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Abstract. In this paper, we investigate linear Weingarten hypersurfaces with two
distinct principal curvatures in a real space form Mn+1(c), we obtain two rigidity results
and give some characterization of the Riemannian product Sk(a) × Sn−k(

√
1 − a2),

1 ≤ k ≤ n − 1 in Mn+1(c)(c = 1), the Riemannian product Rk × Sn−k(a), 1 ≤ k ≤ n − 1
in Mn+1(c)(c = 0) and the Riemannian product Hk(tanh2

ρ − 1) × Sn−k(coth2
ρ − 1),

1 ≤ k ≤ n − 1 in Mn+1(c)(c = −1).

2010 Mathematics Subject Classification. 53C42, 53A10.

1. Introduction. Let Mn be an n-dimensional hypersurface in a real space form
Mn+1(c) of dimension n + 1. It is well known that there are many rigidity results for
hypersurfaces in a real space form with constant mean curvature or with constant
scalar curvature or with the scalar curvature and the mean curvature being linearly
related. For example, one can see [2–6, 8–11].

Recently, H. Li, Y. J. Suh and G. Wei [7] introduced the so called linear Weingarten
hypersurface in a unit sphere Sn+1(1). We can generalize it to a real space form Mn+1(c),
that is, a hypersurface in a real space form Mn+1(c) is called a linear Weingarten
hypersurface if the scalar curvature R and the mean curvature H satisfy the linear
relation αR + βH + γ = 0, where α, β and γ are constants such that α2 + β2 �= 0.

We easily see that if the constant α = 0, a linear Weingarten hypersurface reduces to
a hypersurface with constant mean curvature. If the constant β = 0, a linear Weingarten
hypersurface reduces to a hypersurface with constant scalar curvature. If the constant
γ = 0, a linear Weingarten hypersurface reduces to a hypersurface with the scalar
curvature and the mean curvature being linearly related, which was studied by H. Li
[6] for the unit sphere. Therefore, we know that the linear Weingarten hypersurface is a
natural generalization of hypersurface with constant mean curvature or with constant
scalar curvature or the scalar curvature and the mean curvature being linearly related.

In this paper, we try to study the linear Weingarten hypersurfaces with two distinct
principal curvatures in a real space form Mn+1(c). In order to state our theorem
clearly, we introduce the well-known standard models of complete hypersurfaces in
Mn+1(c). Let Nk,n−k := Rk × Sn−k(a). Then Nk,n−k has two distinct constant principal
curvatures 0 and

√
a with multiplicities k and n − k, respectively. Let Mk,n−k := Sk(a) ×

Sn−k(
√

1 − a2). Then Mk,n−k has two distinct constant principal curvatures

λ1 = · · · = λk =
√

1 − a2

a
, λk+1 = · · · = λn = − a√

1 − a2
.
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Let Tk,ρ := {x ∈ Hn+1(−1)| − x2
0 + x2

1 + · · · + x2
k = −cosh2

ρ}, ρ > 0, 1 ≤ k ≤ n − 1.
Then Tk,ρ has two distinct constant principal curvatures

λ1 = · · · = λk = tanh ρ, λk+1 = · · · = λn = coth ρ.

Moreover, Tk,ρ is isometric to the Riemannian product Hk(tanh2
ρ − 1) ×

Sn−k(coth2
ρ − 1). We shall prove the following:

MAIN THEOREM 1.1. Let Mn be an n(n ≥ 3)-dimensional complete connected and
oriented linear Weingarten hypersurface in a real space form Mn+1(c) with two distinct
principal curvatures. Then

(1) if the multiplicities of both principal curvatures are greater than 1, then
(i) for c = 1, Mn is isometric to a Riemannian product Sk(a) × Sn−k(

√
1 − a2), where

1 < k < n − 1;
(ii) for c = 0, Mn is isometric to a Riemannian product Rk × Sn−k(a), where 1 <

k < n − 1;
(iii) for c = −1, Mn is isometric to a Riemannian product Hk(tanh2

ρ − 1) ×
Sn−k(coth2

ρ − 1), where 1 < k < n − 1.
(2) if Mn has two distinct principal curvatures λ and μ of multiplicities n − 1

and 1, assume that the sectional curvature of Mn is non-negative and λ �= − β

2αn(n−1) ,
γα + α2n(n − 1)c = β2

4n(n−1) , then
(i) for c = 1, Mn is isometric to a Riemannian product S1(a) × Sn−1(

√
1 − a2);

(ii) for c = 0 and β �= 0, Mn is isometric to a Riemannian product R1 × Sn−1(a) or
Rn−1 × S1(a);

(iii) for c = −1 and β2 − 4α2n2(n − 1)2 > 0, Mn is isometric to a Riemannian
product H1(tanh2

ρ − 1) × Sn−1(coth2
ρ − 1) or Hn−1(tanh2

ρ − 1) × S1(coth2
ρ − 1).

Denote by P(t) and S(t) the following functions:

P(t) = c − β

4α(n − 1)
t − n − 2

2
t2, (1.1)

and

S(t) = n2

4
t2 + (n − 2)β

4α(n − 1)
t + β2

16α2(n − 1)2
. (1.2)

From Lemma 3.3, we know that P(t) has two distinct real roots t1, t2. From (3.29),
we know that S(t) is the squared norm of the second fundamental form of Mn. We can
prove the following:

MAIN THEOREM 1.2. Let Mn be an n(n ≥ 3)-dimensional complete connected
and oriented linear Weingarten hypersurface in a real space form Mn+1(c) with two
distinct principal curvatures λ and μ of multiplicities n − 1 and 1. If λ �= − β

2αn(n−1) ,
γα + α2n(n − 1)c = β2

4n(n−1) and the squared norm of the second fundamental form of Mn

satisfies one of the following conditions
(1) min(S(t1), S(t2)) ≤ S ≤ max(S(t1), S(t2)) or
(2) S ≥ max(S(t1), S(t2)) or
(3) S ≤ min(S(t1), S(t2)), then
(i) for c = 1, Mn is isometric to a Riemannian product S1(a) × Sn−1(

√
1 − a2);

https://doi.org/10.1017/S0017089510000480 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089510000480


LINEAR WEINGARTEN HYPERSURFACES IN A REAL SPACE FORM 637

(ii) for c = 0 and β �= 0, Mn is isometric to a Riemannian product R1 × Sn−1(a) or
Rn−1 × S1(a);

(iii) for c = −1 and β2 − 4α2n2(n − 1)2 > 0, Mn is isometric to a Riemannian
product H1(tanh2

ρ − 1) × Sn−1(coth2
ρ − 1) or Hn−1(tanh2

ρ − 1) × S1(coth2
ρ − 1),

where t1, t2 are the two distinct real roots of (1.1) and S(t) is denoted by (1.2).

REMARK 1.3. If α = 0, that is, Mn is a hypersurface with constant mean curvature,
the result of (1) in Main Theorem 1.1 reduces to the result of G. Wei [11] for c = 1. If
β = 0, that is, Mn is a hypersurface with constant scalar curvature, the results of (1) in
Main Theorem 1.1 reduce to the results of Cheng [3, 4] for c = 1, c = 0 and Z. Hu et al.
[5] for c = −1, respectively. We should notice that our Main Theorems also generalize
some important results of [3–5] and of authors [10], in which the hypersurfaces with
constant mean curvature or with constant scalar curvature were investigated, to linear
Weingarten hypersurface in a real space form Mn+1(c).

2. Preliminaries. Let Mn+1(c) be an (n + 1)-dimensional connected Riemannian
manifold with constant sectional curvature c. Let Mn be an n-dimensional hypersurface
in Mn+1(c). We choose a local orthonormal frame e1, . . . , en+1 in Mn+1(c) such that
e1, . . . , en are tangent to Mn. Let ω1, . . . , ωn+1 be the dual coframe. We use the following
convention on the range of indices:

1 ≤ A, B, C, . . . ≤ n + 1; 1 ≤ i, j, k, . . . ≤ n.

The structure equations of Mn+1(c) are given by

dωA =
∑

B

ωAB ∧ ωB, ωAB + ωBA = 0, (2.1)

dωAB =
∑

C

ωAC ∧ ωCB − 1
2

∑
C,D

KABCDωC ∧ ωD, (2.2)

KABCD = c(δACδBD − δADδBC). (2.3)

Restricting to Mn,

ωn+1 = 0. (2.4)

ωn+1i =
∑

j

hijωj, hij = hji. (2.5)

The structure equations of Mn are

dωi =
∑

j

ωij ∧ ωj, ωij + ωji = 0, (2.6)

dωij =
∑

k

ωik ∧ ωkj − 1
2

∑
k,l

Rijklωk ∧ ωl, (2.7)

Rijkl = c(δikδjl − δilδjk) + (hikhjl − hilhjk), (2.8)

n(n − 1)(r − c) = n2H2 − S, (2.9)
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where n(n − 1)r = R is the scalar curvature, H is the mean curvature and S is the
squared norm of the second fundamental form of M.

We choose e1, . . . , en such that hij = λiδij. From (2.5) we have

ωn+1i = λiωi, i = 1, 2, . . . , n. (2.10)

Hence, we have from the structure equations of Mn

dωn+1i = dλi ∧ ωi + λidωi

= dλi ∧ ωi + λi

∑
j

ωij ∧ ωj. (2.11)

On the other hand, we have on the curvature forms of Mn+1(c),

	n+1i = − 1
2

∑
C,D

Kn+1iCDωC ∧ ωD

= − 1
2

∑
C,D

c(δn+1CδiD − δn+1DδiC)ωC ∧ ωD

= −cωn+1 ∧ ωi = 0. (2.12)

Therefore, from the structure equations of Mn+1(c), we have

dωn+1i =
∑

j

ωn+1j ∧ ωji + ωn+1n+1 ∧ ωn+1i + 	n+1i

=
∑

j

λjωij ∧ ωj. (2.13)

From (2.11) and (2.13), we obtain

dλi ∧ ωi +
∑

j

(λi − λj)ωij ∧ ωj = 0 (2.14)

and can write

ψij = (λi − λj)ωij. (2.15)

As ψij = ψji, (2.14) can be written as

∑
j

(ψij + δijdλj) ∧ ωj = 0. (2.16)

By E. Cartan’s Lemma, we get

ψij + δijdλj =
∑

k

Qijkωk, (2.17)

where Qijk are uniquely determined functions such that

Qijk = Qikj. (2.18)

https://doi.org/10.1017/S0017089510000480 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089510000480


LINEAR WEINGARTEN HYPERSURFACES IN A REAL SPACE FORM 639

3. Proof of main Theorems. We firstly have the following Proposition 3.1 original
due to Otsuki [8].

PROPOSITION 3.1 ([8]). Let Mn be a hypersurface in a real space form Mn+1(c) such
that the multiplicities of the principal curvatures are constant. Then the distribution of
the space of the principal vectors corresponding to each principal curvature is completely
integrable. In particular, if the multiplicity of a principal curvature is greater than 1, then
this principal curvature is constant on each integral submanifold of the corresponding
distribution of the space of the principal vectors.

Proof of (1) in Main Theorem 1.1. Let λ, μ be the principal curvatures of
multiplicities k and n − k respectively, where 1 < k < n − 1. By (2.9) and αR + βH +
γ = 0, we have

αnk(k − 1)λ2 + 2αnk(n − k)λμ + αn(n − k)(n − k − 1)μ2

+βkλ + β(n − k)μ + γ n + αn2(n − 1)c = 0. (3.1)

Denote by Dλ and Dμ the integral submanifolds of the corresponding distribution
of the space of principal vectors corresponding to the principal curvature λ and μ,
respectively. From Proposition 3.1, we know that λ is constant on Dλ. From (3.1),
we infer that μ is constant on Dλ. By making use of Proposition 3.1 again, we
have μ is constant on Dμ. Therefore, we know that μ is constant on Mn. By the
same assertion we know that λ is constant on Mn. Therefore Mn is isoparametric. By
E. Cartan [1], we know that Mn is isometric to the Riemannin product Rk × Sn−k(a)
for c = 0, or Sk(a) × Sn−k(

√
1 − a2) for c = 1, or Hk(tanh2

ρ − 1) × Sn−k(coth2
ρ −

1) for c = −1, where 1 < k < n − 1. This completes the proof of (1) in Main
Theorem 1.1.

REMARK. In fact, we note that Theorem 1.1 is right for general Weingarten
hypersurfaces satisfying a differentiable function relating the mean curvature and the
scalar curvature of Mn, i.e. a Weingarten relation W(R; H) = 0.

Let Mn be an n-dimensional complete linear Weingarten hypersurface with two
distinct principal curvatures one of which is simple, that is, without loss of generality,
we may assume

λ1 = λ2 = · · · = λn−1 = λ, λn = μ,

where λi for i = 1, 2, . . . , n are the principal curvatures of Mn. From (2.9) and αR +
βH + γ = 0, we obtain that

αn(n − 1)(n − 2)λ2 + [2αn(n − 1)λ + β]μ + β(n − 1)λ + γ n + αn2(n − 1)c = 0. (3.2)

Since we assume that λ �= − β

2αn(n−1) and γα + α2n(n − 1)c = β2

4n(n−1) . By a direct
calculation, (3.2) can be written as

[2αn(n − 1)λ + β]
[
μ + 2α(n − 1)(n − 2)λ + β

4α(n − 1)

]
= 0. (3.3)
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Thus, we have

μ = −2α(n − 1)(n − 2)λ + β

4α(n − 1)
, (3.4)

and

λ − μ = n
2αn(n − 1)λ + β

4αn(n − 1)
. (3.5)

Let � = |[2αn(n − 1)λ + β]2|− 1
n . We denote the integral submanifold through

x ∈ Mn corresponding to λ by Mn−1
1 (x). Putting

dλ =
n∑

k=1

λ,k ωk, dμ =
n∑

k=1

μ,k ωk. (3.6)

From Proposition 3.1, we have

λ,1 = λ,2 = · · · = λ,n−1 = 0 on Mn−1
1 (x). (3.7)

From (3.4), we have

dμ = −n − 2
2

dλ. (3.8)

Hence, we also have

μ,1 = μ,2 = · · · = μ,n−1 = 0 on Mn−1
1 (x). (3.9)

In this case, we may consider locally λ is a function of the arc length s of the integral
curve of the principal vector field en corresponding to the principal curvature μ. From
(2.17) and (3.7), we have for 1 ≤ j ≤ n − 1,

dλ = dλj =
n∑

k=1

Qjjkωk

=
n−1∑
k=1

Qjjkωk + Qjjnωn = λ,n ωn. (3.10)

Therefore, we have

Qjjk = 0, 1 ≤ k ≤ n − 1, and Qjjn = λ,n . (3.11)

By (2.17) and (3.9), we have

dμ = dλn =
n∑

k=1

Qnnkωk

=
n−1∑
k=1

Qnnkωk + Qnnnωn =
n∑

i=1

μ,i ωi = μ,n ωn. (3.12)
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Hence, we obtain

Qnnk = 0, 1 ≤ k ≤ n − 1, and Qnnn = μ,n . (3.13)

From (3.8), we get

Qnnn = μ,n = −n − 2
2

λ,n . (3.14)

From the definition of ψij, if i �= j, we have ψij = 0 for 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ n − 1.
Therefore, from (2.17), if i �= j and 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ n − 1 we have

Qijk = 0, for any k. (3.15)

By (2.17), (3.11), (3.13), (3.14) and (3.15), we get

ψjn =
n∑

k=1

Qjnkωk

= Qjjnωj + Qjnnωn = λ,n ωj. (3.16)

From (2.15), (3.5) and (3.16) we have

ωjn = ψjn

λ − μ
= λ,n

λ − μ
ωj

= λ,n

n 2αn(n−1)λ+β

4αn(n−1)

ωj

= 4αn(n − 1)λ,n

n[2αn(n − 1)λ + β]
ωj. (3.17)

Thus, from the structure equations of Mn we have

dωn =
n−1∑
k=1

ωk ∧ ωkn + ωnn ∧ ωn = 0.

Therefore, we may put ωn = ds. By (3.10) and (3.12), we get

dλ = λ,n ds, λ,n = dλ

ds
and

dμ = μ,n ds, μ,n = dμ

ds
.

Then we have

ωjn = 4αn(n − 1)λ,n

n[2αn(n − 1)λ + β]
ωj

= 4αn(n − 1) dλ
ds

n[2αn(n − 1)λ + β]
ωj

= d
{
log |[2αn(n − 1)λ + β]2| 1

n
}

ds
ωj. (3.18)
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From (3.18) and the structure equations of Mn+1(c), we have

dωjn =
n−1∑
k=1

ωjk ∧ ωkn + ωjn ∧ ωnn + ωjn+1 ∧ ωn+1n + 	jn

=
n−1∑
k=1

ωjk ∧ ωkn + ωjn+1 ∧ ωn+1n − cωj ∧ ωn

= d
{
log |[2αn(n − 1)λ + β]2| 1

n
}

ds

n−1∑
k=1

ωjk ∧ ωk − (λμ + c)ωj ∧ ds.

From (3.18), we have

dωjn = d2
{
log |[2αn(n − 1)λ + β]2| 1

n
}

ds2
ds ∧ ωj

+ d
{
log |[2αn(n − 1)λ + β]2| 1

n
}

ds
dωj

= d2
{
log |[2αn(n − 1)λ + β]2| 1

n
}

ds2
ds ∧ ωj

+ d
{
log |[2αn(n − 1)λ + β]2| 1

n
}

ds

n∑
k=1

ωjk ∧ ωk

=
{

− d2
{
log |[2αn(n − 1)λ + β]2| 1

n
}

ds2

+
[

d
{
log |[2αn(n − 1)λ + β]2| 1

n
}

ds

]2}
ωj ∧ ds

+ d
{
log |[2αn(n − 1)λ + β]2| 1

n
}

ds

n−1∑
k=1

ωjk ∧ ωk.

From the above two equalities, we have

d2
{
log |[2αn(n − 1)λ + β]2| 1

n
}

ds2
−

{
d
{
log |[2αn(n − 1)λ + β]2| 1

n
}

ds

}2

− (λμ + c) = 0.

(3.19)

Since we define � = |[2αn(n − 1)λ + β]2|− 1
n , we obtain from the above equation

d2�

ds2
+ � (λμ + c) = 0. (3.20)

We can prove the following Lemma:

LEMMA 3.2. The positive function � is bounded if c > 0; or c = 0 and β �= 0; or
c < 0 and β2 + 4cα2n2(n − 1)2 > 0.
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Proof. From (3.4) and (3.20), we get

d2�

ds2
+ �

[
c − β

4α(n − 1)
λ − n − 2

2
λ2

]
= 0. (3.21)

Since � = |[2αn(n − 1)λ + β]2|− 1
n , we have

λ = ±�− n
2 − β

2αn(n − 1)
.

Thus, we have from (3.21) that

d2�

ds2
+ �

[
c − β

( ± �− n
2 − β

)
8α2n(n − 1)2

− (n − 2)
( ± �− n

2 − β
)2

8α2n2(n − 1)2

]
= 0. (3.22)

By making use of the following integral formula

∫
um(a + buq)p du = um+1(a + buq)p

pq + m + 1
+ apq

pq + m + 1

∫
um(a + buq)p−1 du,

where all m, p, q, a, b are not zero and all m, p, q are rational number, we have

−
∫

(n − 2)�
( ± �− n

2 − β
)2

8α2n2(n − 1)2
d�

= � 2
( ± �− n

2 − β
)2

8α2n2(n − 1)2
+

∫
β�

( ± �− n
2 − β

)
8α2n(n − 1)2

d�. (3.23)

Integrating (3.22) and from (3.23), we have

(
d�

ds

)2

+ � 2
[

c +
( ± �− n

2 − β
)2

4α2n2(n − 1)2

]
= C, (3.24)

where C is a constant. Thus, we have

� 2
[

c +
( ± �− n

2 − β
)2

4α2n2(n − 1)2

]
≤ C. (3.25)

If the positive function � is not bounded, that is, lims→+∞ � (s) = +∞. From (3.25),
we have

+∞
(

c + β2

4α2n2(n − 1)2

)
≤ C. (3.26)

Since c + β2

4α2n2(n−1)2 > 0 if c > 0; or c = 0 and β �= 0; or c < 0 and β2 + 4cα2n2(n −
1)2 > 0. We have a contradiction from (3.26). This completes the proof of Lemma 3.2.

Proof of (2) in Main Theorem 1.1. If the sectional curvature of Mn is non-negative,
that is, for i �= j, Rijij = c + λiλj ≥ 0, we have c + λμ ≥ 0. From (3.20), we have d2�

ds2 ≤ 0.
Thus, d�

ds is a monotonic function of s ∈ (−∞,+∞). Therefore, by the similar assertion
in Wei [11], we have � (s) must be monotonic when s tends to infinity. From Lemma 3.2,
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we know that the positive function � (s) is bounded. Since � (s) is bounded and
monotonic when s tends to infinity, we know that both lims→−∞ � (s) and lims→+∞ � (s)
exist and then we get

lim
s→−∞

d� (s)
ds

= lim
s→+∞

d� (s)
ds

= 0. (3.27)

From the monotonicity of d� (s)
ds , we have d� (s)

ds ≡ 0 and � (s) = constant. From

� = |[2αn(n − 1)λ + β]2|− 1
n and (3.4), we have λ and μ are constant, that is, Mn

is isoparametric. According to Cartan [1], we know that Mn is isometric to the
Riemannin product R1 × Sn−1(a) or Rn−1 × S1(a) for c = 0 and β �= 0; or S1(a) ×
Sn−1(

√
1 − a2) for c = 1; or H1(tanh2

ρ − 1) × Sn−1(coth2
ρ − 1) or Hn−1(tanh2

ρ −
1) × S1(coth2

ρ − 1) for c = −1 and β2 − 4α2n2(n − 1)2 > 0. This completes the proof
of (2) in Main Theorem 1.1.

We can also prove the following Lemmas:

LEMMA 3.3. Let

P(t) = c − β

4α(n − 1)
t − n − 2

2
t2, (3.28)

and t′ = − β

4α(n−1)(n−2) . If c + β2

4α2n2(n−1)2 > 0, then P(t) has two distinct real roots t1, t2

and
(i) if t ≥ t′, then t ≥ t2 holds if and only if P(t) ≤ 0 and t ≤ t2 holds if and only if

P(t) ≥ 0.
(ii) if t ≤ t′, then t ≤ t1 holds if and only if P(t) ≤ 0 and t ≥ t1 holds if and only if

P(t) ≥ 0.

Proof. We have

dP(t)
dt

= − β

4α(n − 1)
− (n − 2)t.

it follows that the solution of dPH (t)
dt = 0 is t′ = − β

4α(n−1)(n−2) . Therefore, we know that if
t ≤ t′ if and only if P(t) is an increasing function, t ≥ t′ if and only if P(t) is a decreasing
function and P(t) obtains its maximum at t = t′.

Since P(t) is continuous and c + β2

4α2n2(n−1)2 > 0, we have P(t′) = c +
β2

32α2(n−1)2(n−2) > 0. Therefore, we know that P(t) has two distinct real roots t1, t2 and
t1 < t′ < t2.

(i) If t ≥ t′, from the decreasing property of P(t), we obtain that t ≥ t2 holds if and
only if P(t) ≤ P(t2) = 0 and t ≤ t2 holds if and only if P(t) ≥ P(t2) = 0.

(ii) If t ≤ t′, from the increasing property of P(t), we obtain that t ≤ t1 holds if and
only if P(t) ≤ P(t1) = 0 and t ≥ t1 holds if and only if P(t) ≥ P(t1) = 0. This completes
the proof of Lemma 3.3.

From (3.4), we have the squared norm of the second fundamental form of Mn is

S(t) = (n − 1)λ2 + μ2

= n2

4
λ2 + (n − 2)β

4α(n − 1)
λ + β2

16α2(n − 1)2
. (3.29)
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Putting t = λ, we have the following Lemma:

LEMMA 3.4. Let

S(t) = n2

4
t2 + (n − 2)β

4α(n − 1)
t + β2

16α2(n − 1)2
, (3.30)

and t′′ = − (n−2)β
2αn2(n−1) . If c + β2

4α2n2(n−1)2 > 0, then
(i) If t ≥ t′′, then t ≥ t2 holds if and only if S(t) ≥ S(t2) and t ≤ t2 holds if and only

if S(t) ≤ S(t2).
(ii) If t ≤ t′′, then t ≤ t1 holds if and only if S(t) ≥ S(t1) and t ≥ t1 holds if and only

if S(t) ≤ S(t1).

Proof. We have

dS(t)
dt

= n2

2
t + (n − 2)β

4α(n − 1)
,

it follows that the solution of dS(t)
dt = 0 is t′′ = − (n−2)β

2αn2(n−1) . Therefore, we know that if

t′′ ≥ − (n−2)β
2αn2(n−1) if and only if S(t) is an increasing function, t′′ ≤ − (n−2)β

2αn2(n−1) if and only

if S(t) is a decreasing function and S(t) obtain its minimum at t′′ = − (n−2)β
2αn2(n−1) .

Since c + β2

4α2n2(n−1)2 > 0, we have P(t′′) = c + (n−2)β2

2α2n4(n−1) > 0. Thus, we have t1 <

t′′ < t2.
(i) If t ≥ t′′, from the increasing property of S(t), we obtain that t ≥ t2 holds if and

only if S(t) ≥ S(t2) and t ≤ t2 holds if and only if S(t) ≤ S(t2).
(ii) If t ≤ t′′, from the decreasing property of S(t), we obtain that t ≤ t1 holds if

and only if S(t) ≥ S(t1) and t ≥ t1 holds if and only if S(t) ≤ S(t1). This completes the
proof of Lemma 3.4.

Proof of Main Theorem 1.2. Putting t = λ, from (3.21), we have

d2�

ds2
+ �P(t) = 0. (3.31)

(1) If min(S(t1), S(t2)) ≤ S(t) ≤ max(S(t1), S(t2)), then we have S(t1) ≤ S(t) ≤
S(t2) or S(t2) ≤ S(t) ≤ S(t1).

(i) If S(t1) ≤ S(t) ≤ S(t2), we consider two cases t ≥ t′′ or t < t′′.

Case (i). If t ≥ t′′, we also consider two subcases t′′ ≥ t′ or t′′ < t′.

Subcase (i). If t′′ ≥ t′, we have t ≥ t′. Since S(t) ≤ S(t2), from Lemma 3.4, Lemma
3.3 and (3.31), we have S(t) ≤ S(t2) holds if and only if t ≤ t2 if and only if P(t) ≥ 0
and if and only if d2�

ds2 ≤ 0. Thus d�
ds is a monotonic function of s ∈ (−∞,+∞).

Therefore, by the similar assertion in Wei [11], we have � (s) must be monotonic
when s tends to infinity. From Lemma 3.2, we have the positive function � (s) is
bounded. By the same assertion in the proof of Main Theorem 1.1, we know that
Mn is isometric to the Riemannin product R1 × Sn−1(a) or Rn−1 × S1(a) for c = 0 and
β �= 0; or S1(a) × Sn−1(

√
1 − a2) for c = 1; or H1(tanh2

ρ − 1) × Sn−1(coth2
ρ − 1) or

Hn−1(tanh2
ρ − 1) × S1(coth2

ρ − 1) for c = −1 and β2 − 4α2n2(n − 1)2 > 0.
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Subcase (ii). If t′′ < t′, since t ≥ t′′, we have t′′ ≤ t < t′ or t ≥ t′.
If t′′ ≤ t < t′, from the increasing property of P(t), we have P(t) ≥ P(t′′) > 0. From

(3.31), we have d2�
ds2 < 0. This implies that d� (s)

ds is a strictly monotone decreasing

function of s and thus it has at most one zero point for s ∈ (−∞,+∞). If d� (s)
ds has no

zero point in (−∞,+∞), then � (s) is a monotone function of s in (−∞,+∞). If d� (s)
ds

has exactly one zero point s0 in (−∞,+∞), then � (s) is a monotone function of s in
both (−∞, s0] and [s0,+∞).

On the other hand, from Lemma 3.2, we know that � (s) is bounded. Since � (s)
is bounded and monotonic when s tends to infinity, we know that both lims→−∞ � (s)
and lims→+∞ � (s) exist and (3.27) holds. This is impossible because d� (s)

ds is a strictly
monotone decreasing function of s. Therefore, we know that the case t′′ ≤ t < t′ does
not occur and we conclude that t ≥ t′.

If t ≥ t′, then t > t′′. Since S(t) ≤ S(t2), from Lemma 3.4, Lemma 3.3 and (3.31),
we have S(t) ≤ S(t2) holds if and only if t ≤ t2 if and only if P(t) ≥ 0 and if and
only if d2�

ds2 ≤ 0. Thus d�
ds is a monotonic function of s ∈ (−∞,+∞). By the same

assertion in the proof of Main Theorem 1.1, we know that (1) in Main Theorem 1.2 is
true.

Case (ii). If t < t′′, we also consider two subcases t′′ ≥ t′ or t′′ < t′.

Subcase (i). If t′′ ≥ t′, since t < t′′, we have t′ < t < t′′ or t ≤ t′.

If t′ < t < t′′, from the decreasing property of P(t), we have P(t) > P(t′′) > 0.
From (3.31), we have d2�

ds2 < 0. This implies that d� (s)
ds is a strictly monotone decreasing

function of s and thus it has at most one zero point for s ∈ (−∞,+∞). By the same
assertion in the proof of Case (i), we know that the case t′ < t < t′′ does not occur and
we conclude that t ≤ t′.

If t ≤ t′, since t < t′′ and S(t) ≥ S(t1), from Lemma 3.4, Lemma 3.3 and (3.31),
we have S(t) ≥ S(t1) holds if and only if t ≤ t1 if and only if P(t) ≤ 0 and if and
only if d2�

ds2 ≥ 0. Thus d�
ds is a monotonic function of s ∈ (−∞,+∞). By the same

assertion in the proof of Main Theorem 1.1, we know that (1) in Main Theorem 1.2 is
true.

Subcase (ii). If t′′ < t′, since t < t′′, we have t < t′. Since S(t) ≥ S(t1), from
Lemma 3.4, Lemma 3.3 and (3.31), we have S(t) ≥ S(t1) holds if and only if t ≤ t1

if and only if P(t) ≤ 0 and if and only if d2�
ds2 ≥ 0. Thus d�

ds is a monotonic function
of s ∈ (−∞,+∞). By the same assertion in the proof of Main Theorem 1.1, we know
that (1) in Main Theorem 1.2 is true.

(ii) If S(t2) ≤ S(t) ≤ S(t1), we also consider two cases t ≥ t′′ or t < t′′. By the
same assertion in the proof of (i), we know that (1) in Main Theorem 1.2 is
true.

(2) If S(t) ≥ max(S(t1), S(t2)), we consider two cases t ≥ t′′ or t < t′′.

Case (i). If t ≥ t′′, we also consider two subcases t′′ ≥ t′ or t′′ < t′.

Subcase (i). If t′′ ≥ t′, we have t ≥ t′. Since S(t) ≥ max(S(t1), S(t2)), we have
S(t) ≥ S(t2), from Lemma 3.4, Lemma 3.3 and (3.31), we have S(t) ≥ S(t2) holds if
and only if t ≥ t2 if and only if P(t) ≤ 0 and if and only if d2�

ds2 ≥ 0. Thus d�
ds is a

monotonic function of s ∈ (−∞,+∞). By the same assertion in the proof of Main
Theorem 1.1, we know that (2) in Main Theorem 1.2 is true.
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Subcase (ii). If t′′ < t′, since t ≥ t′′, we have t′′ ≤ t < t′ or t ≥ t′.
If t′′ ≤ t < t′, from the increasing property of P(t), we have P(t) ≥ P(t′′) > 0. From

(3.31), we have d2�
ds2 < 0. This implies that d� (s)

ds is a strictly monotone decreasing
function of s. By the same assertion in the proof of Case (i) in (1), we know that the
case t′′ ≤ t < t′ does not occur and we conclude that t ≥ t′.

If t ≥ t′, then t > t′′. Since S(t) ≥ S(t2), from Lemma 3.4, Lemma 3.3 and (3.31),
we have d2�

ds2 ≥ 0. By the same assertion above, we know that (2) in Main Theorem 1.2
is true.

Case (ii). If t < t′′, we also consider two subcases t′′ ≥ t′ or t′′ < t′.

Subcase (i). If t′′ ≥ t′, since t < t′′, we have t′ < t < t′′ or t ≤ t′.

If t′ < t < t′′, from the decreasing property of P(t), we have P(t) > P(t′′) > 0.
From (3.31), we have d2�

ds2 < 0. This implies that d� (s)
ds is a strictly monotone decreasing

function of s. By the same assertion in the proof of Case (i) in (1), we know that the
case t′ < t < t′′ does not occur and we conclude that t ≤ t′.

If t ≤ t′, since t < t′′ and S(t) ≥ max(S(t1), S(t2)), we have S(t) ≥ S(t1), from
Lemma 3.4, Lemma 3.3 and (3.31), we have S(t) ≥ S(t1) holds if and only if t ≤ t1

if and only if P(t) ≤ 0 and if and only if d2�
ds2 ≥ 0. Thus d�

ds is a monotonic function
of s ∈ (−∞,+∞). By the same assertion in the proof of Main Theorem 1.1, we know
that (2) in Main Theorem 1.2 is true.

Subcase (ii). If t′′ < t′, since t < t′′, we have t < t′. Since S(t) ≥ S(t1), from Lemma
3.4, Lemma 3.3 and (3.31), we have d2�

ds2 ≥ 0. By the same assertion above, we know
that (2) in Main Theorem 1.2 is true.

(3) If S(t) ≤ min(S(t1), S(t2)), we consider two cases t ≥ t′′ or t < t′′.

Case (i). If t ≥ t′′, we also consider two subcases t′′ ≥ t′ or t′′ < t′.

Subcase (i). If t′′ ≥ t′, we have t ≥ t′. Since S(t) ≤ min(S(t1), S(t2)), we have
S(t) ≤ S(t2), from Lemma 3.4, Lemma 3.3 and (3.31), we have S(t) ≤ S(t2) holds if
and only if t ≤ t2 if and only if P(t) ≥ 0 and if and only if d2�

ds2 ≤ 0. Thus d�
ds is a

monotonic function of s ∈ (−∞,+∞). By the same assertion in the proof of Main
Theorem 1.1, we know that (3) in Main Theorem 1.2 is true.

Subcase (ii). If t′′ < t′, since t ≥ t′′, we have t′′ ≤ t < t′ or t ≥ t′.
If t′′ ≤ t < t′, from the increasing property of P(t), we have P(t) ≥ P(t′′) > 0. From

(3.31), we have d2�
ds2 < 0. By the same assertion in the proof of Case (i) in (1), we know

that the case t′′ ≤ t < t′ does not occur and we conclude that t ≥ t′.
If t ≥ t′, then t > t′′. Since S(t) ≤ S(t2), from Lemma 3.4, Lemma 3.3 and (3.31),

we have d2�
ds2 ≤ 0. By the same assertion above, we also know that (3) in Main Theorem

1.2 is true.

Case (ii). If t < t′′, we also consider two subcases t′′ ≥ t′ or t′′ < t′.

Subcase (i). If t′′ ≥ t′, since t < t′′, we have t′ < t < t′′ or t ≤ t′.

If t′ < t < t′′, from the decreasing property of P(t), we have P(t) > P(t′′) > 0.
From (3.31), we have d2�

ds2 < 0. By the same assertion in the proof of Case (i)
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in (1), we know that the case t′ < t < t′′ does not occur and we conclude that
t ≤ t′.

If t ≤ t′, since t < t′′ and S(t) ≤ min(S(t1), S(t2)), we have S(t) ≤ S(t1), from
Lemmas 3.3 and 3.4 and (3.31), we have S(t) ≤ S(t1) holds if and only if t ≥ t1 if
and only if P(t) ≥ 0 and if and only if d2�

ds2 ≤ 0. Thus d�
ds is a monotonic function of

s ∈ (−∞,+∞). By the same assertion in the proof of Main Theorem 1.1, we know
that (3) in Main Theorem 1.2 is true.

Subcase (ii). If t′′ < t′, since t < t′′, we have t < t′. Since S(t) ≤ S(t1), from Lemma
3.4, Lemma 3.3 and (3.31), we have d2�

ds2 ≤ 0. By the same assertion above, we know
that (3) in Main Theorem 1.2 is true. This completes the proof of Main Theorem 1.2.
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