A PRESENTATION OF THE GROUPS PSL(2, p) WITH THREE DEFINING RELATIONS

HANS J. ZASSENHAUS

H. Behr and J. Mennicke (1) have proven that the group PSL(2, p) can be presented by the following system of generators and relations:

(1)
$$S^p = T^2 = (ST)^3 = (S^2 T S^{\frac{1}{2}(p+1)} T)^3 = 1$$
 $(p > 2).$

From this presentation, it follows that the three relations

(2)
$$S^p = (ST)^3, \quad T^2 = 1, \quad (S^2 T S^{\frac{1}{2}(p^2+1)} T)^3 = 1$$

for the same generators S and T suffice if p > 3, $p \neq 17$. If p = 3, it is well known that the relations $S^3 = 1$, $T^2 = 1$, and $(ST)^3 = 1$ define PSL(2, 3). For p = 2, the relations $S^3 = 1$, $T^2 = 1$, and $(ST)^2 = 1$ define PSL(2, 2). For p = 17, the three relations

(3)
$$S^{17} = (ST)^3, \quad T^2 = 1, \quad (S^2 T S^9 T)^3 = 1$$

will suffice.

Indeed, the group G, with generators S, T and defining relations (2), contains the subgroup $\langle S^p \rangle$ in its centre. This is because S^p commutes both with S and with ST; hence, S^p commutes with every element of G. The factor group $F = G/\langle S^p \rangle$ has generators $\tilde{S} = S/\langle S^p \rangle$, $\tilde{T} = T/\langle S^p \rangle$ with the defining relations (1). Hence, $F \cong PSL(2, p)$, a simple non-abelian group. Because of the choice of the relation

$$(S^2 T S^{\frac{1}{2}(p^2+1)} T)^3 = 1$$

in place of the original

$$(S^2 T S^{\frac{1}{2}(p+1)} T)^3 = 1,$$

it follows that the factor commutator group of G is 1.* Hence, by the theory of the Schur multiplier, either

$$G \cong PSL(2, p)$$
 or $G \cong SL(2, p)$

(cf. 2). The latter possibility is excluded since $T^2 = 1$. Hence,

$$G \cong \mathrm{PSL}(2, p).$$

*For p = 17, the original choice was good enough.

Received September 5, 1967.

References

- 1. H. Behr and J. Mennicke, A presentation of the groups PSL(2, p), Can. J. Math. 20 (1968), 1432-1438.
- 2. I. Schur, Untersuchungen über die Darstellungen der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 132 (1907), 85-137.

The Ohio State University, Columbus, Ohio