to be within a sensible range of length scales representing
the flow itself, while the �lm values are weightings distributed with the trapezoid rule
between some scalar multiple of the largest scale used in our summation and the smallest
(Wohlbrandt et al. 2016). The former length scale will be the integral length scale of
turbulence, while the latter is the Kolmogorov length scale

lk =
(

ν3

ε

)1/4

, (3.27)

with ν the dynamic viscosity and ε the dissipation rate. This ensures we capture the lengths
of the largest and smallest scales of turbulence that contribute to our far field noise.

To find f , we perform similar changes of variables in each direction to Wohlbrandt et al.
(2016). Details of this are found in Appendix B and reduce the right-hand side to two
Laplace transforms. Taking the inverse transforms, in turn, gives us

f ( p; la, lt) = 4πu2
r (LΛ1)

5Λr

(2 + u2
r )Γ

(
p − 5

2

) f̃ (la)g̃(la, lt),

f̃ ( p; la) =
(

l2a
π(LΛrΛ1)2

)p

exp
(

− l2a
π(LΛrΛ1)2

)
,

g̃(la, lt; p) = (1 + σ)l2a + l2t
l2al3t

δ

(
l2t − l2a

Λ2
r

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.28)

However, we note that the lt integral of g in (3.24) may be evaluated immediately to obtain
our spectrum as an approximation dependent on only one length scale, l

Φa
22(k; p) =

∫ ∞

0
f ( p; l)Φa,G

22 (k) dl, (3.29)
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with

Φ
a,G
22 (k) = u2

al5Λr(k2
1 + k2

3)

π4 exp

(
− l2(k2

1 + Λ2
r k2

2 + k2
3)

π

)
. (3.30)

After this integration, we obtain the weighting function

f̂ ( p; l) = 2

lΓ
(

p − 5
2

) (
l√

πΛ1L

)2p−5

exp

(
− l2

πL2Λ2
1

)
. (3.31)

Therefore, our normalised approximated anisotropic spectrum can be written in the form

Φ22(k; p) =
M∑

m=0

f̂ ( p; lm)�lm∑M
m=0 f̂ ( p; lm)�lm

Φ
a,G
22 (k; lm). (3.32)

An interesting observation is that there are no anisotropy parameters in our weighting
function f ; thus, the approximation method generalises from isotropic to anisotropic
turbulence solely by using anisotropic Gaussian kernels with the same turbulent properties
instead. We shall discuss this feature in more detail later in § 5.

4. Experimental methods

This section introduces the experimental methodology for collecting turbulence and noise
data to validate the mathematical model. Two experiments were conducted. The first
characterised a cylinder wake as a source of anisotropic turbulence in an open jet anechoic
wind tunnel. The second measured the acoustic radiation generated by a flat plate placed
in the turbulent wake of the cylinder. The first set of experiments used PIV to determine
the characteristics of the anisotropic turbulent inflow. In the second set of experiments,
the radiated sound from the leading edge of the flat plate was captured with a phased
microphone array. All experiments were performed in the UNSW anechoic wind tunnel
(UAT). The two sets of experiments are used to validate the mathematical model. The PIV
data can provide turbulence characteristics, which are needed as inputs to the model (3.32).
Moreover, the far field noise measurement taken at the same flow conditions will be used to
validate the far field noise predictions from the mathematical model. The UAT consists of
an open jet placed inside an anechoic room, as illustrated in figure 3. The test section is in
the potential core of the open jet. The cross-section of the outlet is 0.455 × 0.455 m2. The
overall volume of the anechoic chamber is 3 × 4.17 × 2.15 m3. The UAT has a free-stream
turbulence intensity of 0.7 % at a mean flow speed of 20 m s−1. Further details about the
facility are available in Doolan et al. (2019). For the acoustic measurements, a flat-plate
aerofoil with a chord length of 352 mm was used. The geometry of the test model is
illustrated in a schematic in figure 4. The airfoil’s trailing edge is deliberately serrated
to mitigate trailing-edge noise, thus allowing for better separation of noise sources when
conducting acoustic beamforming, especially at lower frequencies. Two Reynolds numbers
(based on chord length) were investigated: Rec = 4.65 × 105 and Rec = 6.52 × 105. The
flat plate model was positioned at an angle of attack of 0◦ in all cases. For the generation
of anisotropic turbulence, a cylinder was placed upstream of the flat plate parallel to its
leading edge as depicted in figure 5. Six different distances between the centre of the
cylinder and the plate’s leading edge (�x = 8D, 9.5D, 11D, 12.5D, 14D and 16D, where D
is the cylinder diameter) were investigated separately. In addition, baseline measurements
were performed without the cylinder in place. Acoustic measurements were performed
with a 64 channel microphone array described in § 4.2.
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Flow
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Figure 3. Schematic of UNSW anechoic wind tunnel.
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Figure 4. Schematic of the flat-plate aerofoil test model. The spatial dimensions shown are in millimetres.
Figure adapted and used, with the permission of the authors, from Ayton et al. (2021b). LE: leading edge;
TE: trailing edge.
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Figure 5. Schematic for (a) the planar PIV measurement for the cylinder wake and (b) the measurements of
radiated leading-edge noise in an anisotropic turbulent flow.

4.1. Particle image velocimetry
The PIV technique characterised the anisotropic turbulent flow field. The PIV system
used is a planar PIV system that can obtain two-dimensional velocity components. In
this set of experiments, the velocities measured are u and v, representing the x and y
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velocity components. A cylinder of diameter D = 22 mm was placed 6D upstream of
the measurement field of view (FOV) to generate anisotropic turbulence in its wake
region. The FOV for the PIV measurement is on an (x, y) plane and has dimensions of
286 mm × 143 mm in the streamwise (x) and vertical (y) directions, respectively. The
origin of the coordinate system is located at the centre of the cylinder. The measurement
FOV covers a streamwise distance between �x = 6D and 19D and a vertical distance
between �y = −3.25D and 3.25D. Figure 5(a) shows a schematic of the planar PIV
experiment. For the PIV measurement, a set of 3000 double-frame images was obtained for
each case. A double-pulse Litron Nd:YAG PIV laser generated a laser sheet to illuminate
the tracer particles. The lasers have a wavelength of 532 nm and an output energy of
250 mJ pulse−1. Tracer particles were generated using a diethylhexyl sebacate fluid and a
LaVision aerosol generator with a mean diameter of 1 μm. A PCO.panda 26 DS CMOS
camera with a maximum resolution of 5120 × 5120 pixels was used to acquire images
at a frequency of 5 Hz. The laser and camera synchronisation was controlled using a
LaVision Programmable Timing Unit (PTU X). The software used for PIV data processing
was Davis 8.4. The raw images have a 5120 × 2560 pixel resolution and were processed
using final interrogation windows of 32 × 32 pixels with 50 % overlap. Therefore, each
instantaneous velocity field had 322 × 161 vectors. Spurious vectors were removed from
the resulting vector fields using a median test during post-processing (Westerweel &
Scarano 2005). The uncertainty of the PIV displacements is approximately 0.1 pixels
(Adrian & Westerweel 2011), which corresponds to ±5 μm in the present work.

For the present study, the anisotropic turbulent flow field is characterised by its flow
statistics and the integral length scale. The Reynolds’ stresses can provide turbulence
kinetic energy and dissipation rates. The turbulence dissipation rate obtained from
two-dimensional planar PIV measurements was estimated using the following equation
(Wang et al. 2021):

ε = ν

(
2
(

∂u
∂x

)2

+ 2
(

∂v

∂y

)2

+ 3
(

∂v

∂x

)2

+ 3
(

∂u
∂y

)2

+ 2
∂u
∂y

∂v

∂x

)
. (4.1)

Figure 6 shows the variation of the velocity r.m.s. values and the dissipation rate in
the streamwise (x) direction. The anisotropy in the cylinder wake can be quantified by
calculating the ratio between the fluctuating streamwise (x), u, and vertical (y), v, velocity
components. Note that u and v in experiments correspond to ua and ut in the analytical
model, respectively. The longitudinal integral length scales in the streamwise (Λ(1)

11 )
and vertical (Λ(2)

22 ) directions can be obtained by integrating the spatial auto-correlation
function Rii for the corresponding fluctuating velocity component (Pope 2000)

Λ
(i)
ii =

∫ ∞

0
Rii dri, (4.2)

with

Rii(ri) = ui(x, t)ui(x + ri, t)

ui(x, t)2
, (4.3)

where x denotes the location of the velocity vector, ui is the fluctuating velocity in
the i-direction and ri is the distance between two locations in the i-direction. The
auto-correlation function for each �x location was calculated using the data in the range
±2D. The integral length scales were then obtained by integrating the Laplacian fitting of
the auto-correlation function. Tables 1 and 2 summarise the integral length scale results.
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Figure 6. Variation of the (a) r.m.s. of the fluctuating velocity and (b) dissipation rate along the centreline
(y = 0 mm) of the cylinder wake.

�x Uc (m s−1) urms (m s−1) ur Λ1 (m) Λr lk (m)

8D 14.6 3.92 1.55 1.33 × 10−2 2.28 6.74 × 10−5

9.5D 14.8 3.79 1.39 1.41 × 10−2 2.11 6.89 × 10−5

11D 14.9 3.48 1.38 1.48 × 10−2 2.04 7.10 × 10−5

12.5D 15.1 3.27 1.29 1.52–2 1.85 7.28–5
14D 15.2 3.10 1.23 1.57 × 10−2 1.77 7.58 × 10−5

16D 15.3 2.22 1.16 1.64 × 10−2 1.61 7.89 × 10−5

Table 1. Model parameters for U∞ = 20 m s−1.

�x Uc (m s−1) urms (m s−1) ur Λ1 (m) Λr lk (m)

8D 20.7 5.43 1.69 1.25 × 10−2 2.68 5.65 × 10−5

9.5D 20.9 5.08 1.58 1.32 × 10−2 2.41 5.79 × 10−5

11D 21.1 4.91 1.45 1.39 × 10−2 2.28 6.09 × 10−5

12.5D 21.2 4.56 1.38 1.45 × 10−2 2.23 6.27 × 10−5

14D 21.4 4.30 1.32 1.48 × 10−2 2.05 6.35 × 10−5

16D 21.6 4.06 1.18 1.51 × 10−2 1.82 6.52 × 10−5

Table 2. Model parameters for U∞ = 28 m s−1.

4.2. Acoustic measurement
A 64 channel array of GRAS type 40 PH 1/4 inch microphones was used to measure
noise in the UAT (figure 5b). The uncertainty of the sound pressure measurement is
±1 dB over 0.01 to 20 kHz. The microphone array samples acoustic data simultaneously
on each channel (microphone). Subsequent signal processing uses these data to produce
a ‘beamforming map’ over a ‘scanning plane’. Here, the scanning plane is the plane
coincident with the flat-plate aerofoil. The beamforming map is a spatial representation
of acoustic source strength on the scanning plane. It is produced during data processing
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by altering the phase on each channel, assuming point sources are at discrete points on
the scanning plane. Sources are identified when these phase shifts reinforce, creating local
maxima in the beamforming map.

The microphones are distributed in a spiral shape on the array. The chosen spatial
distribution of the microphones provides an optimised localisation and quantification of
sound sources (Prime, Doolan & Zajamsek 2014). The array plane is located 1.15 m from
the leading edge to ensure it is in the acoustic and geometric far field relative to the
sound sources on the flat plate’s leading edge. The acoustic signals were analysed in a
frequency range of 0.2–10 kHz. The array plane is parallel to the flat plate, and the array
centre microphone is aligned with the centre of the flat plate’s leading edge. The recorded
acoustic signals are sampled at 65 536 Hz. The time signals are Fourier transformed
into cross-spectral matrices using Welch’s overlapped segment averaging estimator. The
overlap is 50 %, the averaging block size is 8192, and the Hann window is used, resulting
in a frequency resolution of 8 Hz. Complete details of the beamforming algorithm can be
found in Sarradj (2012).

To obtain an acoustic spectrum for leading-edge noise that is not contaminated with
extraneous noise, such as noise emanating from the junction of the flat plate and the top
and bottom plate, beamforming results are spatially integrated to contain sources from
the leading-edge region only. To account for the influence of the point spread function
(PSF) of the microphone array, the source power integration method is applied (Brooks &
Humphreys 1999), which significantly reduces the effect of the PSF in its contaminating
contribution to the overall integrated frequency spectrum of the sound pressure. The
integration process first sums the source power estimates of the scanning grids in the
integration region. Then it scales the result to the sound pressure spectrum obtained
from the array centre microphone for an equivalent monopole source in the centre of all
scanning grids.

The spatial integration region is rectangular and centred on the flat plate’s leading edge,
spanning over 0.2 m. The streamwise length of the integration region varies with frequency
to ensure that acoustic sources within a 6 dB dynamic range are considered. Figure 7 shows
a sample beamforming map for the case at U∞ = 28 m s−1 and �x = 12.5D, where the
dominant noise source is located at the airfoil leading edge and all noise sources within the
6 dB dynamic range are included in the integration region. The final frequency spectrum
obtained from this post-processing sequence is presented in 1/12th octave bands and
represents the overall integrated spectral density of the sound pressure in Pa2 Hz−1.

5. Results

We have derived both components of our analytical model (2.5) and discussed the
methodology behind an experimental campaign to validate this model; therefore, we
present our findings comparing the two. Our focus will be on the benefits of Gaussian
decomposition as a method to better represent essential features of our experimental
set-up, whilst highlighting the versatility and efficiency of the method. Tables 1 and 2 give
the empirical constants used in our model obtained experimentally as described in the
previous section. The value of �x represents the streamwise location of the leading edge
at which the parameters in the other columns are determined (see figure 4). Assuming
Taylor’s frozen turbulence hypothesis, the convection velocity Uc is set as the local mean
flow speed in the vicinity of the leading edge. An experimental investigation into the
convection velocity by Lin & Hsieh (2003) determined Uc to converge around 0.9U∞ at
�x = 10D. However, their results showed a moderate Reynolds number dependency and
were obtained for lower Reynolds numbers than those investigated in the current study.
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Figure 7. Beamforming map at 2 kHz for the test case at U∞ = 28 m s−1 and �x = 12.5D. The locations of
the array microphones, upstream cylinder and airfoil are indicated by grey circles, a grey box and a green box,
respectively. A blue dashed box marks the integration region.

The value of urms depicts the root mean square of the streamwise turbulent velocity
fluctuations, while ur corresponds to the ratio between vrms and urms, obtained via PIV.
Similarly, Λ1 = Λ

(1)
11 is the streamwise integral length scale, and Λr represents the ratio

between the integral length scales Λ
(2)
22 and Λ

(1)
11 . They are determined by applying (4.2)

and (4.3) to the fluctuating velocity vectors from the PIV measurements. Those are also
used to calculate the Kolmogorov length scale lk using (4.1).

5.1. Modelling anisotropic turbulence
The Gaussian decomposition model is beneficial for a variety of reasons. First, we find that
a small number of individual kernels are required to give an approximation for the total
PSD, Ψ (ω, θ), in which the axisymmetric von Kármán type model is used (2.20), as seen
in figure 8. Second, there are both numerical and analytical benefits to using exponential
kernels instead of the standard von Kármán type models. An example of this is shown
explicitly in Appendix D for the energy density spectrum E(κ).

Often, having exponentials in our spectral functions will allow for easily calculable
closed forms after integration, such as when spectral functions such as Φij are integrated
to obtain the spherically symmetric energy density function (D5). Although the details
are omitted for brevity, one can derive that the weightings required for a Gaussian
decomposition model of a spectral function like E will also be the same, and will converge
just as quickly. Therefore, we can propose that it may be possible to fit a Gaussian model
to a spectral representation of the data and then use this within the scattering model.

More specifically, in the Gaussian decomposition model, we are summing N kernels
with length scales distributed within the range in which we expect our eddies to carry
almost all the turbulent kinetic energy. However, instead of decomposing a typical von
Kármán type model into weighted Gaussians, we explore summing up Gaussians that
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Figure 8. Convergence of the Gaussian decomposition method when used to approximate the leading-edge
noise within our model P( f ) (5.8).

are weighted to better match a given physical example of incoming turbulence. The
generalised von Kármán model has a parameter p, which is used to tune the decay rate
in the inertial subrange. Thus, we take a new approach to reflect better the differing
power laws in different regions of k1 to add kernels that would be used to approximate
the corresponding von Kármán type model with p scaling.

As an initial test, we will look at model comparisons for the spectral quantity

Θ22(k1) =
∫ ∞

−∞

∫ ∞

−∞
Φ22(k1, k2, k3) dk2 dk3. (5.1)

We will compare the incident PIV turbulent measurements, converted to spectral quantities
using the fast Fourier transform, with the isotropic von Kármán model, the anisotropic von
Kármán model and the anisotropic Gaussian decomposition model with N = 35. Using the
notation

ke =
√

πΓ ( p − 2)

Λ1Γ
(

p − 5
2

) k̂1 = k1

ke
. (5.2a,b)

The following formulae are used:

ΘVK
22 (k1) = u2

aΛ1

6π

3 + 8k̂2
1(

1 + k̂2
1

)11/6 , (5.3)

Θ
VK,a
22 (k1) = u2

au2
r Λ1Λr

6π

3 + 8k̂2
1(

1 + Λ2
r k̂2

1

)11/6 , (5.4)

Θ
Exp
22 (k1; l) = u2

au2
r l

2π2

(
π + 2l2k1

2
)

exp

(
− l2k2

1
π

)
. (5.5)
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Equation (5.5) refers to the spectrum for each Gaussian kernel, where p may be varied. A
Gaussian decomposition model which demonstrates an improved fit to the data is

ΘGD
22 (k1; l; p) =

35∑
m=1

Θ
Exp
22 (k1; lm; p∗

m), (5.6)

where
p∗ = [

p24/6, p16/6, p22/6, p16/6, p16/6, p18/6, p16/6
]
, (5.7)

is a vector with individual components pn defined as a block of five consecutive values of
n.

Although we tailored this value for a good agreement, it was solely for one data set at
U∞ = 20 with �x = 8D (figure 9a). We plot the isotropic and anisotropic von Kármán
models alongside our anisotropic Gaussian decomposition model for all data sets in
figures 9 and 10.

In every example, we see that the isotropic von Kármán model underestimates the fitted
curve, particularly when �x is smaller since there is less distance between the cylinder
and the leading edge; thus the turbulence at the PIV window can be considered ‘more
anisotropic’. Although our model was constructed to give the best fit in figure 9(a), the
chosen parameter values give an improved fit compared with both von Kármán models
for low and mid-frequencies across the entire parameter range. The agreement for the
different flow speed U∞ = 28 m s−1 is particularly good for the �x = 12.5D, 14D, 16D
simulations. In contrast, all models under-predict in figure 9( f ). This may be pinpointed
to a surprisingly small urms value in table 1. We reiterate that the only matching we have
done for the Gaussian decomposition model is for the U∞ = 20 m s−1, Δx = 8D case.

From this initial investigation, we can conclude that including anisotropy is crucial
to proper data modelling. Different behaviours in different wavenumber regions of the
turbulence can be modelled well with Gaussian decomposition, generalising to different
parameter values and data sets. The key takeaway is that only one experiment appears
necessary to calibrate the Gaussian decomposition model, allowing the user to reproduce
improved representations of velocity spectra with different characteristics.

5.2. Leading-edge noise model validation
To estimate the leading-edge noise, we use a non-dimensionalised model by considering a
turbulence spectrum and gust solution independent of the length scales of the model. The
result will then be dimensionalised by multiplying by U2/L having set the dimensional
constants L as the chord of the plate and U as the convection velocity Uc, the mean flow
velocity in the vicinity of the plate.

When comparing the convection velocity Uc with the inlet mean velocity U∞ we
observe that the effect of the cylinder decreases the mean flow considerably, as seen
in tables 1 and 2. Incorporating this detail into our model is crucial while accurately
representing our scattering set-up by focusing on what is happening near the edge.

Finally, we divide the result by a reference pressure pa = 2 × 10−5 Pa, then calibrate
with a vertical shift by constant C = 179 (which is independent of the test case being
used)

P( f ) = 20 log10

⎛⎜⎝LΨ
(

f ,
π

2

)
U2

c pa

⎞⎟⎠ + 171. (5.8)
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Figure 9. Comparisons of Θ22 models: anisotropic Gaussian decomposition (GD) as per (5.6), isotropic
von Kármán (VK), (5.3), and anisotropic von Kármán (VK), (5.4), with experimental measurements at
U∞ = 20 m s−1. Panels show: (a) �x = 8D; (b) �x = 9.5D; (c) �x = 11D; (d) �x = 12.5D; (e) �x = 14D;
( f ) �x = 16D.

We begin by plotting the experimental acoustic results (figure 11) and observe an
unusual feature. Whilst the PIV incident turbulence exhibited a von Kármán type profile,
the scattered noise data exhibit an RDT type decay profile of f −11/3. We attribute this to the
nature of the experiment, whereby a cylinder generates anisotropy. This induces a strong
shear profile in the mean flow (Wu & Zhang 2019). Thus, scattered surface fluctuations
undergo distortion en route to the far field measurement location. Again, this is a feature
of the experimental set-up and would not be present in other contexts.
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Figure 10. Comparisons of Θ22 models: anisotropic Gaussian decomposition (GD) as per (5.6), isotropic
von Kármán (VK), (5.3), and anisotropic von Kármán (VK), (5.4), with experimental measurements at
U∞ = 28 m s−1. Panels show: (a) �x = 8D; (b) �x = 9.5D; (c) �x = 11D; (d) �x = 12.5D; (e) �x = 14D;
( f ) �x = 16D.

This key feature is omitted in our scattering model, but could be accounted for, such
as in Ayton & Peake (2015); however, this is unnecessarily intricate and difficult to
compute. This goes against the primary motivation of creating an efficient, simple and
versatile model. In summary, the use of RDT as the initial spectrum may be thought of
as pre-distorting the turbulence on the approach of the edge rather than post-distorting the
sound on its way to the far field. Since the scattering model provides a transfer function
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Figure 11. Experimental SPL data plotted to measure the power scaling f p.

between the incident and scattered turbulence, we believe this is a robust and effective way
to manage the background shear profile rather than overcomplicating the scattering model
itself.

We hypothesise that the velocity spectrum best suited to account for this would be the
RDT model (Hunt 1973) with length scale parameters deduced from the PIV data.

In figures 12(a) and 12(b), we plot comparisons at different U∞ of the experimental data
and RDT model predictions, demonstrating the overall agreement of the trend in which
noise decreases as the anisotropic ratios decrease. There is a consistent under-prediction
at low frequencies, possibly due to vortex shedding in the cylinder wake. We see better
agreement across the mid and high frequencies for all anisotropic ratios. The change in
velocity and length scales shifts the overall spectrum to the right, creating a broader peak
and matching the observed behaviour, albeit not capturing the previously mentioned spike
due to the cylinder vortex shedding.

We further improve the model by taking k1 = 2πL�f /Uc with � = 3/2 a constant used
to effectively shift the whole spectrum to the left, allowing the peak to demonstrate a better
agreement with the data. That is, we consider

P( f ) = 20 log10

⎛⎜⎝LΨ
(
�f ,

π

2

)
U2

c pa

⎞⎟⎠ + 179. (5.9)

The explanation for why this is necessary may lie with the convection velocity being lower
than measured. Right at the plate itself, our eddies convent slower than first anticipated.
We plot the �x = 8D comparisons for both mean flow velocities in figure 13 with this
new shift included to demonstrate the two agreements more carefully. Although the
scaling concerning mean flow speed Uc is accurate at high frequencies, the impact of
the aforementioned horizontal shift � is a crucial difference at low frequencies since it
better fits the peak, suggesting future work may need to consider this difference with more
care. An improved agreement is also observed for the remaining anisotropic ratios at the
two studied velocities. It is worth reiterating that these two alterations are implemented for
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Figure 12. Comparisons of experimental far field PSD data with the analytic model (5.8) at different
anisotropic ratios and mean flow velocities. In each figure the left panel indicates the experimental data while
the right is our prediction. Panels show: (a) U∞ = 20 m s−1, empirical constants taken from table 1; (b)
U∞ = 28 m s−1, empirical constants taken from table 2.

better agreement with only one simulation (U∞ = 20, �x = 8D). This agreement carries
over from those choices to the second data set.

5.3. Improvements with Gaussian decomposition
The primary focus of this study is verifying that anisotropy is an essential feature
of turbulence modelling that can be included in a theoretical mathematical model for
leading-edge noise with ease. Having verified the model, we turn to the secondary goal,
that this theoretical model can be adapted via Gaussian decomposition to produce a
versatile and efficient alternative that can be used in experimental campaigns to make
predictions and better agreements with data.
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Figure 13. Comparison of improved analytical model (5.9) with experimental data for both the U∞ = 20,
28 m s−1 cases when �x = 8D.

We first formally define our Gaussian decomposition PSD model as

PGD( f ) =
M∑

m=1

PGD
m ( f ; lm; pm), (5.10)

where each PGD
m ( f ; lm; pm) can be thought of as a PSD model of the form (5.8) in

which we have selected a Gaussian kernel such as (3.10) with length scale lm and scaling
parameter pm used within Ψ .

From the previous subsection, we deduce that we have to tailor our Gaussian
decomposition model around kernels with larger pm values than those for the velocity
field to recalculate the RDT type effects due to the pressure distortions in the sheared flow.

In other words, the best choice representing the incoming turbulence is not necessarily
the best choice for our scattering model (if there were no induced shear flow, it would be).
The only way to ensure we account for these unknown distortions is to match them to a
measurement that includes them, namely the scattered SPL. We, therefore, take one SPL
measurement to generate our turbulence decomposition, which can then be reused for all
other predictive cases.

We alter our chosen p∗ from (5.7) to

p∗ = [
p43/12, p22/6, p45/12, p22/6, p23/6, p24/6, p60/6

]
, (5.11)

which was chosen before to fit the U∞ = 20, �x = 8D data set. We retain all other PIV
data values from tables 1 and 2. We define

P( f ) =
35∑

m=1

PGD( f ; lm; pm), (5.12)

to be the corresponding PSD model and plot the resulting PSD in figure 14. We find that,
by using these p-values, we can better reflect the sharp peak in the data, and then we
smoothly return to the gradient achieved using the RDT model.
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Figure 14. Comparisons of both the RDT model (5.8) and the Gaussian decomposition model (5.12) with p∗
alongside data taken from the �x = 8D experiment at both mean flow velocities.

Finally, we test our hypothesis of how versatile this approach can be when applying the
p∗ decomposition model to each data set from tables 1 and 2, despite it being determined
from one data set alone.

We consider each velocity separately and average over every �x value, then investigate
the change in noise against our model while repeating the above procedure. That is, we
plot

P̄( f ) = 1
6

6∑
i=1

Pi( f ), (5.13)

with each Pi( f ) referring to the model output when using empirical data from the ith data
set from the respective table in this section.

As seen in figure 15, we find an even better agreement when using our Gaussian
decomposition model instead of the RDT model at almost all frequencies. There are
notable improvements at low and high frequencies for U∞ = 20 and at mid-range
frequencies for U∞ = 28. Since we have used averages, this new approach will improve
the data fitting for various parameter values. Despite fitting our model to only one data
set, the improvement carries on for all 11 other data sets, which is unsurprising since the
same level of distortion will occur as it is induced by the same cylinder each time. This
correction is solely due to our experimental set-up, which was required to generate suitable
anisotropic ratios.

From this, we begin to see how this particular model is reproducible and that
the anisotropy modelling within the turbulence spectrum ensures the mathematical
model is suitable for various styles of incidental turbulence. By utilising the Gaussian
decomposition model, we can generate an arbitrary turbulence spectrum Φ22 for our model
or otherwise. In particular, we can take one measurement to establish the behaviour of the
turbulence in one case and then generalise this to a variety of other types and contexts.

With this, we find that, by looking at one set of results (�x = 8D, U∞ = 20) and using
the model to improve the agreement with the data, we can apply this to all our other data
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Figure 15. Comparisons of the change in noise �P̄( f ) (5.13) when compared with experimental data for both
the p-varied Gaussian decomposition model and the previously used RDT model (5.8) having averaged over all
six experimental data sets for U∞ = 20 m s−1 (a) and U∞ = 28 m s−1 (b).

sets and see similar improvements. Thus, we can take a minimal data approach to our
modelling and, having reproduced experimental data in this case, we can potentially apply
the approach to other cases.

6. Conclusion

In this paper, we have derived a model for leading-edge noise that implements changes
in turbulent properties between different directions in a simple and numerically efficient
manner. Our model shows that introducing anisotropy to the turbulent mean flow can affect
the PSD shape and height. The model was matched for one simulation and successfully
demonstrated improvements for all other cases in which the velocity or anisotropic ratios
varied.

We have further outlined an experimental campaign which measures leading-edge noise
in a turbulent stream. These experimental results inform both the turbulence spectrum
modelling and the gust scattering.

The duality of the work between the gust scattering and the turbulence spectrum is
beneficial, and the approach should be amenable to other useful areas in aeroacoustics.

Comparisons of the experimental data and theoretical predictions have shown good
agreement. When constructing our model, we accounted for shear flow distorting the
turbulence that scatters off the leading edge. We anticipate that anisotropic turbulence
created by a turbulence grid that avoids shear generation would be modelled similarly with
a Gaussian decomposition model that shares more features with the von Kármán model,
as seen when modelling the incident velocity.

The method of Gaussian decomposition was applied to obtain an even better agreement
with the experimental data. We first tested the ability to use a tailored decomposition
of kernels to fit the one-dimensional spectrum Θ22(k1) to experimental measurements.
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After demonstrating that this was possible and providing better agreement with all data
sets, we discussed how this approach would work for the SPL after accounting for the
near-edge effects.

This led to an altered Gaussian decomposition model that demonstrated an even better
fit than the anisotropic RDT model. The significant application of this theory in future
work will be to use experimental data that are easy to obtain, such as from hot-wire
measurements, and utilise these within our analytical model via Gaussian decomposition
to find the correct weightings. With these weightings, we may expect a good agreement
with our far field noise data.
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Appendix A. Model derivations

Amiet presumes the incoming turbulence u(I) = ∇φ(I) takes the form

φ(I) =
∫ ∞

−∞

∫ ∞

−∞
w2(k) exp(ik · x − iωt) dk2 dk3, (A1)

where k = (k1, k2, k3) and convects with the mean flow, such that k1 = ω/Uc.
The function w2(k) is defined as the Fourier transform of our incident vertical velocity

field, v. We calculate the pressure scattered from a single gust at fixed k as some

pg(k, θ) = w2(k)P(k, θ), (A2)

where θ is a far field observer angle.
Then, by linearity, our total far field pressure due to the scattering of the turbulent flow

will be the integral of all these Fourier components of the incoming turbulence

pt(ω, θ) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
w2(k)P(k, θ)δ

(
k1 − ω

Uc

)
dk1 dk2 dk3, (A3)

we have also applied the frozen turbulence assumption to relate k1 to ω.
Then, the sound pressure spectral density is given by the time-averaged statistical

variable

Ψ (ω, θ) = lim
T→∞

π

T
pt(ω, θ)p∗

t (ω, θ). (A4)

Noting that

Φ22(k) = lim
T→∞

π

T
w2(k)w∗

2(k), (A5)
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the scattered PSD can be written as

Ψ (ω, θ) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
|P(k, θ)|2Φ22(k)δ

(
k1 − ω

U∞

)
dk1 dk2 dk3. (A6)

Appendix B. The Wiener–Hopf solution for the gust-scattering solution

We Fourier transform our continuity conditions on the wake, having assumed our solution
is of the form

φs(x, y) = 1
2π

∫ ∞

−∞
A(α) exp(−iαx − γ |y|) dα, (B1)

where γ =
√

α2 − k∗2, with the branch cut of this square root taken to ensure γ has a
positive real part and A(α) is the unknown function of α we solve for

A(α) − B(α) = u+
1 ,

−γ (A(α) + B(α)) = u+
2 .

}
(B2)

Each u+
i represents an unknown analytic function in the upper-half complex plane. Due

to the symmetry of our other boundary condition along the plate, we can assume A(α) =
−B(α) = u+

1 /2 = U+/2. We Fourier transform the Neumann boundary condition along
the plate to obtain

− γ A(α) = k2

α + k̃
+ L−, (B3)

where L− is analytic in the lower-half complex plane.
Putting this together, our Wiener–Hopf equation is

−γ U+

2
= k2

α + k̃
+ L−. (B4)

To solve this, we rearrange (B4) so the left-hand side is upper analytic and the right-hand
side is lower analytic; therefore, each side is equal to some entire function E(α)

γ +(α)U+(α) + 2k2(
α + k̃

) 1

γ −
(
−k̃

)
︸ ︷︷ ︸

Upper analytic

= −2k2

α + k̃

⎛⎝ 1
γ −(α)

− 1

γ −
(
−k̃

)
⎞⎠ − L−(α)

γ −(α)︸ ︷︷ ︸
Lower analytic

= E(α).

(B5)
Here, we have used the fact that 1/(α + k̃) is upper analytic and then applied the method
of pole decomposition to additively factorise 1/(α + k̃)γ −(α).

To find U+, we argue that E(α) = 0 by showing that each side of the equation tends
to zero as α → ∞ and then applying Liouville’s theorem. This follows naturally as a
consequence of the edge conditions

φs = O(1) as x → 0,

∂φs

∂y
= O

(
x−1/2

)
as x → 0,

⎫⎬⎭ (B6)

which must be Fourier transformed to provide behaviour as α → ∞.
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Having found U+, we can then deduce A and thus φs

φs(x, y) = −k2 sgn( y)
2π

∫ ∞

−∞
1

γ −
(
−k̃

)
γ +(α)

(
α + k̃

) exp(−iαx − γ |y|) dα. (B7)

Our above result noticeably does not undo the Prandtl–Glauert transform, which would be
unnecessarily complex when doing the steepest descent procedure. Instead, we leave our
answer in ‘Prandtl–Glauert space’. This discrepancy will have very little impact on our
approximation since, in practical applications, our Mach number will be small. As stated
in Myers & Kerschen (1995), we can relate the Prandtl–Glauert polar coordinates back to
physical space via

tan θPG = β tan θ

rPG = r
√

1 − M2 sin2 θ.

}
(B8)

Appendix C. Deriving the anisotropic spectrum weighting function

Recall that we are aiming to find a function f (la, lt) solving

u2
au2

r (LΛ1)
5ΛrΓ ( p)(k2

1 + k2
3)

π3/2Γ
(

p − 5
2

)
[1 + L2Λ2

1
(
k2

1 + Λ2
r k2

2 + k2
3
)
]p

=
∫ ∞

0

∫ ∞

0
f (la, lt)Φ̃

a,G
22 (k) dlt dla.

(C1)
We define

Sa = k2
2, St = k2

1 + k2
3, Ta = l2a

π
, Tt = l2t

π
. (C2a–d)

After using these coordinate transformations and rearranging, we obtain

4u2
r (LΛ1)

5ΛrΓ ( p))

π(2 + u2
r )Γ

(
p − 5

2

) [1 + L2Λ2
1

(
Λ2

r Sa + St

)
]−p

=
∫ ∞

0

∫ ∞

0
f (
√

πTa,
√

πTt)
TaT3/2

t

(1 + σ)Ta + Tt
e−TaSae−TtSt dTt dTa

= L
[
L
[

f
(√

πTa,
√

πTt

) TaT3/2
t

(1 + σ)Ta + Tt
e−TaSae−TtSt

](
l2t
π

)](
l2a
π

)
. (C3)

Inverting the Laplace transforms and simplifying, we obtain

f (la, lt) = 4πu2
r (LΛ1)

5Λr

(2 + u2
r )Γ ( p − 5

2 )

(1 + σ)l2a + l2t
l2al3t

(
l2a

π(LΛrΛ1)2

)p

δ

(
l2t − l2a

Λ2
r

)

× exp
(

− l2a
π(LΛrΛ1)2

)
, (C4)
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which we can re-write into the form

f (la, lt) = 4πu2
r (LΛ1)

5Λr

(2 + u2
r )Γ

(
p − 5

2

) f̃ (la)g̃(la, lt),

f̃ (la) =
(

l2a
π(LΛrΛ1)2

)p

exp
(

− l2a
π(LΛrΛ1)2

)
,

g̃(la, lt) = (1 + σ)l2a + l2t
l2al3t

δ

(
l2t − l2a

Λ2
r

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(C5)

as per (3.28).

Appendix D. Approximating E(κ) for anisotropic turbulence

Recall that we introduced the energy density spectrum

E(κ; p) = 1
2

∫
Φii(k; p) dA(κ). (D1)

This appendix aims to study an essential application of the Gaussian decomposition
method. We derive an analytical model for the energy density function for anisotropic
turbulence.

From (3.3), we may see how the procedure for Gaussian decomposition would also apply
to Φ11 and Φ33. The value of E(κ) can be found experimentally with less difficulty than
other turbulence statistics. It is a scalar measure of the turbulent kinetic energy held by
eddies with wavenumber |k|; however, there are no representations of this for anisotropic
turbulence. Analytically calculating the anisotropic energy density function Ea(κ; p) using
(3.3) is impractical without the Gaussian approximation. Integrating with exponential
functions is analytically tidier since our methods often use Fourier or Laplace transforms
to solve for unknowns or switch from physical to wavenumber space.

Therefore, since our weighting function only depends on the length scale parameter and
not on our integration variables in (3.3), we can see that the corresponding anisotropic
energy density Gaussian, which we denote Ea(κ), can be approximated using our already
derived Gaussian decomposition model

Ea(κ; p) =
M∑

m=0

f̂ ( p; lm)�lm∑M
m=0 f̂ ( p; lm)�lm

Ea,G(κ; p; lm). (D2)

Thus, we only need to calculate the energy density spectrum for an arbitrary anisotropic
Gaussian kernel

Ea,G(κ) = κ2

2

∫ 2π

0

∫ π

0
Φii (κ sin θ cos φ, κ cos θ, κ sin θ sin φ) sin θ dθ dφ. (D3)

Inserting

Φii = u2
au2

r κ
2l5Λr(2 cos2 θ + (1 + γ ) sin2 θ)

π4 exp
(

−(lκ)2

π
(cos2 θ + Λr sin2 θ)

)
,

(D4)
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Figure 16. Convergence of the Gaussian decomposition method when used to approximate the von Kármán
E(κ) model (D2).

and integrating gives us

Ea,G(κ) = u2
au2

r Λrl5κ4

π3 exp
(

−(κl)2

π

)[
γ − 1

z2 e−z2 −
√

π

2

(
γ − 1

z3 − 2
γ + 1

z

)
erf(z)

]
︸ ︷︷ ︸

ϕ(z)

,

(D5)
where z = κl

√
Λ2

r − 1/
√

π.
When plotting the function numerically, we circumvent issues caused by the presence of

the error function in ϕ(z) by using expansions for small z (accounting for the limit κ → 0
as well as Λr → 1) while also taking the limit κ → ∞, or equivalently z → ∞, Λr /= 1

Ea,G(κ) = u2
au2

r Λrl5κ4

π3 × exp
(

−(κl)2

π

)
×

(
4(γ + 2)

3
+ 4(γ + 4)

15
z2 + 2(γ + 6)

35
z4 + O(z6)

)
as z → 0, (D6)

Ea,G(κ) = u2
au2

r Λrl5κ4

π3

× exp
(

−(κlΛr)
2

π

)(
2
z2 + γ

z4 + O
(

1
z6

))
as z → ∞, Λr < 1. (D7)

A demonstration of the convergence in N of the model is given in figure 16.

REFERENCES

ADRIAN, R.J. & WESTERWEEL, J. 2011 Particle Image Velocimetry. Cambridge University Press.
ALECU, T.I., VOLOSHYNOVSKIY, S. & PUN, T. 2005 The Gaussian transform. In 2005 13th European Signal

Processing Conference, pp. 1–4. IEEE.
AMIET, R.K. 1975 Acoustic radiation from an airfoil in a turbulent stream. J. Sound Vib. 41 (4), 407–420.
AMIET, R.K. 1976 Noise due to turbulent flow past a trailing edge. J. Sound Vib. 47, 387–393.
AYTON, L.J., COLBROOK, M.J., GEYER, T.F., CHAITANYA, P. & SARRADJ, E. 2021a Reducing

aerofoil–turbulence interaction noise through chordwise-varying porosity. J. Fluid Mech. 906, A1.
AYTON, L.J, KARAPIPERIS, O., AWASTHI, M., MOREAU, D. & DOOLAN, C. 2021b Spanwise varying

porosity for the enhancement of leading-edge noise reduction. AIAA Paper 2021-2191.

970 A29-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

63
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.630


Anisotropic turbulence interacting with rigid leading edges

AYTON, L.J. & KIM, J.W. 2018 An analytic solution for the noise generated by gust–aerofoil interaction for
plates with serrated leading edges. J. Fluid Mech. 853, 515–536.

AYTON, L.J. & PARUCHURI, C. 2018 Analytic solutions for reduced leading-edge noise aerofoils. AIAA Paper
2018-3284.

AYTON, L.J. & PEAKE, N. 2015 On high-frequency sound generated by gust–aerofoil interaction in shear
flow. J. Fluid Mech. 766, 297–325.

BATCHELOR, G.K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
BLAKE, W.K. 1970 Turbulent boundary-layer wall-pressure fluctuations on smooth and rough walls. J. Fluid

Mech. 44 (4), 637–660.
BROOKS, T.F. & HUMPHREYS, W.M. 1999 Effect of directional array size on the measurement of airframe

noise components. AIAA Paper 99-1958.
BUCK, S., OERLEMANS, S. & PALO, S. 2018 Experimental validation of a wind turbine turbulent inflow

noise prediction code. AIAA J. 56 (4), 1495–1506.
DIXON, R., JIANG, C., DE SILVA, C., MOREAU, D. & DOOLAN, C. 2022 An experimental investigation

of the interaction between an airfoil and the wake of a cylinder. In 23rd Australasian Fluid Mechanics
Conference.

DOOLAN, C., MOREAU, D., AWASTHI, M. & JIANG, C. 2019 The UNSW anechoic wind tunnel. In Australian
Acoustical Society Annual Conference, AAS 2018, pp. 79–80.

DURBIN, P.A. & PETTERSON, B.A. 2001 Statistical Theory and Modeling for Turbulent Flows. Wiley.
GEA-AGUILERA, F., GILL, J. & ZHANG, X. 2017 Synthetic turbulence methods for computational

aeroacoustic simulations of leading edge noise. Comput. Fluids 157, 240–252.
GEA-AGUILERA, F., GILL, J., ZHANG, X., CHEN, X. & NODE-LANGLOIS, T. 2016 Leading edge noise

predictions using anisotropic synthetic turbulence. AIAA Paper 2016-2840.
GEA-AGUILERA, F., KARVE, R., GILL, J., ZHANG, X. & ANGLAND, D. 2021 On the effects of anisotropic

turbulence on leading edge noise. J. Sound Vib. 495, 115895.
GEA-AGUILERA, F., ZHANG, X., CHEN, X., GILL, J.R. & NODE-LANGLOIS, T. 2015 Synthetic turbulence

methods for leading edge noise predictions. AIAA Paper 2015-2670.
GEYER, T., SARRADJ, E. & GIESLER, J. 2012 Application of a beamforming technique to the measurement

of airfoil leading-edge noise. Adv. Acoust. Vib. 2012, 905461.
GOLDSTEIN, M.E. 1978 Unsteady vortical and entropic distortions of potential flows round arbitrary obstacles.

J. Fluid Mech. 89 (3), 433–468.
GRASSO, G., JAISWAL, P., WU, H., MOREAU, S. & ROGER, M. 2019 Analytical models of the wall-pressure

spectrum under a turbulent boundary layer with adverse pressure gradient. J. Fluid Mech. 877, 1007–1062.
HALES, A.D.G., AYTON, L.J., KISLER, R., MAHGOUB, A., JIANG, C., DIXON, R., DE SILVA, C.,

MOREAU, D. & DOOLAN, C.J. 2022 Reduction of leading-edge noise by tailored turbulence anisotropy.
AIAA Paper 2022-3046.

HINZE, J.O. 1975 Turbulence, 2nd edn. McGraw Hill.
HUNT, J.C.R. 1973 A theory of turbulent flow round two-dimensional bluff bodies. J. Fluid Mech. 61 (4),

625–706.
VON KÁRMÁN, T. 1948 Progress in the statistical theory of turbulence. Proc. Natl Acad. Sci. USA 34, 530–539.
KERSCHEN, E.J. & GLIEBE, P.R. 1981 Noise caused by the interaction of a rotor with anisotropic turbulence.

AIAA J. 19 (6), 717–723.
LIEPMANN, H.W., LAUFER, J. & LIEPMANN, K.K. 1951 On the Spectrum of Isotropic Turbulence. National

Advisory Committee for Aeronautics.
LIN, C. & HSIEH, S. 2003 Convection velocity of vortex structures in the near wake of a circular cylinder.

J. Engng Mech. ASCE 129 (10), 1108–1118.
LYU, B. & AYTON, L.J. 2020 Rapid noise prediction models for serrated leading and trailing edges. J. Sound

Vib. 469, 115–136.
LYU, B., AYTON, L.J. & CHAITANYA, P. 2019 On the acoustic optimality of leading-edge serration profiles.

J. Sound Vib. 462, 114923.
MYERS, M.R. & KERSCHEN, E.J. 1995 Influence of incidence angle on sound generation by airfoils

interacting with high-frequency gusts. J. Fluid Mech. 292, 271–304.
POPE, S.B. 2000 Turbulent Flows. Cambridge University Press.
PRIME, Z., DOOLAN, C. & ZAJAMSEK, B. 2014 Beamforming array optimisation and phase averaged

sound source mapping on a model wind turbine. In Inter-Noise and Noise-Con Congress and Conference
Proceedings, vol. 249, pp. 1078–1086. Institute of Noise Control Engineering.

ROGER, M. & MOREAU, S. 2005 Back-scattering correction and further extensions of Amiet’s trailing-edge
noise model. Part 1: theory. J. Sound Vib. 286 (3), 477–506.

970 A29-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

63
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.630


A.D.G. Hales and others

ROGER, M., SCHRAM, C. & DE SANTANA, L. 2013 Reduction of airfoil turbulence-impingement noise by
means of leading-edge serrations and/or porous material. AIAA Paper 2013-2108.

SARRADJ, E 2012 Three-dimensional acoustic source mapping with different beamforming steering vector
formulations. Adv. Acoust. Vib. 2012.

TENNEKES, H. & LUMLEY, J.L. 1972 A First Course in Turbulence. MIT.
TERUNA, C., AVALLONE, F., CASALINO, D. & RAGNI, D. 2021 Numerical investigation of leading edge

noise reduction on a rod-airfoil configuration using porous materials and serrations. J. Sound Vib. 494,
115880.

WANG, G., YANG, F., WU, K., MA, Y., PENG, C., LIU, T. & WANG, L.P. 2021 Estimation of the dissipation
rate of turbulent kinetic energy: a review. Chem. Engng Sci. 229.

WESTERWEEL, J. & SCARANO, F. 2005 Universal outlier detection for PIV data. Exp. Fluids 39 (6),
1096–1100.

WILSON, D.K. 1997 A three-dimensional correlation/spectral model for turbulent velocities in a convective
boundary layer. Boundary-Layer Meteorol. 85, 35–52.

WOHLBRANDT, A.M., HU, N., GUÉRIN, S. & EWERT, R. 2016 Analytical reconstruction of isotropic
turbulence spectra based on the Gaussian transform. Comput. Fluids 132, 46–50.

WU, X. & ZHANG, Z. 2019 First-principle description of acoustic radiation of shear flows. Phil. Trans. R. Soc.
Lond. A 377 (2159), 20190077.

ZHONG, S. & ZHANG, X. 2019 On the effect of streamwise disturbance on the airfoil-turbulence interaction
noise. J. Acoust. Soc. Am. 145 (4), 2530–2539.

970 A29-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

63
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.630

	1 Introduction
	2 Review of leading-edge noise
	2.1 Gust-scattering solution
	2.2 The Wiener--Hopf solution

	3 Turbulence spectrum models
	3.1 The isotropic vertical velocity turbulence spectrum
	3.2 An axisymmetric anisotropic model
	3.3 Approximation by Gaussian decomposition

	4 Experimental methods
	4.1 Particle image velocimetry 
	4.2 Acoustic measurement

	5 Results
	5.1 Modelling anisotropic turbulence
	5.2 Leading-edge noise model validation
	5.3 Improvements with Gaussian decomposition

	6 Conclusion
	Appendix A. Model derivations
	Appendix B. The Wiener--Hopf solution for the gust-scattering solution
	Appendix C. Deriving the anisotropic spectrum weighting function
	Appendix D. Approximating E() for anisotropic turbulence
	References

