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Abstract
In this paper, we explore how to design the optimal insurance contracts when the insured faces insurable, counter-
party, and additive background risk simultaneously. The target is to minimize the mean-variance of the insured’s
loss. By utilizing the calculus of variations, an implicit characterization of the optimal ceded loss function is given.
An explicit structure of the optimal ceded loss function is also provided by making full use of its implicit charac-
terization. We further derive a much simpler solution when these three kinds of risk have some special dependence
structures. Finally, we give a numerical example to illustrate our results.

1. Introduction
Since Borch (1960) first studies the problem of optimal insurance designs by minimizing the variance of
the insured’s retained loss, optimal insurance designs have attracted significant attention and have been
extensively studied. There are two kinds of optimal insurance designs if the source of risk is taken into
account: one is optimal insurance with one source of risk and the other is optimal insurance with more
than one source of risk.

In optimal insurance with one source of risk, it is assumed that the insured only faces a kind of
risk which is total insurable. For instance, see Cai et al. (2008), Tan et al. (2020), Chen (2021), Meng
et al. (2022), and so on. However, in the insurance practice, the insured may face some multiplicative
background risk like counterparty risk. Counterparty risk, also called default risk, has been taken into
consideration extensively in optimal insurance designs. By assuming that the probability of total default
of the insurer is positive, Cummins and Mahul (2003) study optimal insurance with counterparty risk.
By assuming that the coverage received by the insured is given by the product of the ceded loss function
and a random recovery rate, Bernard and Ludkovski (2012) study optimal insurance with counterparty
risk. Cai et al. (2014) derive optimal insurance strategies by taking counterparty risk and the regulatory
capital into insurance contracts. Li and Li (2018) study Pareto optimal insurance under counterparty
risk. For more works on insurance under counterparty risk, see Asimit et al. (2013), Filipovic et al.
(2015), Boonen and Jiang (2023), and references therein.

In the insurance practice, in addition to counterparty risk, there exists another very common
risk called (additive1) background risk. Doherty and Schlesinger (1983) prove that background risk
affects the insured’s demand of insurance, see also Mayers and Smith (1983). Under the frame-
work of maximizing the insured’s expected utility, Gollier (1996) obtains that the optimal strategy
is a disappearing deductible when insurable and background risk satisfy some dependence structures.

1In the rest of this paper, background risk is referred to as additive background risk unless it is specified.
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Lu et al. (2012, 2018) investigate optimal insurance contracts under background risk by maximizing
expected utility or minimizing risk measures, respectively. Chi and Wei (2020) study optimal insurance
problem with background risk for a general dependence structure between insurable and background
risk. By maximizing the insured’s expected utility and using the calculus of variations, they obtain
an implicit representation of the optimal solution irrespective of the dependence structure. They also
provide an explicit representation of the optimal ceded loss function when insurable and background
risk have some special dependence structures such as positively (negatively) quadrant dependence and
right tail increasing dependence. Under general background risk, Chi and Tan (2021) explore opti-
mal insurance contracts and give the optimal parametric ceded loss function under the mean-variance
framework by using a constructive approach. Under counterparty risk and mean-variance optimization,
Boonen and Jiang (2022) provide the form of optimal ceded loss function by utilizing a constructive
approach. Boonen and Jiang (2022) extend the background risk model of Chi and Tan (2021) to the case
of counterparty risk.

The above works on optimal insurance with more than one source of risk all assume that the insured
faces two kinds of risk: insurable and counterparty risk or insurable and background risk. In the real-
ity, it is more likely that the insured may face insurable, counterparty, and background risk at the same
time. A natural question is how to design the optimal insurance when there exist not only counterparty
risk but also background risk. In the present paper, we aim to solve this issue. We explore the optimal
insurance when the insured faces insurable, counterparty, and background risk simultaneously. The aim
is to find a representation of the optimal solution to the mean-variance optimization problem. First, by
using the classical calculus of variations, we obtain an implicit representation of the optimal solution
irrespective of the dependence structure. Second, by making full use of the implicit representation and
the constructive method used in Chi and Tan (2021) and Boonen and Jiang (2022), we obtain an explicit
structure of the optimal solution. Third, we derive a much simpler solution under some special depen-
dence structures among these three kinds of risk. Finally, a numerical example is provided to illustrate
the main results of the paper.

The rest of this paper is organized as follows. In Section 2, we formulate the optimization problems. In
Section 3, we provide two kinds of representation of the optimal solution: an implicit representation and
an explicit representation. In Section 4, we derive optimal insurance strategies when these three kinds of
risk have some special dependence structures. In Section 5, we provide an illustrative numerical example
to analyze the effect of the counterparty risk on optimal insurance strategies. In Section 6, we conclude
the paper. All the proofs are delegated to the appendix.

2. Problem formulation
Let non-negative random variable X be insurable risk faced by the insured, whose support is [0, M].
Let Y be background risk suffered by the insured, which is uninsurable and may be negative. Let Z be
a random recovery rate distributed over [0, 1]. Assume that X, Y , and Z are all defined on a probability
space (�, F, P) with finite expectation. The cumulative distribution function of X is denoted as FX(x),
and the density function of X is denoted as fX(x). The expectation and variance of X are written as E[X]
and var[X], respectively. Write x ∧ 0 := min{x, 0} and x ∨ 0 := max{x, 0}. Given a set A, the indicator
function of A is denoted as 1A, that is, 1A(s) = 1 if s ∈ A, and 1A(s) = 0 if s /∈ A.

Let I be the ceded loss function, that is, the insured cedes I(X) to the insurer. To avoid moral hazard,
the set of all admissible ceded loss functions I is defined as

I := {I : [0, M] �→ [0, M] | I(0) = 0, 0 ≤ I(x2) − I(x1) ≤ x2 − x1,

∀ 0 ≤ x1 ≤ x2 ≤ M} .

Let

Î := {η : [0, M] �→ [0, 1] | η is Lebesgue measurable with 0 ≤ η≤ 1 a.s.}.
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Then for every I ∈ I, there is η ∈ Î such that

I(x) =
∫ x

0

η(t)dt, x ∈ [0, M].

Suppose that there exists counterparty risk. In other words, at the end of the period, instead of paying
the promised indemnity I(X) as per the contract, the insurer undertakes the loss I(X)Z . The insurance
premium charged by the insurer is assumed to be calculated on the basis of the expectation of the cover-
age I(X) Z , that is, π (I) = h(E[I(X)Z]) for some differentiable function h( · ) with h(0) = 0 and h′(x)> 1
for any x ≥ 0. Note that there is no counterparty risk if Z = 1, a.s.. Setting h(x) = (1 + θ )x with θ > 0,
then the above premium is reduced to the expected value principle.

As the existence of both counterparty and background risk, the insured’s total loss is given by

LI(X; Y , Z) = X + Y − I(X)Z + π (I).

Throughout this paper, Assumption 1 is adopted to avoid some trivial cases of counterparty risk.

Assumption 1. P(Z = 1)< 1 and P(Z = 0|X = x)< 1 for any x ∈ [0, M].

We follow Boonen and Jiang (2022) and Chi and Tan (2021) to study optimal insurance design in the
framework of mean-variance. We consider the following general optimal insurance problem with both
counterparty and background risk.

min
I∈I

M (E[LI(X; Y , Z)], var[LI(X; Y , Z)]) , (2.1)

whereM(x1, x2) is an increasing2 function overR2
+. It should be noted that the traditional mean-variance

optimization is included in the above framework by setting M(x1, x2) = x1 + B
2
x2 for some B> 0.

To this end, we give some dependence structures by following Hong et al. (2011), which will be
used in the later. We call Y has strongly positive (negative) expectation dependence with X, denoted as
Y ↑SPED X (Y ↓SNED X, resp.) if E[Y|X = x] is increasing (decreasing, resp.) in x. There are many other
dependence structures used in optimal insurance such as stochastic increasingness, positively quadrant
dependence, and right tail increasingness. For their detailed definitions, see Chi and Wei (2020). The
strongly positive expectation dependence used in this paper is a weaker dependence than stochastic
increasingness. There is no inclusion relationship between strongly positive expectation dependence
and positively quadrant dependence or right tail increasingness.

3. Optimal ceded loss function
To solve Problem (2.1), we use a two-step procedure as usually do. First, we minimize the second
component of M(·, ·) by fixing the first component of M(·, ·). That is,

min
I∈I

var[LI(X; Y , Z)], s.t. E[LI(X; Y , Z)] = c, (3.1)

where c ∈ [E[X + Y], E[X + Y] + h(E[XZ]) −E[XZ]] is a given constant. Its solution is denoted as Ic.
Then the second step is to find c such that M(c, var[LIc (X; Y , Z)]) reaches its minimum.

Using the decomposition formulation of variance, it follows that

var[LI(X; Y , Z)] =E[var[LI(X; Y , Z)|X]] + var[E[LI(X; Y , Z)|X]]. (3.2)

For any x ∈ [0, M], let

ψ1(x) =E[Z|X = x], ψ2(x) =E[Z2|X = x],

ψ3(x) =E[Y|X = x], ψ̄(x) =E[ZY|X = x].

2Throughout this paper, increasing means non-decreasing and decreasing means non-increasing.
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From Assumption 1, it follows that both functions ψ1(x) and ψ2(x) are greater than 0 for any x ∈ [0, M].
Note that

var[LI(X; Y , Z)|X] =E[Y2|X] −ψ3(X)2 + I(X)2{ψ2(X) −ψ1(X)2}
+ 2I(X){ψ3(X)ψ1(X) − ψ̄(X)},

it follows that

E[var[LI(X; Y , Z)|X]] =E[Y2] −E[ψ3(X)2] +E[I(X)2{ψ2(X) −ψ1(X)2}]
+ 2E[I(X){ψ3(X)ψ1(X) − ψ̄(X)}]. (3.3)

Note that

var[E[LI(X; Y , Z)|X]] = var[X] +E[ψ3(X)2] +E[I(X)2ψ1(X)2] +E[2Xψ3(X)]

− 2E[XI(X)ψ1(X)] − 2E[I(X)ψ3(X)ψ1(X)] − (E[Y])2

− (E[I(X)ψ1(X)])2 − 2E[X]E[Y] + 2E[X]E[I(X)ψ1(X)]

+ 2E[Y]E[I(X)ψ1(X)]. (3.4)

Hence, from (3.2), (3.3), and (3.4), we have that

var[LI(X; Y , Z)]

= var[X] + var[Y] + 2E[Xψ3(X)] − 2E[XI(X)ψ1(X)]

− (E[I(X)ψ1(X)])2 − 2E[X]E[Y] + 2E[X]E[I(X)ψ1(X)]

+ 2E[Y]E[I(X)ψ1(X)] +E[I(X)2ψ2(X)] − 2E[I(X)ψ̄(X)].

The constraint of (3.1) is equivalent to

E[X + Y − I(X)Z + π (I)] =E[X] +E[Y] −E[I(X)Z] + π (I) = c

⇒ h(E[I(X)Z]) −E[I(X)Z] = c −E[X] −E[Y]

⇒ h(E[I(X)ψ1(X)]) −E[I(X)ψ1(X)] = c −E[X] −E[Y].

From the conditions that h(0) = 0 and h′(x)> 1 for any x ≥ 0, we have that h(x) − x = c −E[X] −E[Y]
has only one solution for any given c ≥E[X] +E[Y], and denote the solution as x∗. Obviously, x∗ ∈
[0, E[XZ]]. Therefore, Problem (3.1) is reduced to

min
I∈I

E[I(X)2ψ2(X)] − 2E[XI(X)ψ1(X)] − 2E[I(X)ψ̄(X)],

s.t. E[I(X)ψ1(X)] = x∗. (3.5)

The Lagrangian dual problem of Problem (3.5) is given by

min
I∈I

E[I(X)2ψ2(X)] − 2E[I(X)Xψ1(X)] − 2E[I(X)ψ̄(X)] + λE[I(X)ψ1(X)], (3.6)

with the Lagrangian coefficient λ ∈R. Let I1(x) = x∗
E[XZ]

x, then I1 ∈ I and E[I1(X)ψ1(X)] = x∗. Hence,
the strong duality holds, and we have that solving Problem (3.5) is equivalent to solving Problem (3.6).

The optimal ceded loss function to Problem (3.6) is characterized by the following lemma.

Lemma 1. Let Assumption 1 hold. Define

L(t; I∗, λ) =
∫ M

t

ψ2(x)

[
I∗(x) − ψ1(x)

ψ2(x)

(
x − λ

2

)
− ψ̄(x)

ψ2(x)

]
dFX(x).
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Then I∗(x) = ∫ x

0
η∗(t)dt is an optimal solution to Problem (3.6) if and only if

η∗(t) = 1Dλ(t) + ξ (t)1Eλ(t),

where

Dλ = {t : L(t; I∗, λ)< 0}, Eλ = {t : L(t; I∗, λ) = 0},
and ξ (t) ∈ [0, 1] is such that I∗ ∈ I.

Remark 2.

(i) If Z = 1, a.s., that is, there only exists background risk and no counterparty risk, then

L(t; I∗, λ) =
∫ M

t

(
I∗(x) − x + λ

2
−ψ3(x)

)
dFX(x).

Lemma 1 provides an implicit representation for mean-variance optimal insurance design
with background risk and no counterparty risk. This topic has been studied in Chi and Tan
(2021), where they use a constructive approach and some stochastic ordering technique to
obtain an explicit representation of the optimal solution. Hence, they do not give the implicit
representation.

(ii) If Y = 0, a.s., the result is reduced to Lemma 3.1 of Boonen and Jiang (2022).

For any fixed λ, define

φλ(x) = ψ1(x)

ψ2(x)

(
x − λ

2

)
+ ψ̄(x)

ψ2(x)
. (3.7)

Assumption 2. Functions ψ1(x),ψ2(x), and ψ̄(x) are continuously differentiable.

Under Assumption 2, function φλ(x) is continuous and differentiable over [0, M]. As a result, we can
partition [0, M] into some disjoint intervals according to the value of φ ′

λ
(x) such that

[0, M] =
m⋃

i=1

Si,ji , (3.8)

where ji = 1, 2, 3 is calculated as

φ ′
λ
(x)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∈ (1, ∞), if x ∈ Si,1,

∈ [0, 1], if x ∈ Si,2,

∈ (−∞, 0), if x ∈ Si,3,

(3.9)

and m is a positive integer representing the minimum number required for such a partition. It should
be noted that m could be equal to infinity. Let xi−1 = inf{x | x ∈ Si,ji} for i ∈ {1, 2, . . . , m} and xm = M,
it follows that 0 = x0 ≤ x1 ≤ · · · ≤ xm−1 ≤ xm = M. Clearly, xi = sup{x | x ∈ Si,ji} for i ∈ {1, 2, . . . , m} and
|ji+1 − ji| = 1 for i ∈ {1, 2, . . . , m − 1}. {x1, x2, . . . , xm−1} are called the change points (see Boonen and
Jiang, 2022). Define the layer-type function as

L(a,b](x) = (x − a)+ − (x − b)+, x ≥ 0,

where 0 ≤ a ≤ b ≤ M.
Finally, we use the constructive approach used in Chi and Tan (2021) and Boonen and Jiang (2022) to

give the optimal parametric ceded loss function on any Si,ji for i ∈ {1, 2, . . . , m}. By the same argument
as in the proof of Theorem 3.1 of Boonen and Jiang (2022), one can get Theorem 3 below, hence its
proof is omitted.

Theorem 3. Let Assumptions 1 and 2 hold. The optimal ceded loss function to Problem (3.6) is given
by I∗(x) such that, for x ∈ Si,ji , i ∈ {1, 2, . . . , m − 1},
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Figure 1. An illustration of an optimal ceded loss function I∗ solving Problem (7) with
[0, M] = S1,1

⋃
S2,2

⋃
S3,3.

(i) if ji = 1, then I∗(x) = I∗(xi−1) + L(γi,1 ,γi,1+I∗(xi)−I∗(xi−1)](x) for some γi,1 ∈ [xi−1, xi],
(ii) if ji = 2, then I∗(x) = min{max{φλ(x), I∗(xi) + x − xi, I∗(xi−1)}, I∗(xi−1) + x − xi−1, I∗(xi)},
(iii) if ji = 3, then I∗(x) = I∗(xi−1) + x − xi−1 − L(γi,3 ,γi,3+xi−xi−1−(I∗(xi)−I∗(xi−1))](x) for some γi,3 ∈ [xi−1, xi],

and for x ∈ Sm,jm ,
(iv) if jm = 1, then I∗(x) = I∗(xm−1) + (x − γm,1)+ for some γm,1 ∈ [xm−1, M],
(v) if jm = 2, then I∗(x) = min{max{φλ(x), I∗(xm−1)}, I∗(xm−1) + x − xm−1},
(vi) if jm = 3, then I∗(x) = I∗(xm−1) + L(xm−1,γm,3](x) for some γm,3 ∈ [xm−1, M].

Theorem 3 provides an explicit representation of the optimal ceded loss function. Figure 1 shows the
form of the optimal ceded loss function I∗ when m = 3 and [0, M] = S1,1

⋃
S2,2

⋃
S3,3.

Remark 4. According to the proof of Theorem 3 (see also the proof of Theorem 3.1 of Boonen and
Jiang, 2022), it is not hard to see that we can also partition [0, M] by

[0, M] =
m⋃

i=1

S̃i,ki , (3.10)

where ki ∈ {1, 2, 3} is determined by

φ ′
λ
(x)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∈ [1, ∞), x ∈ S̃i,1,

∈ (0, 1), x ∈ S̃i,2,

∈ (−∞, 0], x ∈ S̃i,3,

(3.11)

and xi−1 = inf{x | x ∈ S̃i,ki} for i = 1, 2, . . . , m. For this partition, the results in Theorem 3 still hold.

Remark 5.

(i) If Z = 1, a.s., that is, there only exists background risk and no counterparty risk, then the
corresponding partition is

[0, M] =
m⋃

i=1

Si,ji ,

where ji ∈ {1, 2, 3} is determined by

ψ ′
3(x)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∈ (0, ∞), x ∈ Si,1,

∈ [−1, 0], x ∈ Si,2,

∈ (−∞, −1), x ∈ Si,3.
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From Theorem 3, the optimal solution to Problem (3.6) is given by I∗(x) such that, for x ∈ Si,ji ,
i = 1, 2, . . . , m − 1,

(i) if ji = 1, then I∗(x) = I∗(xi−1) + L(γi,1 ,γi,1+I∗(xi)−I∗(xi−1)](x) for some γi,1 ∈ [xi−1, xi],
(ii) if ji = 2, then I∗(x) = min{max{x +ψ3(x) − λ

2
, I∗(xi) + x − xi, I∗(xi−1)}, I∗(xi−1) + x −

xi−1, I∗(xi)},
(iii) if ji = 3, then I∗(x) = I∗(xi−1) + x − xi−1 − L(γi,3 ,γi,3+xi−xi−1−(I∗(xi)−I∗(xi−1))](x) for some γi,3 ∈

[xi−1, xi],
and for x ∈ Sm,jm ,

(iv) if jm = 1, then I∗(x) = I∗(xm−1) + (x − γm,1)+ for some γm,1 ∈ [xm−1, M],
(v) if jm = 2, then I∗(x) = min{max{x +ψ3(x) − λ

2
, I∗(xm−1)}, I∗(xm−1) + x − xm−1},

(vi) if jm = 3, then I∗(x) = I∗(xm−1) + L(xm−1,γm,3](x) for some γm,3 ∈ [xm−1, M].
This result is similar to Chi and Tan (2021, Theorem 3.1), where the construction approach
and some stochastic ordering technique are used. Here, we use the construction approach
and Lemma 2.1 about the implicit characterization of the optimal solution.

(i) If Y = 0, a.s., then Theorem 3 is reduced to Boonen and Jiang (2022, Theorem 3.1).

As the mean-variance objective is quite related to the quadratic utility objective, in what follows,
we tend to give a characterization of their relationship. Let M(x1, x2) = x1 + B

2
x2 for some B> 0, then

Problem (2.1) is reduced to the traditional mean-variance optimization

min
I∈I

E[LI(X; Y , Z)] + B

2
var[LI(X; Y , Z)]. (3.12)

The optimal insurance problem with counterparty and additive background risk in the expected utility
framework is given by

max
I∈I

E[u(w −LI(X; Y , Z))]. (3.13)

Let w = 0 and take a quadratic utility u(x) = x − B̃
2
x2 with some B̃> 0 in (3.13), then Problem (3.13) is

reduced to

max
I∈I

E[−LI(X; Y , Z) − B̃

2
L2

I (X; Y , Z)]. (3.14)

It is not hard to prove that the solutions to Problem (3.12) and to Problem (3.14) are the same under
certain conditions.

Theorem 6. Suppose that π is a convex function and E[X + Y] ≥ − B̃
2
. Then I∗ is the optimal solution

to Problem (3.14) if and only if I∗ is the optimal solution to Problem (3.12) for some B> 0.

4. Some special dependence structures
In this section, we focus on some special cases: when one of insurable risk X, background risk Y , and
counterparty risk Z is independent of the other two; when both counterparty risk Z and background risk
Y are functions of insurable risk X.

4.1. X is independent of Y and Z
We first suppose that both background risk Y and counterparty risk Z are independent of insurable risk
X. As we know, when background and insurable risks are independent of each other and there exists
no counterparty risk, stop-loss insurance has been proved to be optimal in Proposition 4.1 of Chi and
Tan (2021). When counterparty and insurable risks are independent of each other and there exists no
background risk, Corollary 4.1 of Boonen and Jiang (2022) also proves that the optimal strategy is stop-
loss insurance. A natural question is whether stop-loss insurance is still optimal when there exist both
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Figure 2. Y and Z are independent of X.

Figure 3. Y ↑SPED X and Z is independent of X.

background and counterparty risks and both of them are independent of insurable risk. Proposition 7
below gives a positive answer to this question and Figure 2 below provides the graph of the corresponding
optimal solution.

Proposition 7. Suppose that both Y and Z are independent of X, then stop-loss insurance is optimal to
Problem (2.1), that is, the optimal ceded loss function is I∗(x) = (x − d)+ for some d ≥ 0.

Remark 8.

(i) The result in Proposition 7 is consistent with Chi and Wei (2020, Proposition 5.1), where
they show that stop-loss insurance is optimal if Y is independent of X in the expected utility
framework without counterparty risk.

(ii) Under the condition that Y and Z are independent of X, Problem (3.6) is reduced to

min
I∈I

E[Z2]E[I(X)2] − 2E[Z]E[XI(X)] − 2E[ZY]E[I(X)] + λE[Z]E[I(X)]. (4.1)

From Proposition 7 and (4.1), we obtain that the dependence structure between Y and Z does
not affect the form of the optimal solution but may have an impact on the optimal retention
level d.

4.2. Z is independent of X and Y
The next Proposition 9 gives the optimal ceded loss functions when Z is independent of X and Y . The
graphs of the corresponding optimal solutions are given by Figures 3–7, respectively.

Proposition 9. Suppose that counterparty risk Z is independent of background risk Y and insurable
risk X.

(i) If Y ↑SPED X, then stop-loss insurance is optimal for Problem (2.1).
(ii) If (X + Y) ↓SNED X, then the optimal ceded loss function to Problem (2.1) is given by I∗(x) =

x ∧ c for some c ∈ [0, M].
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Figure 4. Z is independent of X and (X + Y) ↓SNED X.

Figure 5. Z is independent of X, Y ↓SNED X, (X + Y) ↑SPED X and ψ ′′
3 (x) ≥ 0.

Figure 6. Z is independent of X, Y ↓SNED X, (X + Y) ↑SPED X, ψ ′′
3 (x) ≤ 0 and x̂ = M.

Figure 7. Z is independent of X, Y ↓SNED X, (X + Y) ↑SPED X and ψ ′′
3 (x) ≤ 0 and x̂<M.

(iii) Assume that Y ↓SNED X, (X + Y) ↑SPED X, and ψ ′′
3 (x) ≥ 0 for any x ∈ [0, M], then the optimal

solution to Problem (2.1) is given by

I∗(x) =
{

min{max{φλ(x), a + x − x̃, 0}, x, a}, 0 ≤ x ≤ x̃,

a + (x − b)+, x> x̃,
(4.2)

for some λ ∈R, 0 ≤ a ≤ x̃ ≤ b ≤ M and x̃ = inf
{

x ∈ [0, M] :ψ ′
3(x)> E[Z2]

E[Z]
− 1

}
.

(iv) Assume that Y ↓SNED X, (X + Y) ↑SPED X, and ψ ′′
3 (x) ≤ 0 for any x ∈ [0, M]. Denote x̂ =

sup
{

x ∈ [0, M] :ψ ′
3(x)> E[Z2]

E[Z]
− 1

}
.
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(a) If x̂ = M, then the optimal solution to Problem (2.1) is given by I∗(x) = (x − d)+ for some
d ≥ 0.

(b) If x̂<M, then the optimal solution to Problem (2.1) is characterized by

I∗(x) =
⎧⎨⎩(x − a)+ − (x − a − b)+, 0 ≤ x< x̂,

min{max{φλ(x), b}, b + x − x̂}, x> x̂,
(4.3)

where λ ∈R, a ≥ 0, b ≥ 0 and 0 ≤ a + b ≤ x̂.

Remark 10. When insurable risk X, counterparty risk Z , and background risk Y are pairwise indepen-
dent, then the conditions of part (i), (iii), and (iv) in Proposition 9 all hold. It is not hard to see that
stop-loss insurance is optimal for Problem (2.1) no matter using the results of part (i), (iii), or (iv) in
Proposition 9. That is also consistent with Proposition 7.

Remark 11.

(i) Under the conditions that counterparty risk does not exist and Y ↑SPED X, part (i) of Chi and
Tan (2021, Proposition 4.1) shows that the optimal strategy is stop-loss insurance. Part (i) of
Proposition 9 proves that the optimal strategy is still stop-loss insurance in spite of the existing
of counterparty risk. We conclude that under the condition that Y ↑SPED X, stop-loss insurance
is an optimal strategy no matter there exists counterparty risk or not. That is, counterparty risk
does not affect the form of the optimal solution but may have an effect on the optimal deductible.

(ii) If (X + Y) ↓SNED X and Z = 1, a.s., part (iii) of Chi and Tan (2021, Proposition 4.1) shows that
the optimal strategy is no insurance. Part (ii) of Proposition 9 proves that I∗(x) = x ∧ c is optimal
as the presence of counterparty risk. Note that I∗(x) = x ∧ 0 is just no insurance. Hence, in this
sense, we can see that counterparty risk does not affect the form of the optimal solution but has
an effect on the value of truncation c.

(iii) Let h(x) = (1 + θ )x and Z = 1, a.s. in Problem (3.14), then from Chi and Wei (2020, Corollary
3.4), it follows that I∗(x) = 0 over [0, VaR θ

1+θ (X)]3 if I∗(x) is an optimal solution to Problem
(3.14). However, as the presence of counterparty risk, this property may not hold as shown by
part (ii) of Proposition 9, and the insured chooses full insurance for small loss x when X + Y
has SNED with X.

(iv) Let h(x) = (1 + θ )x and Z = 1, a.s. in Problem (3.14), Chi and Wei (2020, Proposition 6.2,
Corollary 6.4) provide the optimal solution to Problem (3.14) under the conditions (X + Y) ↑st

X and Y ↓st X. As (X + Y) ↑st X implies (X + Y) ↑SPED X and Y ↓st X implies Y ↓SNED X. Hence,
part (iii) of Proposition 9 provides another method to obtain the optimal solution. Chi and
Wei (2020) also study some other dependence structures including positively (negatively)
quadrant dependence and right tail increasingness. As we know, there is no implication rela-
tionship between SPED (SNED) and positively (negatively) quadrant dependence or right tail
increasingness. In this sense, Proposition 9 has made some supplements for Problem (3.14)
by considering strong expectation dependence structure and extending the expected value
principle to a wide class of principles.

4.3. Y is independent of X and Z
Lemma 12 below gives some properties of the optimal ceded loss function when Y is independent of X
and Z .

Lemma 12. Suppose that background risk Y is independent of insurable and counterparty risk X and
Z. Then for any λ> 2E[Y], the optimal solution to Problem (3.6) over [0, λ

2
−E[Y]] is I∗(x) = (x − d)+

for some d ∈ [0, λ
2
−E[Y]].

3VaRθ (X) := inf {x ∈R+ | FX(x) ≥ θ}.
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Figure 8. Y is independent of X and Z = g(X).

Lemma 12 indicates that stop-loss function is optimal in a neighborhood of 0 if λ> 2E[Y] under the
condition that Y is independent of X and Z . In order to obtain the optimal solution to Problem (2.1)
when Y is independent of X and Z , more conditions should be given. Proposition 13 below, by adding
the condition that Z is a decreasing function of X, provides the optimal solution to Problem (2.1) for
the case that Y is independent of X and Z . The graph of the corresponding optimal solution is given by
Figure 8.

Proposition 13. Suppose that background risk Y and insurable risk X are independent of each other
and Z = g(X). Further assume that g is a decreasing function satisfying the following assumption: There
exists an x1 ∈ [0, M] such that g(x) = 1 for any x ∈ (0, x1], and g(x)< 1 for any x ∈ (x1, M], and g(M)> 0.
Then there exist constants a1, a2, a3 satisfying 0 ≤ a1 ≤ a2 ≤ a3 ≤ M, such that

I∗(x) = (min{x, a2} − a1)+ + (x − a3)+ (4.4)

is an optimal solution to Problem (2.1).

Remark 14. The form of the optimal solution is the same as that in Corollary 4.2 of Boonen and Jiang
(2022), where background risk does not exist.

4.4. Both Y and Z are functions of X
Lemma 15 below gives some properties of the optimal ceded loss function when both Y and Z are
functions of X.

Lemma 15. Suppose that both counterparty risk Z and background risk Y are functions of insurable
risk X, that is, Z = g1(X) with g1 : [0, M] → [0, 1] and Y = g2(X).

(i) If x + g2(x) is increasing, let

x0 = inf

{
x ∈ [0, M] : x + g2(x) ≥ λ

2

}
,

then the optimal ceded loss function over [0, x0] is provided by I∗(x) = (x − d)+ for some d ∈
[0, x0].

(ii) If x + g2(x) is decreasing, let

x̄0 = inf

{
x ∈ [0, M] : x + g2(x) − λ

2
≤ 1

}
,

then the optimal ceded loss function over [0, x̄0] is provided by I∗(x) = x ∧ d for some d ∈ [0, x̄0].

Remark 16. Let Y = 0, a.s. in Lemma 12 or let g2(x) = 0 in Lemma 15, then the corresponding results
are reduced to Proposition 3.1 of Boonen and Jiang (2022).

Lemma 15 gives the optimal solution in a neighborhood of 0, which is stop-loss insurance or full
insurance. By making use of this lemma and adding more conditions on the relationship between Y and
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Figure 9. Z = g1(X), Y = g2(X) with g′
2(x) ≥ 0.

Figure 10. Z = g1(X), Y = g2(X) with −1 ≤ g′
2(x) ≤ 0.

X, we obtain Proposition 17, which provides the optimal ceded loss function for this case. Figures 9
and 10 give the graphs of the corresponding optimal solutions.

Proposition 17. Suppose that both background risk Y and counterparty risk Z are functions of insurable
risk X, that is, Z = g1(X) and Y = g2(X). Further assume that g1 is a decreasing function satisfying the
following assumption: There exists an x1 ∈ [0, M] such that g1(x) = 1 for any x ∈ (0, x1], and g1(x)< 1
for any x ∈ (x1, M], and g1(M)> 0.

(i) If g2(x) is an increasing function, then the optimal solution to Problem (2.1) is
characterized as

I∗(x) = (min{x, a2} − a1)+ + (x − a3)+, (4.5)

where 0 ≤ a1 ≤ a2 ≤ a3 ≤ M.
(ii) Suppose that g2(x) is a decreasing function and x + g2(x) is an increasing function. Then the

optimal solution to Problem (2.1) is one of the following two functions:

I∗(x) = (min{x, x0} − a1)+ + (x − a2)+, (4.6)

or

I∗(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(x − d1)+, x ∈ [0, x0],

min{max{x + g2(x) − λ

2
, d2 + x − x1, x0 − d1}, x − d1, d2}, x ∈ (x0, x1],

d2 + (x − d3)+, x ∈ (x1, M],

(4.7)

for some λ ∈R, 0 ≤ a1 ≤ x0 ≤ a2, 0 ≤ d1 ≤ x0 ≤ d1 + d2 ≤ x1 ≤ d3, where

x0 = inf

{
x ∈ [0, M] : x + g2(x) ≥ λ

2

}
.
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Remark 18.

(i) Under the condition that Y = g2(X), Y ↑SPED X if and only if g2(x) is increasing, and Y ↓SNED X
if and only if g2(x) is decreasing. In other words, Proposition 17 considers a special form of
strong expectation dependence.

(ii) As we know, if Y is independent of X, then Y ↑SPED X. Hence, Proposition 13 can also be
obtained from Proposition 17.

Remark 19. Figures 2–10 show that optimal strategies usually contain proportional insurances with
multiple layers. These figures are consistent with some multi-layer proportional insurance contracts
observed in insurance practice.

5. Examples
In this section, we give a numerical example to illustrate the main result of this paper and analyze the
impact of counterparty risk Z on the optimal insurance treaties.

Suppose that the traditional mean-variance optimization and the expectation premium principle are
used in this example. That is, M(x1, x2) = x1 + B

2
x2 with coefficient B> 0, and π (I) = (1 + θ )E[I(X)Z]

with θ > 0. Assume that Z is independent of Y and X, and Y ↑SPED X. By calculating, we have that

E[LI(X; Y , Z)] = E[X] +E[Y] + θE[Z]E[I(X)],

var[LI(X; Y , Z)] = var[X] + var[Y] + 2E[XY] − 2E[X]E[Y]

− 2E[XI(X)]E[Z] −E[I(X)]2
E[Z]2

+ 2E[X]E[Z]E[I(X)] + 2E[Y]E[Z]E[I(X)]

+E[Z2]E[I2(X)] − 2E[Z]E[I(X)E[Y|X]].

Hence, our goal is to minimize

M(E[LI(X; Y , Z)], var[LI(X; Y , Z)])

= E[X] +E[Y] + B

2
(var[X] + var[Y] + 2E[XY] − 2E[X]E[Y])

+ {θE[Z] + BE[X]E[Z] + BE[Y]E[Z]}E[I(X)] − BE[Z]E[XI(X)]

− BE[Z]E[I(X)E[Y|X]] − B

2
E[I(X)]2

E[Z]2 + B

2
E[Z2]E[I2(X)]. (5.1)

Suppose that both X and Y follow exponential distributions with the same mean of 1
γ
, and the copula

function between X and Y is given by

Cα(u, v) = uv + αuv(1 − u)(1 − v),

where α ∈ [0, 1]. It is not hard to see that the joint distribution function of (X, Y ) is

F(x, y) = (1 − e−γ x)(1 − e−γ y)(1 + αe−γ xe−γ y), x ≥ 0, y ≥ 0,

and the joint density function of (X, Y ) is

f (x, y) = γ 2e−γ xe−γ y + αγ 2(2e−2γ x − e−γ x)(2e−2γ y − e−γ y), x ≥ 0, y ≥ 0.

Given X = x> 0, the conditional density function of Y is

fY|X(y|x) = γ e−γ y + αγ (2e−γ x − 1)(2e−2γ y − e−γ y), y ≥ 0.
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Table 1. The effects of x := E[Z] and y := E[Z2] on the optimal ceded loss function for γ = 0.4, θ =
0.2, B = 0.01, and α= 0.2.

y = 0.1 y = 0.2 y = 0.3 y = 0.4 y = 0.5 y = 0.6 y = 0.7 y = 0.8 y = 0.9 y = 1
x = 0.1 34.63
x = 0.2 35.83 35.67
x = 0.3 38.25 38.12 38.00
x = 0.4 38.44 38.44 38.35
x = 0.5 38.73 38.71 38.65
x = 0.6 38.98 38.93 38.88
x = 0.7 39.18 39.14 39.11
x = 0.8 41.39 41.36
x = 0.9 41.47
x = 1 41.60

Hence, the conditional expectation of Y given X = x> 0 is

E[Y|X = x] = 1

γ
− α(2e−γ x − 1)

2γ
,

which implies that Y ↑SPED X.
From Proposition 9, it follows that stop-loss insurance is optimal. For any given d ≥ 0, denote Id(x) :=

(x − d)+. By calculating, we have that

E[XId(X)] = [d2 + (γ d + 1)(2 − d)

γ 2
]e−γ d, E[Id(X)] = 1

γ
e−γ d,

E[Id(X)E[Y|X]] = 2 + α

2γ 2
e−γ d − α

4γ 2
e−2γ d, E[I2

d (X)] = 2

γ 2
e−γ d.

Hence, minimizing (5.1) is equivalent to solving the optimization problem (5.2):

min
0≤d<∞

((
θ

γ
+ B

[
E[X] +E[Y]

γ
− d2 − (γ d + 1)(2 − d)

γ 2
− 2 + α

2γ 2

])
E[Z]

+ BE[Z2]

γ 2

)
e−γ d +

(
Bα

4γ 2
E[Z] − BE[Z]2

2γ 2

)
e−2γ d. (5.2)

From (5.2), we can see that the impact of counterparty risk on optimal insurance strategies is through
its expectation and variance. Hence, we take different E[Z] and E[Z2] to study the impact. Obviously,
(E[Z])2 ≤E[Z2] ≤E[Z]. When let γ go from 0.0001 to 0.1 at 0.001 intervals, we find that full insurance
is always optimal no matter whether there exists counterparty risk or not. When let γ go from 12 to
100 at 1 intervals, we find that any element d ∈ [0.99, M] is optimal no matter whether there exists
counterparty risk or not. Meanwhile, under different E[Z] and E[Z2], the optimal deductible d∗ is given
in Table 1 by setting γ = 0.4, θ = 0.2, B = 0.01, and α = 0.2. From the above findings and Table 1, we
have the following observations.

(a) When the expectation of the insurable risk is large enough (i.e., γ ≤ 0.1), full insurance is
always optimal (i.e., d∗ = 0 is an optimal solution) no matter whether there exists counterparty
risk or not.

(b) When the expectation of the insurable risk is small enough (i.e., γ ≥ 12), any element d
belonging to [0.99, M] is optimal no matter whether there exists counterparty risk or not.

(c) When the expectation of the insurable risk is large enough or small enough, the counterparty
risk has no effects on the optimal deductible d∗.
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(d) When the expectation of the insurable risk is moderate (i.e.,γ ∈ (0.1, 12)), for a given E[Z2],
the retention point d∗ is increasing as the increasing of E[Z]. For a given E[Z], d∗ is decreasing
as the increasing of E[Z2]. The retention point is largest when there is no counterparty risk.

6. Conclusions
We study optimal insurance with counterparty and background risk by minimizing the mean-variance
of the insured’s loss. The insurance premium is calculated as a function of the expected indemnity.
Irrespective of the dependence among insurable, counterparty, and background risk, we give an implicit
characterization of the optimal solution by utilizing the conditional variance formula and the calculus
of variations. We also obtain an explicit structure of the optimal ceded loss function by using its implicit
characterization. We further present a much simpler solution under some special dependence structures
among insurable, counterparty, and background risk. We find that stop-loss insurance is optimal if both
counterparty and background risk are independent of insurable risk. Under the condition that counter-
party risk is independent of background and insurable risk and background risk has SPED with insurable
risk, we find that stop-loss insurance is an optimal strategy no matter there exists counterparty risk or
not. Under the conditions that counterparty risk is independent of background and insurable risk and
the sum of insurable and background risk has SNED with insurable risk, we find that full insurance with
truncation is optimal and counterparty risk does not affect the form of the optimal solution but has an
effect on the value of truncation. Finally, we present an illustrating numerical example to analyze the
effects of counterparty risk on the optimal insurance.
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A. Proofs of main results
A.1. Proof of Lemma 1
Proof. We use the calculus of variations approach to prove this lemma. Denote

J(I) := E[(I(X))2ψ2(X)] − 2E[I(X)Xψ1(X)]

− 2E[I(X)ψ̄(X)] + λE[I(X)ψ1(X)].

If I∗ ∈ I is an optimal solution to Problem (3.6), then for any given I ∈ I, it follows that εI∗ + (1 − ε)I ∈
I for any ε ∈ [0, 1]. The first- and second-order derivatives of J(εI∗ + (1 − ε)I) with respect to ε are

dJ(εI∗ + (1 − ε)I)

dε
= E[2 (εI∗(X) + (1 − ε)I(X)) ψ2(X) (I∗(X) − I(X)) ]

− 2E[X (I∗(X) − I(X)) ψ1(X)] − 2E[(I∗(X) − I(X)) ψ̄(X)]

+ λE[(I∗(X) − I(X)) ψ1(X)],

d2J(εI∗ + (1 − ε)I)

dε2
= E[2(I∗(X) − I(X))2ψ2(X)] ≥ 0.

Therefore, J(εI∗ + (1 − ε)I) is convex with respect to ε. It reaches its minimum at ε= 1 and then
dJ(εI∗+(1−ε)I)

dε |ε=1 ≤ 0, which yields that

E[2I∗(X)I∗(X)ψ2(X)] − 2E[XI∗(X)ψ1(X)] − 2E[I∗(X)ψ̄(X)] + λE[I∗(X)ψ1(X)]

≤E[2I∗(X)I(X)ψ2(X)] − 2E[XI(X)ψ1(X)] − 2E[I(X)ψ̄(X)] + λE[I(X)ψ1(X)].

Hence,

I∗ = arg min
I∈I

E[2I∗(X)I(X)ψ2(X)] − 2E[XI(X)ψ1(X)]

− 2E[I(X)ψ̄(X)] + λE[I(X)ψ1(X)].

Note that

2E[I∗(X)I(X)ψ2(X)] − 2E[XI(X)ψ1(X)] − 2E[I(X)ψ̄(X)] + λE[I(X)ψ1(X)]

=
∫ M

0

(
2I∗(x)ψ2(x) − 2xψ1(x) − 2ψ̄(x) + λψ1(x)

) (∫ x

0

η(t)dt

)
dFX(x)

=
∫ M

0

{∫ M

t

(
2I∗(x)ψ2(x) − 2xψ1(x) − 2ψ̄(x) + λψ1(x)

)
dFX(x)

}
η(t)dt

=
∫ M

0

∫ M

t

2ψ2(x)

(
I∗(x) − ψ1(x)

ψ2(x)

(
x − λ

2

)
− ψ̄(x)

ψ2(x)

)
dFX(x)η(t)dt, (A1)
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where the second equation follows from the Fubini’s theorem. Hence, in order to minimize (A1), we
need and only need to minimize its integrand function element-wisely. Therefore,

η∗(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if L(t; I∗, λ)< 0,

ξ (t), if L(t; I∗, λ) = 0,

0, if L(t; I∗, λ)> 0,

where L(t; I∗, λ) = ∫ M

t
ψ2(x)

[
I∗(x) − ψ1(x)

ψ2(x)

(
x − λ

2

) − ψ̄(x)
ψ2(x)

]
dFX(x) and ξ (t) ∈ [0, 1] such that η∗ ∈ Î. This

finishes the proof.

A.2. Proof of Proposition 7
Proof. As both Y and Z are independent of X, we have that

φλ(x) = E[Z]

E[Z2]

(
x − λ

2

)
+ E[YZ]

E[Z2]
,

which implies that

φ ′
λ
(x) = E[Z]

E[Z2]
> 1

for any x ≥ 0. Hence, from Theorem 3, it follows that the optimal ceded loss function to Problem (2.1)
is given by

I∗(x) = (x − d)+, x ≥ 0,

for some d ≥ 0. This ends the proof.

A.3. Proof of Proposition 9
Proof. Assume that Z is independent of X and Y , then we have that

φλ(x) = E[Z]

E[Z2]

(
x − λ

2

)
+ E[Z]

E[Z2]
ψ3(x),

and

φ ′
λ
(x) = E[Z]

E[Z2]

(
1 +ψ ′

3(x)
)

.

Hence,

φ ′
λ
(x)> 1 ⇔ψ ′

3(x)>
E[Z2]

E[Z]
− 1,

φ ′
λ
(x)< 0 ⇔ψ ′

3(x)<−1,

0 ≤ φ ′
λ
(x) ≤ 1 ⇔ −1 ≤ψ ′

3(x) ≤ E[Z2]

E[Z]
− 1.

(i) If Y ↑SPED X, then ψ ′
3(x) ≥ 0 for any x ≥ 0, which yields that φ ′

λ
(x)> 1 for any x ≥ 0. Hence,

from Theorem 3, the optimal solution to Problem (2.1) is given by I∗(x) = (x − d)+ for some
d ≥ 0.

(ii) Assume that (X + Y) ↓SNED X, then ψ ′
3(x) ≤ −1 for any x ≥ 0, which yields that φ ′

λ
(x) ≤ 0 for

any x ≥ 0. Hence, from Theorem 3 and Remark 4, we have that the optimal solution to Problem
(2.1) is given by I∗(x) = x ∧ d for some d ≥ 0.
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(iii) Assume that Y ↓SNED X and (X + Y) ↑SPED X, and ψ ′′
3 (x) ≥ 0 for any x ≥ 0. Then −1 ≤ψ ′

3(x) ≤ 0
and ψ ′

3(x) is increasing for any x ≥ 0.
Let x̃ = inf

{
x ∈ [0, M] :ψ ′

3(x)> E[Z2]
E[Z]

− 1
}

, then 0 ≤ φ ′
λ
(x) ≤ 1 for any x ∈ [0, x̃], and φ ′

λ
(x)> 1

for any x> x̃. Hence, it follows from Theorem 3 that

I∗(x) =
⎧⎨⎩min{max{φλ(x), I∗(̃x) + x − x̃, 0}, x, I∗ (̃x)}, 0 ≤ x ≤ x̃,

I∗(̃x) + (x − b)+, x> x̃,

where b ≥ x̃. Thus, the optimal ceded loss function to Problem (3.6) is in the form of (4.2).
(iv) Assume thatY ↓SNED X and (X + Y) ↑SPED X, and ψ ′′

3 (x) ≤ 0 for any x ≥ 0. Then ψ ′
3(x) ∈ [−1, 0]

and ψ ′
3(x) is decreasing for any x ≥ 0.

Let x̂ = sup
{

x ∈ [0, M] :ψ ′
3(x)> E[Z2]

E[Z]
− 1

}
, then φ ′

λ
(x)> 1 for x ∈ [0, x̂), and φ ′

λ
(x) ∈ [0, 1] for

x ∈ [x̂, M].

(1) If x̂ = M, then [0, M] = S1,1, from Theorem 3 it follows that the optimal ceded loss function
to Problem (3.6) is given by I∗(x) = (x − d)+ for some d ≥ 0.

(2) If x̂<M, then [0, M] = S1,1 ∪ S2,2, from Theorem 3, we have that

I∗(x) =
⎧⎨⎩(x − a)+ − (x − a − I∗(x̂))+, 0 ≤ x< x̂,

min{max{φλ(x), I∗(x̂)}, I∗(x̂) + x − x̂}, x> x̂,

where 0 ≤ a ≤ x̂. Thus, the optimal ceded loss function to Problem (3.6) is in the form
of (4.3).
The proof of Proposition 9 is finished.

A.4. Proof of Lemma 12
Proof. As Y is independent of Z and X, we have that ψ̄(x) =E[ZY|X = x] =E[Y]ψ1(x). Hence, for any
t ∈ [0, λ

2
−E[Y]),

I∗(t) − φλ(t) = I∗(t) − ψ1(t)

ψ2(t)

(
t +E[Y] − λ

2

)
> 0,

which yields that for any t ∈ [0, λ
2
−E[Y]), it holds that

L′(t; I∗, λ) = −ψ2(t)

(
I∗(t) − ψ1(t)

ψ2(t)

(
t +E[Y] − λ

2

))
fX(t)< 0.

Let

t1 = inf

{
t ∈ [0,

λ

2
−E[Y]] : L(t; I∗, λ) ≤ 0

}
.

Then L(t; I∗, λ)> 0 for t ∈ [0, t1) and L(t; I∗, λ)< 0 for t ∈ (t1, λ2 −E[Y]). Hence, it follows Lemma 1 that
(I∗)′(x) = 1(t1, λ2 −E[Y])(x) for x ∈ [0, λ

2
−E[Y]]. As a result, I∗(x) = (x − t1)+ for any x ∈ [0, λ

2
−E[Y]]. The

proof of Lemma 12 is finished.

A.5. Proof of Proposition 13
Proof. As background risk Y is independent of insurable risk X and counterparty risk Z , we have that

φλ(x) =
⎧⎨⎩x +E[Y] − λ

2
, x ∈ [0, x1],

1
g(x)

(
x +E[Y] − λ

2

)
, x ∈ (x1, M].
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For x>max{x1, λ
2
−E[Y]}, it holds that

φ ′
λ
(x) = − g′(x)

g(x)2

(
x +E[Y] − λ

2

)
+ 1

g(x)
≥ 1

g(x)
> 1.

(i) If λ> 2(x1 +E[Y]), then λ

2
−E[Y]> x1. From Lemma 12, we have that the optimal ceded loss

function over [0, λ
2
−E[Y]] is given by

I∗(x) = (x − d1)+ (A2)

for some d1 ∈ [0, λ
2
−E[Y]].

For any x ∈ ( λ
2
−E[Y], M], φ ′

λ
(x)> 1. Hence, from Theorem 3, we have that the optimal ceded

loss function over ( λ
2
−E[Y], M] is given by

I∗(x) = I∗
(
λ

2
−E[Y]

)
+ (x − d2)+ (A3)

for some d2 ∈ [ λ
2
−E[Y], M].

From (A2) and (A3), it follows that the optimal ceded loss function is given by

I∗(x) =
(
min

{
x,
λ

2
−E[Y]

}
− d1

)
+

+ (x − d2)+, x ≥ 0, (A4)

where 0 ≤ d1 ≤ λ

2
−E[Y] ≤ d2.

(ii) Assume that λ≤ 2E[Y]. Then φ ′
λ
(x) = 1 for any x ∈ [0, x1]. φ ′

λ
(x)> 1 for any x> x1. Hence,

from Theorem 3, the optimal ceded loss function over [0, x1] is given by

I∗(x) = min{max{x − λ

2
+E[Y], I∗(x1) + x − x1}, x, I∗(x1)}

= min{x, I∗(x1)}.
The optimal ceded loss function over [x1, M] is given by

I∗(x) = I∗(x1) + (x − d2)+

for some d2 ≥ x1. Hence, the optimal ceded loss function is in the form of

I∗(x) = min{x, d1} + (x − d2)+, x ≥ 0, (A5)

where 0 ≤ d1 ≤ x1 ≤ d2.
(iii) Assume that 2E[Y]<λ≤ 2(x1 +E[Y]). Then from Lemma 12, it follows that the optimal ceded

loss function over [0, λ
2
−E[Y]] is given by

I∗(x) = (x − d1)+ (A6)

for some 0 ≤ d1 ≤ λ

2
−E[Y].

For x ∈ ( λ
2
−E[Y], x1], φ ′

λ
(x) = 1. Hence, the optimal ceded loss function over ( λ

2
−E[Y], x1] is

given by

I∗(x) = min

{
max{x − λ

2
+E[Y], I∗(x1) + x − x1}, x, I∗(x1)

}

= min

{
x − min{λ

2
−E[Y], x1 − I∗(x1)}, I∗(x1)

}
. (A7)

Note that

min

{
λ

2
−E[Y] − min

{
λ

2
−E[Y], x1 − I∗(x1)

}
, I∗(x1)

}
= (

λ

2
−E[Y] − d1)+,
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we have that

min

{
λ

2
−E[Y], x1 − I∗(x1)

}
= d1,

which together with (A7) implies that the optimal ceded loss function over ( λ
2
−E[Y], x1] is

given by

I∗(x) = (min{x, d2} − d1)+, (A8)

where 0 ≤ d1 ≤ λ

2
−E[Y] ≤ d2.

For x> x1, φ ′
λ
(x)> 1. Hence, from Theorem 3, the optimal ceded loss function over (x1, M] is

given by

I∗(x) = I∗(x1) + (x − d3)+ (A9)

for some d3 ≥ x1.
Thus, from (A6), (A8), and (A9), we obtain that the optimal ceded loss function is given by

I∗(x) = (min{x, d2} − d1) + (x − d3)+, x ≥ 0, (A10)

where 0 ≤ d1 ≤ λ

2
−E[Y] ≤ d2 ≤ x1 ≤ d3.

Note that (A4), (A5), and (A10) are of similar formats. Hence, the optimal ceded loss function to
Problem (2.1) is given by (4.4). The proof of Proposition 13 is finished.

A.6. Proof of Lemma 15
Proof. As Z = g1(X) and Y = g2(X), then ψ1(x) = g1(x), ψ2(x) = (g1(x))2 and ψ̄(x) = g1(x)g2(x).
Hence,

φλ(x) = 1

g1(x)

(
x + g2(x) − λ

2

)
.

Note that

L′(t; I∗, λ) = −(g1(x))2[I∗(t) − φλ(t)]fX(t),

we will prove this lemma by discussing the following two cases.

(i) Assume that x + g2(x) is increasing. Let

x0 = inf

{
x ∈ [0, M] : x + g2(x) ≥ λ

2

}
.

Then for any t ∈ [0, x0), t + g2(t)< λ

2
, and thus φλ(t)< 0, which implies that L′(t; I∗, λ)< 0 for

any t ∈ [0, x0). Let

t1 = inf{x ∈ [0, x0] : L(t; I∗, λ) ≤ 0}.
From the monotonicity of L(t; I∗, λ) over [0, x0), it follows that L(t; I∗, λ)> 0 for t ∈ [0, t1) and
L(t; I∗, λ)< 0 for t ∈ (t1, x0]. Hence, from Lemma 1, we obtain that (I∗)′(x) = 1(t1,x0)(x) for any
x ∈ [0, x0). As a result, I∗(x) = ∫ x

0
(I∗)′(t)dt = (x − t1)+ for any x ∈ [0, x0].

(ii) Assume that x + g2(x) is decreasing. Let

x̄0 = inf{x ∈ [0, M] : x + g2(x) − λ

2
≤ 1}.

Then x + g2(x) − λ

2
> 1 for any x ∈ [0, x̄0), which implies that I∗(x) − (x + g2(x) − λ

2
)< 0 for

any x ∈ [0, x̄0), thus L′(t; I∗, λ)> 0 for any t ∈ [0, x̄0). Let

t2 = inf{x ∈ [0, x̄0] : L(t; I∗, λ) ≥ 0},

https://www.cambridge.org/core/terms. https://doi.org/10.1017/asb.2024.3
Downloaded from https://www.cambridge.org/core. IP address: 18.119.140.45, on 08 Oct 2024 at 18:23:13, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/asb.2024.3
https://www.cambridge.org/core


ASTIN Bulletin 461

Then from the monotonicity of L(t; I∗, λ) over [0, x̄0), we have that L(t; I∗, λ)< 0 for t ∈ [0, t2)
and L(t; I∗, λ)> 0 for t ∈ (t2, x̄0). Hence, it follows Lemma 1 that (I∗)′(x) = 1[0,t2)(x) for any x ∈
[0, x̄0]. As a result, I∗(x) = ∫ x

0
(I∗)′(t)dt = x ∧ t2 for any x ∈ [0, x̄0]. The proof of Lemma 15 is

finished.

A.7. Proof of Proposition 17
Proof.

φλ(x) =
⎧⎨⎩x + g2(x) − λ

2
, x ∈ [0, x1],

1
g1(x)

(
x + g2(x) − λ

2

)
, x ∈ (x1, M].

(i) Assume that Y has SPED with X. Let

x0 = inf

{
x ∈ [0, M] : x + g2(x) ≥ λ

2

}
. (A11)

For x>max{x0, x1}, we have that

φ ′
λ
(x) = − g′

1(x)

(g1(x))2

(
x + g2(x) − λ

2

)
+ 1

g1(x)
≥ 1

g1(x)
> 1.

Assume that x0 ≥ x1. From Lemma 15, we have that the optimal ceded loss function over [0, x0]
is given by

I∗(x) = (x − d1)+ (A12)

for some d1 ∈ [0, x0].
For x> x0, φ ′

λ
(x)> 1. Hence, it follows from Theorem 3 that the optimal ceded loss function

over (x0, M] is given by

I∗(x) = I∗(x0) + (x − d2)+ (A13)

for some d2 ≥ x0.
From (A12) and (A13), we obtain that the optimal ceded loss function to Problem (3.6) is in
the form of

I∗(x) = (min{x, x0} − d1)+ + (x − d2)+, x ≥ 0, (A14)

where 0 ≤ d1 ≤ x0 ≤ d2.
Assume that x0 < x1. From Lemma 15, we have that the optimal solution to Problem (3.6) over
[0, x0] is given by

I∗(x) = (x − d1)+ (A15)

for some d1 ∈ [0, x0].
For x ∈ (x0, x1), φ ′

λ
(x) = 1 + g′

2(x)> 1 as g2 is a strictly increasing function. For x ∈ [x1, M],
φ ′
λ
(x) ≥ 1

g1(x)
> 1. Hence, by Theorem 3, the optimal solution to Problem (3.6) over (x0, M] is

given by

I∗(x) = I∗(x0) + (x − d2)+ (A16)

where d2 ≥ x0.
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Hence, From (A15) and (A16), we have that the optimal ceded loss function is given by

I∗(x) = (min{x, x0} − d1)+ + (x − d2)+, x ≥ 0, (A17)

where 0 ≤ d1 ≤ x0 ≤ d2.
From (A14) and (A17), we obtain that the optimal solution to Problem (2.1) is given by (4.5).

(ii) Assume that Y ↓SNED X and (X + Y) ↑SPED X. If x0 ≥ x1, by the same way as in the proof of (i)
of Proposition 17, we obtain that the optimal ceded loss function to Problem (3.6) is given by
(4.6).
Next we assume that x0 < x1. From Lemma 15, it follows that the optimal ceded loss function
over [0, x0] is given by

I∗(x) = (x − d1)+ (A18)

for some d1 ∈ [0, x0].
For x ∈ [x0, x1], φ ′

λ
(x) = 1 + g′

2(x) ∈ [0, 1]. For x ∈ (x1, M], φ ′
λ
(x) ≥ 1

g1(x)
> 1. Hence, from

Theorem 3, we obtain that for any x ∈ (x0, x1],

I∗(x) = min

{
max{x + g2(x) − λ

2
, I∗(x1) + x − x1, x0 − d1}, x − d1, I∗(x1)

}
, (A19)

and for any x> x1,

I∗(x) = I∗(x1) + (x − d3)+ (A20)

for some d3 ≥ x1. From (A18)–(A20), we obtain that the optimal solution to Problem (3.6) is
given by (4.7). This ends the proof.
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