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DIRECT PRODUCT DECOMPOSITIONS 
OF TWISTED WREATH PRODUCTS 

BY 

JEFFREY M. BROWN 

The twisted wreath product of two groups was first defined by B. H. Neumann 
([1]) who used this construction to present a group-theoretic proof of a theorem 
due to Auslander and Lyndon. In this paper we present a complete character
ization of the direct product decompositions of a restricted twisted wreath product 
of two groups A and B provided this product is not simply a semi-direct product of 
AhyB. 

1. Preliminary results. To recall the definition let A and B be two groups, let 
S<,B and T SL right transversal for S in B. Let p : S-+ Aut(A) be a homomorphism. 
If T:B-+T denotes the obvious right coset representative map we denote by 
1— T:B->S the corresponding projection of B onto S, and accordingly 

V-1 = (ft1-*)-1, be B. 

Clearly B acts as a transitive group of permutations on the set T: 

tb = (tb)\ teT, beB. 

Likewise for the action of S on A we write: 

as = (p(s))(a), a e A, seS. 

Also, convenience would have us adopt the notation 

s(b, t) = (tb-1)*-1, beB, teT. 

The base group Fis defined to be the restricted direct product of \B:S\ copies of 
A indexed by the elements of T: 

F=Ul^A[t], A[t]~A. 
Neumann ([1]) established a homomorphism mapping B into Aut(F), the element 
beB being mapped to the automorphism which sends an element feF to the 
element/5 where 

f\t) = (/(t&_1))s(&^, t e T. 

The restricted twisted wreath product W=W(A, B, S, />) is defined to be the 
semi-direct product of F by B, i.e., B • F, with respect to the above mentioned 
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homomorphism. (If one allows F to be the cartesian product of the copies of A 
then, using the same mapping, one obtains the unrestricted twisted wreath product 
which is not considered in this paper). Neumann ([1]) also established that, up 
to isomorphism, PFis independent of the choice of the transversal T. 

Several special cases are of interest. If S= 1 then W is the restricted standard 
wreath product of A by B, while if S=B then W is the semi-direct product of A 
by B with respect to p. We call W a proper twisted wreath product if S^B. Finally, 
if p is trivial and S contains no non-trivial normal subgroups of B, then W is a 
restricted (not necessarily standard) wreath product. 

We now present several facts and establish some relevant notation. The largest 
normal subgroup of B contained in S is denoted Core^OS): the intersection of the 
conjugates of S in B. The centralizer C8(A) of A in S is seen to be the kernel 
of p. The centralizer CA(S) of S in A, on the other hand, consists of those elements 
which are fixed points of every automorphism in p(S). We also adopt the notation 
r\\ W->B for the obvious natural projection of W onto B; and y (à) for the inner 
automorphism of A corresponding to conjugation by a. 

For any subgroup A0<A we define 

D(A0) = {feF\ f(t) = f(f) e A0, t91' e T}. 

Clearly D(A0)c±A0 provided |i?:S|<oo, and is trivial otherwise. Using Lemma 3.3 
of [2] it is easily verified that 

(1.1) Cw(B) = i:(B)xD(CA(S)), 

and 

(1.2) Nw(B) = BxD(CA(S)), 

from which 

(1.3) CW(F) = {bf\be Core^S), p(s(b, t)) = y(f(t))} 

is easily deduced. 
Another useful notation is to let a[t] denote that element of F defined by 

so that 

(1.4) (a[t])b = (as{b'trl)[t% aeA, beB, teT. 

Observe that for any element bfeW and any teT such that tb^t9 the element 

(1.5) bf0 = (bf)wt)^m 

is conjugate to bf in W and has the property that/0(0=1, a fact useful in the 
sequel. 
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For a n y / e F , let 

*(/) = {teT | / ( 0 5*1}. 

Then there exists a homomorphism TT\F->A\A! defined by 

"(f)=f(t1)---f(h)A', 
where {tu . . . , tk} is any ordering of cr(/). Now, for A0<A, define 

M(A) = {/ e F | TT(/) e ^ 'M '} <S ^ 

As the kernel of TT is obviously M(Ar), it follows by a straightforward argument 
that: 

(1.6) If M+ is any subgroup of F containing M(A') and if 7T(M+)=A+/A\ then 

(i) M+ = M(A+), 

(ii) ^+[f] = M + n A[t]9 t e T, 
and 

(iii) A+ is p(S)-invariant whenever M+ <\ W. 

Finally, generalizing the proofs of the corresponding results for restricted 
standard wreath products ([2], Theorem 4.1 and Corollary 4.3), we have 

(i) [B,F] = M([A,S]), 

(1.7) (ii) W = B'-A'- [A, S], if \B:S\ = 1 

(iii) W' = B' • F' • M([A, S]\ if |B:S |<11, 
where 

[A, S] = gpjia^a81 a e A, s e 5}. 

2. Active and fully-active subgroups. In this section we establish results con
cerning two classes of normal subgroups. Recall that rj : W->B is the obvious natural 
projection. 

DEFINITION 2.1. A subgroup G< W is said to be active if for every teT there 
exists b e rj(G) such that tb^t. 

Clearly, if rj{G)< CoieB(S) then G is not active. On the other hand suppose 
G is normal and not active. Then there exists some teT such that t=tb for every 
b e rj(G). If c is any element of B, then 

f/C\& __ fCb __. Acbc~ )c == fC 

for every b e rj(G). But B acts transitively on T, hence b fixes every element of T, 
that is, b e CoreB(S). Thus we conclude that a normal subgroup G is active if and 
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only if ^ ( G X Core^S). As a consequence we have: 

LEMMA 2.1. If N is an active normal subgroup of W, where W is proper (S^B), 
then 

(i) for every t e T and ae A there exists an element feNr\F such that 
f(t)=a, 

(ii) F'<N n F. 

Proof. As N is active there exists, for every t e T, an element bgeN such that 
tîét*. Letting 

/ = [bg9a[t]] = g"1 • (a-1 [t])b • g • a[t]9 

we have, using (1.4), 

fit) = g-\i)g{t)a = a, 

and as a is arbitrary the proof of (i) is complete. 
Clearly (ii) follows if it can be shown that for every t eT, A'[t]<N n F. Hence 

let t e T and ax, a2£A. Since N is active, there exists bfeN such that th^t. 
Moreover, by (1.5), we may assume tha t / ( / )= l . However, any commutator of the 
form [bf g] must be an element of N for any g e F; in particular each of 

/ i = [bf, ajt]], 

h = V>f, a2[t]], 

/s = [&/,(«rV)M] 
is in N. Upon expansion, 

/ 1 - / 2 - / a = ([fli ,fl2])Me^ 

Since the set of such elements generate Af[t] the proof is complete. 
The second, more restricted class of subgroups, is defined as follows. 

DEFINITION 2.2. A subgroup G< Wis said to be fully-active if, for every ae A, 
t eT and /? e B, there exists an element bfeG such that 

{a[t]Y = {alt})". 

The most important property of fully-active subgroups is described in 

LEMMA 2.2. If N is a fully-active normal subgroup of a proper restricted twisted 
wreath product W, then 

M([A, S])£N n F. 

Proof. It is sufficient, by (1.7)(i), to prove that 

[B, F]<N n F. 

Consider the element [/?, a[t]] for an arbitrary (5 e B, ae A and t eT. Clearly 

[P, a[t]] = ( a - W a M -
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From our definition there exists an element bfeN such that 

(a-W = (a"W', 
and hence 

W,a[t]] = [bf,a[t]]eNnF. 

Since such elements generate [B, F] this proof is complete. 

3. Direct product decompositions. It will be shown in this section that the direct 
product decompositions of a proper restricted twisted wreath product are of two 
types. The first type, called the regular decompositions, are characterized by the 
fact that at most one of the factors is active. The second type of decomposition, 
the irregular decomposition, occurs only under special restrictions on A, B, S 
and />, as will be clear from the statement of Theorem 3.1. 

In order to avoid a more cumbersome notational change at a later date we let 
BP=r)(P)9 BQ = r]{Q), BPnB=BC\P, and BQnB=BC\Q, where rf.W-^B is 
the natural projection of W onto B. 

We begin by considering some of the conditions necessary for a regular decom
position. If W=FxQ and Q is not active then, since S^B and B=BP- BQ, 
clearly F is active; hence, by Lemma 2.1, for every as A and every t e T there 
exists an element/eP n F such that f(t)=a. As [P, Q] = l, it follows that for 
every ae A and every t eT 

(aW = a[t], bgeQ, 

and hence, in fact, Q<.CW(F). From (1.3) we have 

s(b, t) = y(f(t)), bfeQ, teT, 
and 

Now, since Q<CW(F), it is clear that F is fully-active, and by Lemma 2.2 

M[A9 S]<,P n F. 

Moreover, since F'<P n F (Lemma 2.1), it follows that 

M(A') <>P n F. 

Thus, by (1.6), there exists a p(S)-invariant normal subgroup APnF<A such that 

P HF = M(APnF). 

At the same time, since P is normal the set 

PF = {fe F | bfeF, beBP = rj(P)} 

is a subgroup of F containing P n F9 and again by (1.6) there exists a normal sub
group AP<A such that 

PF = M04P). 
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Returning to Q we see that 

Q n F ^ CW(B\ 

since P is fully-active and [P,Q]=1. Hence, by 1.1, there exists a subgroup 

AQnF^CA(S) such that 

Q n F = D(^Q n ip). 

Indeed, applying Lemma 2.1(i) to P and using the fact that [P, Q]=l, it is clear 
that 

where £(.4) denotes the center of A. If \B:S\=n and (ApnF)1/n denotes the 
w-isolator of ApnF, then 

is trivial; for if a is in this set, then the element/e g n F for which/ ( l )=a has 
the property that 

contradicting the obvious restriction that 

M(APnF) n D(AQnF) = 1. 
The set 

QF = {feF\ bfeQ,beBQ=r](Q)} 

also can be seen to be a subgroup of F, since Ô is normal. In fact, we can now 
prove that 

QF ^ Cjv(Bp)l 

for if bf G Q and b'f e P then 

*>/= (V)67' = w/'1&; = &7&' = bp\ 
since Q<,CW{F) a n d [#p, BQ] = 1. To determine the structure of QF we sidestep 
for a moment. 

Since P is fully-active there exists, for each t e T, at least one element bfeP such 
that 

( a [ l ] ) r l = (a[lDw, fl6A 

If we select one such element Z^/i for each t e T we have, by (1.4), 

( f lW)^" 1 = (aa(6'-*})W, Û G A 

Now for each t e T define 

à(t)=ft(t)-\ te T. 

Then the set of elements {â{t)\t e T) has the property that for every t G T there 
exists an element b e BP (namely bt) such that 

lb = t 
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and 

P(s(b, I)"1) = y(a(t)). 

Coming back to QF we have that 

QF < {feF | /(1) = a9 f(t) = am\ teT9aeA}9 

since QF<CW(BP). Letting 

AQ = {aeA\a=f(l)9feQF}9 

we observe that 

(3.1) (am[t])b = (am)[t% aeAQ, beBP9 te T. 

Based on this development we are led to make the following definition. Caution 
should be taken concerning the notation of this definition as it is perhaps suggestive. 
The subscripts which appear, though very useful for visualizing what is happening, 
must at all times be considered only as labels, especially when attempting a proof 
of the sufficiency of the conditions set forth in Theorem 3.1. 

DEFINITION 3.1. Let A and B be two groups, S a proper subgroup of B, Ta. 
fixed right transversal for S in B9 and p:S-+Aut(A) a homomorphism. A system 
consisting of four normal subgroups 

Ap9 ApnF, AQ9 AgnF 

of A9 and four normal subgroups 

Bp9 BpnB, BQ9 BqnB 

of B, will be called a p(S)-fracture of A and B provided that: 

(1) (i)Ap-AQ=A9 

(n)Ap>APnF>[A9S]-A'9 

(iii) APnF is p(S)-invariant, 

(iv) AQnF<AQ O 1{A) n CA(S)9 

(note that AQ=l if | £ :S | = oo) 

(v) AQnF n (APnF)1/n=l9 n=\B:S\; 

(2) (i) BP-BQ=B9 

(ii) [BP>BQ]=l9 

(iii) BQ< COTQB(S)9 

(iv) BQnB<BQ9 

(v) BQnB<Cs(A)=Kerp9 

(vi) BpnB<BP9 

(vii) BpnB nBQnB=l; 

(3) at least one of AP, BP and one of AQ, BQ must be non-trivial. 
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The substance of the previous discussion is that the appropriate subgroups do 
form a p(»S)-fracture of A and B. The existence of a p(S)-fracture unfortunately is 
not sufficient to ensure that the corresponding restricted twisted wreath product 
will have a direct product decomposition; indeed we need additional compatibility 
conditions to ensure that the pieces of our fracture will fit together. 

DEFINITION 3.2. A p(*S)-fracture is said to be mendable provided there exist 
two isomorphisms, 

TTp : BplBpnB —> APjAPnF, 
and 

77Q : ̂ ol^QnB ~* AQIAQKF, 

and a set of elements 

{â(t)eA\teT}9 

such that 

(i) (aS{t)[t]f=(aà{tb))[tb], aeAQ,beBP,te T, 
(ii) P(s(b, t)-i)=y(cfW), beBQ,ae 7rQ(bBQnp), 

(iii) the map a->7f]}(aAp) • ^(a^Ag) is an isomorphism of (AP)1/n n AQ 

to Bj(BpnB • BQnB), 
(iv) the map b->7rP(bBp) • TTQ^^BQ)11 is an isomorphism of BP n BQ to 

Al(ApriF ' {AQ^PY). 

The fact that the subgroups of our discussion form a mendable p(5)-fracture is 
also quite direct. Indeed, condition (i) has already been verified (see (3.1)). The 
isomorphisms 7rP and TTQ arise in the following natural way. To each element 
b G BP there corresponds a set of elements/e F such that bfeP. This correspond
ence is in fact a homomorphism from BP onto M(AP)lM(ApnF) which in turn is 
isomorphic to AP[ApnF. The kernel of this homomorphism is simply BpnB, and 
we let 7TP then be the appropriate induced isomorphism. If to every b e BQ one 
assigns the set of a l l / G F such that bf'1 E Q, it is easily shown that this defines a 
homomorphism from BQ onto QF\Q n F while QF\Q n F~AQ[AQF. The kernel 
of this homomorphism is clearly BQnp, and TTQ can be taken to be the corresponding 
induced isomorphism. 

To verify condition (ii) it is necessary to investigate the product of two elements 
of Q, for (ii) follows from the fact that this product must be in Q. 

The last two conditions follow from the definitions of TTP and TTQ and arise in the 
following natural way. For every b e B there exists 6X/1 G P and 62/2 e Q such that 

b = bjybj* 

Since Q<CW(F), it is clear that/2=/1"1 . If we assign to each b EB this unique 
e lement / EPF n QF, we obtain a homomorphism having kernel BpnB • BQnB. 
Hence 

B/BpnB ' BçnB — &F n Ô*1-
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It is not hard to show that 

PFnQF~(AP)1/n nAQ9 

and condition (iii) is then easily verified. Condition (iv) arises in like fashion by 
considering an arbitrary element/G F. 

Conversely, proving the existence of a regular direct product decomposition 
of W9 given a mendable p(S)-fracture of A and B is straightforward, though 
lengthy. As candidates for the factors we let 

P = {bf\be BP,feM(7TP(bBPnB) • APnF)} 
and 

Q = {bf\ beBçJitf»-1 =/(l) 6 vQ(b-lBQnB) • AQnF}. 

This proof will not be presented here. 
Our theorem then reads: 

THEOREM 3.1. 4̂ proper restricted twisted wreath product W(A, B, S, p) has a 
non-trivial direct product decomposition if and only if either: 

1. A and B have a mendable p{S)-fracture9 or 
2. (i) A is abelian, with a unique square root for every element; 
(ii) \B:S\=29 with right transversal tl9 t2; 

(iii) p(S) consists of the identity and the automorphism (denoted ( )-1) which 
sends every element of A to its inverse; 

(iv) B=BPxBQ 

where (a) BP<£ COTQB(S)=S, J5Q<S, 
(b) for b e BQ, p(s(b, *,))=( )~x if and only if t]y*ti9 i = l , 2, 
(c)for beBP9 p(s(b9 f,))=l, f = l , 2. 

The proof consists of showing that Wh&s an irregular decomposition if and only 
if JF satisfies condition 2 of Theorem 3.1. We begin by showing these conditions to 
be necessary. Let BP=rj(P) and BQ=rj(Q) as before. The fact that A is abelian 
follows from Lemma 2.1 since both P and Q are assumed to be active. Then, 
since F is abelian, 

[Bp, F] = [P, F] £ P, 
and 

[BQ,F] = [Q,F]£Q. 

For each t e Tlet BP[t]={b e BP | th9^t}. Since P is active, BP[t]^0 for each 
t e T. Then for each b[t] e BP[t] 

[b[t], a[t]] = (a-1!*»*01 • a[t] eP, aeA. 

Since this element commutes with every /3 e BQ, we have 

(a_1[t])W] • a[t] = (a-^tfwy • (a[t])p 
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for every ft eB, t eT, aeA and b[t] e BP[t]. Since Q also is active there exists 
some triple 

(to, K Po), h e T, b0e BP[t], /S0 e JBg, 
such that 

a[t0] = (fl"1^])60^0, *S° ̂  t09 ae A, 
and 

( a - 1 ^ ] / 0 = (a['o])&0, • ^ *o> « e il. 
It now follows that s(b, t0)=l for every b eBP such that tl=t0, and likewise for 
any b eBQ for which fJJ=f0. It is also clear that 4̂ has no element of order 2, and 
that no element of A is a fixed point for every automorphism in p(S), i.e., CA(S)=l. 

A short argument also proves that if b is an element of BP not centralizing F, 
then b acts like £0 at t0, that is 

(fl[f0])» = (a[t0])\ aeA, beBP, b$ CW(F). 
Likewise 

(a[t0]y = (a[f0D* « G i , b eBQ9 b$ CW(F). 

But BP*BQ=B, hence |2?:S|=2. Moreover, either p(s(b0, t0))=( ) _ 1 or 
p(s(/30, t0))=( ) _ 1 but not both. For definiteness we assume the latter. It follows that 

/>(s(M)) = l, fce^p, r e T , 
while 

p(s(M)) = ( )~ \ fce^p, tbyéteT. 
In particular 

CF(BP) = [BQ, F], 

CF(BQ) = [#p> ^L 
and in fact 

F = (P n f ) x ( 8 n F ) ; 
hence 

The fact that >4 has a unique square root for every element now follows easily from 
the direct decomposition of F above, and the necessity of condition 2 is established. 

The proof that condition 2 is sufficient will again be omitted since it is lengthy 
but not difficult provided one takes as candidates for the direct factors 

P = BP- [BP, A[l]], 
and 

Q = BQ • [BQ9 A[l]]. 
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