EXACT ANALYSIS FOR A CLASS OF SIMPLE, CIRCUIT-SWITCHED NETWORKS WITH BLOCKING

YAAKOV KOGAN,* Technion-IIT

Abstract

We consider the same circuit switching problem as in Mitra [1]. The calculation of the blocking probabilities is reduced to finding the partition function for a closed exponential pseudo-network with $L-1$ customers. This pseudo-network differs from that in [1] in one respect only: service rates at nodes $1,2, \cdots, p$ depend on the queue length. The asymptotic expansion developed in [1] follows from our exact expression for the partition function.

GENERATING AND PARTITION FUNCTIONS

1. Introduction

Consider the same circuit switching, with blocking, as in Mitra's network [1]. There are $\boldsymbol{K}_{\boldsymbol{j}}$ lines from center j to a hub, center $(p+1), 1 \leqq j \leqq p$ and K_{p+1} lines from the hub to the destination, center $(p+2)$. A call originating at center j, of class j, requires two lines, one line from center n to the hub, another line from the hub to the destination. The holding times for circuits of class j are independent random variables with an arbitrary distribution and mean $1 / \mu_{j}$. At the termination of a call, both links are simultaneously released. The total offered traffic of call-requests at center $j, 1 \leqq j \leqq p$, is Poisson with rate parameter λ_{j}. A call-request at center j may be blocked either if all lines from center j to center $(p+1)$ are in use, or if all lines from center $(p+1)$ to center $(p+2)$ are in use. Blocked calls are cleared. The problem is the calculation of equilibrium blocking probabilities at each of the originating centers $1,2, \cdots, p$.

Let
and consider the case

$$
\rho_{j} \triangleq \lambda_{j} / \mu_{j}, 1 \leqq j \leqq p
$$

$$
L \triangleq \sum_{j=1}^{p} K_{j}-K_{p+1} \leqq 1
$$

Let $n_{j}, 1 \leqq j \leqq p$, denote the number of calls of class j in progress, and write $n=$ $\left(n_{1}, \cdots, n_{p}\right)$. Then the unique equilibrium distribution

$$
\pi(n)=\frac{1}{G} \prod_{j=1}^{p} \frac{\rho_{j}^{n_{j}}}{n_{j}!} \quad n \in \mathscr{S}
$$

where

$$
\mathscr{S}=\left\{0 \leqq n_{j} \leqq K_{j}, 1 \leqq j \leqq p, \text { and } \sum_{j=1}^{p} n_{j} \leqq K_{p+1}\right\},
$$

and G is the normalizing constant. G is the partition function

$$
G(K ; L)=G\left(K_{1}, \cdots, K_{p} ; L\right) \triangleq \sum_{n \in \mathscr{S}} \prod_{j=1}^{p} \frac{\rho_{j}^{n_{j}}}{n_{j}!}
$$

[^0]The equilibrium probability that a call of class j is not blocked is

$$
\frac{G\left(K_{1, \ldots}, K_{j}-1, \ldots, K_{p} ; L\right)}{G\left(K_{1, \ldots,}, K_{j, \ldots}, K_{p} ; L\right)}
$$

In [1] it is shown that

$$
G(K ; L)=\left[\prod_{j=1}^{p} \rho_{j}^{K_{j}} / K_{j}!\right]\left[\prod_{j=1}^{p} B^{-1}\left(K_{j}, \rho_{j}\right)-I(K ; L)\right]
$$

where

$$
B\left(K_{j}, \rho_{j}\right) \triangleq\left[\rho_{j}^{K_{i}} / K_{j}!\right] / \sum_{n=0}^{K_{j}}\left(\rho_{j}^{n} / n!\right)
$$

and a rather cumbersome procedure is given for generating the coefficients $A_{n}(L)$ of the complete expansion of $I(K ; L)$ in terms of the inverse powers of a parameter $N \gg 1$. The parameter N is introduced in such a way that

$$
\begin{aligned}
& \beta_{j}=K_{j} / N, \quad j=1,2, \cdots, p, \\
& \Gamma_{j}=N / \rho_{j},
\end{aligned} \quad . \quad \text {, }
$$

are quantities of order 1.
We show that for a fixed $\boldsymbol{K}, I(\boldsymbol{K} ; L)$ is the partition function for a closed exponential pseudo-network with a single class of $L-1$ customers. This pseudo-network differs from that in [1] in one respect only: service rate v_{j}, at node $j, 1 \leqq j \leqq p$, is dependent on the queue length l_{j} and is given by

$$
\begin{equation*}
v_{j}=v_{j}\left(l_{j}\right)=\frac{\rho_{j}}{K_{j}}\left(1-\frac{l_{j}-1}{K_{j}}\right)^{-1}=\Gamma_{j}^{-1}\left(\beta_{j}-\frac{l_{j}-1}{N}\right)^{-1} . \tag{1}
\end{equation*}
$$

Thus, the large parameter N does not interfere with the calculation of the partition function of the pseudo-network. Moreover, the expansion of $I(K ; L)$ derived in [1] follows easily from the exact expression for this partition function, but our derivation is considerably shorter and simpler than Mitra's.

2. Main result

We start with the explicit expression for generating function

$$
\begin{aligned}
\mathscr{C}_{(z ; x)} & \triangleq \sum_{L=0}^{\infty} \sum_{K_{1}=0}^{\infty} \cdots \sum_{K_{p}=0}^{\infty} x^{L} z_{1}^{K_{1}} \cdots z_{p}^{K_{1}} G(\boldsymbol{K} ; L) \\
& =\frac{e^{\Sigma_{j} \rho_{j} z_{j}}}{1-x}\left[1 / \prod_{j=1}^{p}\left(1-z_{j}\right)-x / \prod_{j=1}^{p}\left(1-x z_{j}\right)\right]
\end{aligned}
$$

given in [1]. Denote by $\mathscr{F}(z ; x)$ the generating function of the partition function

$$
J(\boldsymbol{K} ; L)=I(\boldsymbol{K} ; L) \prod_{j=1}^{f}\left(\rho_{j}^{K_{i}} / K_{j}!\right)
$$

where

$$
I(K ; L)=\sum_{0 \leq n \leq K} 1_{l n \leq L-1} \prod_{j=1}^{p} \frac{K_{j}!}{\left(K_{j}-n_{j}\right)!}\left(1 / \rho_{j}\right)^{n_{j}}
$$

Then one can easily see that

$$
\mathscr{L}(z ; x)=\frac{x}{1-x} \prod_{j=1}^{p} \frac{e^{\rho_{j} z_{j}}}{1-x z_{j}} .
$$

By Cauchy's formula

Denote

$$
J(\boldsymbol{K} ; L)=(2 \pi i)^{-(p+1)} \oint_{C_{x}} \frac{x^{-L}}{1-x} d x \prod_{j=1}^{p} \oint_{C_{j}} \frac{z_{j}^{-K_{j}-1} e^{\rho_{j} z_{j}}}{1-x z_{j}} d z_{j}
$$

$$
\begin{equation*}
R(x)=\prod_{j=1}^{p} \oint_{C_{j}} \frac{z_{j}^{-K_{j}-1} e^{\rho_{j} z_{j}}}{1-x z_{j}} d z_{j} \tag{2}
\end{equation*}
$$

Then

$$
J(K ; L)=\oint_{C_{x}} \frac{x^{-L} R(x)}{1-x} d x=\left.\frac{1}{(L-1)!} \frac{d^{L-1}\left[R(x)(1-x)^{-1}\right]}{d x^{L-1}}\right|_{x=0} .
$$

We now show that

$$
\begin{equation*}
R(x)=\left(\prod_{j=1}^{p}\left(\rho_{j}^{K_{j}} / K_{j}!\right)\right) \prod_{j=1}^{p} f_{j}(x) \tag{3}
\end{equation*}
$$

where

$$
f_{j}(x)=\rho_{j} \int_{0}^{\infty} e^{-\rho_{j} t}\left(1+x t_{j}\right)^{K_{j}} d t_{j}
$$

Define the function

$$
\begin{equation*}
g(x ; M) \triangleq \sum_{n_{1}+n_{2}=M} \frac{\rho^{n_{1}}}{n_{1}!} x^{n_{2}} . \tag{4}
\end{equation*}
$$

It is easily seen that

$$
\begin{equation*}
\sum_{M=0}^{\infty} z^{M}\left(g(x ; M)=e^{\rho z} /(1-x z)\right. \tag{5}
\end{equation*}
$$

and

$$
\begin{align*}
g(x ; M) & =\frac{\rho^{M}}{M!} \sum_{n=0}^{M} \int_{0}^{\infty} e^{-t}\binom{M}{n}\left(\frac{t x}{\rho}\right)^{n} d t \tag{6}\\
& =\frac{\rho^{M}}{M!} \rho \int_{0}^{\infty} e^{-\rho t}(1+x t)^{M} d t .
\end{align*}
$$

Now (3) is implied by (2) and (4)-(6). Thus we have

$$
I(K ; L)=\left.\frac{1}{(L-1)!} \frac{d^{L-1}\left[F(x)(1-x)^{-1}\right]}{d x^{L-1}}\right|_{x=0}
$$

where

$$
F(x)=\prod_{j=1}^{p} f_{j}(x)
$$

Leibnitz's rule for differentiating the product of several functions yields

$$
\begin{align*}
I(\mathbb{K} ; L) & =\frac{1}{(L-1)!} \sum_{m=0}^{L-1}(L-1) F^{(m)}(0)(L-1-m)! \tag{7}\\
& =\sum_{m=0}^{L-1}\left(F^{(m)}(0) / m!\right)
\end{align*}
$$

where
(8)

$$
F^{(m)}(0)=\sum_{l_{1}+\cdots l_{p}=m} \frac{m!}{l_{1}!\cdots l_{p}!} \prod_{j=1}^{p} f_{j}^{\left(l_{j}\right)}(0)
$$

while

$$
\begin{equation*}
f_{j}^{(l)}(0)=\frac{\left(K_{j}\right) l!}{\rho_{j}^{l}}=l!\Gamma_{j}^{l} \prod_{i=0}^{l-1}\left(\beta_{j}-\frac{i}{N}\right) . \tag{9}
\end{equation*}
$$

(Here $\left(K_{j}\right)_{l}=K_{j}, \cdots,\left(K_{j}-l+1\right)$). The final result is implied by (7)-(9) and given by

$$
\begin{equation*}
I(\boldsymbol{K} ; L)=\sum_{m=0}^{L-1} \sum_{t_{1}+\cdots+l_{p}=m} \prod_{j=1}^{p} \Gamma_{j}^{l_{j}} \prod_{i=1}^{t_{j}}\left(\beta_{j}-\frac{i-1}{N}\right) \tag{10}
\end{equation*}
$$

It is easily seen that (10) is the partition function for the closed exponential network with $p+1$ tandem queues and $L-1$ customers of a single class. The queueing discipline in each queue is FCFS. The service rate at queue $(p+1)$ is 1 while the service rate v_{j} at queue $j, 1 \leqq j \leqq p$, is dependent on the queue length l_{j} and given by (1). Thus $I(K ; L)$ may be computed by well-known recursive formulas. Starting from (11), one can easily obtain the same final formulae for the expansion coefficients $A_{n}(L)$ as in [1].

Reference

[1] Mitra, D. (1987) Asymptotic analysis and computational methods for a class of simple, circuit-switched networks with blocking. Adv. Appl. Prob. 19, 219-239.

[^0]: Received 21 February 1989.

 * Postal address: Faculty of Industrial Engineering and Management, Technion-Israel Institute of Technology, Haifa 32000 , Israel.

 Research supported by a grant from the Israeli Ministry of Communications.

