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Abstract

In vivo fluorescence microscopy is a powerful tool to image the beating heart in its early development stages. A high
acquisition frame rate is necessary to study its fast contractions, but the limited fluorescence intensity requires
sensitive cameras that are often too slow.Moreover, the problem is even more complex when imaging distinct tissues
in the same sample using different fluorophores. We present Paired Alternating AcQuisitions, a method to image
cyclic processes in multiple channels, which requires only a single (possibly slow) camera. We generate variable
temporal illumination patterns in each frame, alternating between channel-specific illuminations (fluorescence) in
odd frames and amotion-encoding brightfield pattern as a common reference in even frames. Starting from the image
pairs, we find the position of each reference frame in the cardiac cycle through a combination of image-based sorting
and regularized curve fitting. Thanks to these estimated reference positions, we assemble multichannel videos whose
frame rate is virtually increased. We characterize our method on synthetic and experimental images collected in
zebrafish embryos, showing quantitative and visual improvements in the reconstructed videos over existing nongated
sorting-based alternatives. Using a 15 Hz camera, we showcase a reconstructed video containing two fluorescence
channels at 100 fps.

Impact Statement
Our method enables imaging fast-repeating processes like the heartbeat and reconstructing multichannel videos
with a high temporal resolution without the need for a high-speed camera. It uses a custom hardware controller to
modulate and synchronize multiple illumination and imaging devices. We share the code (for simulation and
reconstruction) and hardware schematics to implement Paired Alternating AcQuisitions, which allows replica-
tion and implementation in a wide array of existing lab microscopes.

1. Introduction

In vivo fluorescence microscopy is an essential tool to study the early stages of organ development in
animal embryos thanks to its intrinsically selective contrast.(1–3) When used to image the zebrafish, an
excellent animal model for cardiovascular research,(4,5) it allows studying the development stages of the
heart(6–8) and understanding the progression of early cardiac defects and diseases.(9–11) Correctly imaging
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the dynamics of the heartbeat requires high-speed acquisition due to the rapid beating of the heart. This
becomes a limitation when the low fluorescence intensity emitted by the labeled structures requires a
longer exposure time or extremely sensitive cameras that are either too slow or prohibitively expensive. In
addition to this, the use of several fluorophores to labelmultiple tissues usually requires that their emission
be recorded sequentially in different channels.

Some acquisition platforms are able to perform simultaneous high-speed acquisition in multiple
fluorescent channels. This is usually achieved by splitting the emitted light into multiple beams that
are redirected to different cameras, through the use of mirrors(12,13) and prisms.(14) However, these come
at the cost of an increased complexity in the optics due to the addition of the splitting components. These
optics and the use of multiple high-speed cameras make these systems very expensive and could make
them difficult to integrate into existing imaging platforms.

As an alternative, when such parallel high-speed imaging is not available, images acquired from
different channels at low speed could still be registered to their position in the heartbeat period (phase).
Approaches to solve this problem fall into two categories: prospective gating and retrospective gating.(15)

In prospective gating, the acquisition of images is triggered at precise timings that correspond to
desired sampling phases in the heartbeat cycle. On big samples, this trigger can be extracted from cardiac
probes that preciselymeasure the start and duration of a heartbeat.(16–18) Such signals would be difficult to
access in zebrafish embryos due to their small size. Instead, the trigger can be obtained by processing
(in real-time) a video signal captured by a dedicated second camera.(19,20) These prospective gating
methods give very good results even with slow acquisition devices, but they also require a dedicated
optical setup with real-time processing capabilities for triggering.

Retrospective gating methods acquire images at arbitrary phases and then attempt to estimate these
phases via post-acquisition algorithms. Their results are usually not as precise as those of prospective
gating, but as they do not require additional triggering hardware they can be easier to implement with
existing imaging setups. For example, it is possible to sort images acquired at random times in a period
based only on image distance to reconstruct a single-channel video with a virtually increased frame
rate.(21–23) In addition to their limited accuracy, these methods can struggle with multichannel data. In
some cases, it is possible to perform time registration between multiple channels by using a mutual
information criterion(24,25) or by registering them with a common reference channel.(26) Nevertheless,
these channel alignment methods require that high-speed sequences be available in each channel to work.

When imaging with slower cameras, one possibility would be to first generate virtual high frame rate
videos of each channel separately using the sorting methods above.(21,22) These virtual high-speed
sequences could then be synchronized using a mutual information-based algorithm designed for raw
high-speed movies(27) to obtain the final a multichannel video. We see two main drawbacks to this
potential method. First, the virtual high frame rate sequences obtained with sorting are not uniformly
sampled, and this sampling is different for each channel. This means that a perfect frame-to-frame pairing
from one channel to another does not exist, which will negatively impact the performance of channel
alignment. Second, high mutual information between the different channels is not guaranteed, and it can
be difficult to obtain correct channel registration depending on the imaged region or the fluorophores
used. These two drawbacks limit the expected performance of such a method, and could even make it
unusable in some scenarios involving highly uncorrelated signals.

Instead of solving the virtual frame rate increase and channel registration problems sequentially, we
propose amethod that considers them jointly. In a previouswork, we introduced amethod to disambiguate
images that appeared similar despite being captured in different phases of the heartbeat. We paired sharp
images with blurred images that encode the motion at the time of acquisition.(28) In this article, we extend
this technique into a general approach centered around Paired Alternating AcQuisitions (PAAQ), which
result in image sequences whose frames alternate between a common reference modality and other
channels (e.g., fluorescence channels). We then use this common reference to sort images from all the
channels at once, achieving simultaneously a virtual high frame rate and multichannel registration. In
order to address the lack of precision of naive frame sorting approaches, we also propose a phase
estimation algorithm. In addition to improving phase accuracy, it also overcomes two central limitations
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of plain image sorting: the resulting movies can be inverted in time and their phases cannot be assigned
quantitative time units to measure durations.

2. Problem definition and metrics

We define f c as the intensity of the signal obtained by imaging a periodic phenomenon (the embryo
heartbeat) using fluorescence microscopy, with each channel number c¼ 0,…,C�1 referring to a
distinct combination of illumination and emission wavelengths. The measured signal varies according
to its spatial location x,yð Þ and its phase θ. The intensity f c has a period of 2π, which is expressed as:

f c x,y,θð Þ¼ f c x,y,θ + k2πð Þ,∀k∈ℤ: (1)

The phase itself is a function of time expressed as θ tð Þ. In ideal time-periodic systems, it increases
linearly over time t following θ¼ωt, where ω is the angular frequency. In practice, such a relation is too
simplistic for the cardiac cycle. Indeed, some variability stems from both the biological nature of the
phenomenon and from environmental changes (e.g., temperature rising due to prolonged exposure to light
leading to an increase in heart rate.(29) Although the exact relationship between time and phase θ tð Þ is
unknown, it still follows a trend that is roughly linear θ tð Þ≃ ω

�
t, whereω

�
is the average angular frequency

calculated over multiple periods.
We consider C sequences of N images f c : , : ,n½ � (where : , : is a shorthand notation to describe all rows

and columns of the image,(30) and n¼ 0,…,N �1) obtained by sampling the signal f c at unknown phases
θc,n with a frame rate Facq, using a procedure that we detail below. Our objective is to retrieve the phases
θc,n, which contain all the information required to reconstruct synchronized image sequences across all
channels with an increased temporal resolution, as the phases give the position of each frame in the cycle.

More specifically, we want to compute estimates ~θc,n as close as possible to the ground-truth phases
θc,n, which are available only during simulation-based evaluation. We define our evaluation criterion as
the following error function:

E¼ min
Θ

1
NC

XC�1

c¼0

XN�1

n¼0

θc,n ⊖ ~θc,n +Θ
� ��� ��, (2)

where Θ is a phase shift common to all estimations, and ⊖ is a phase difference operator:

α⊖ β¼ α�β + k2π with k∈ℤ s:t: α⊖ β∈ �π,πð �: (3)

The global phase shift Θ in the error signifies that we do not care about the absolute phases of our
measurements, but only about their position relative to each other in the period. Indeed, the phase of the
first frame in our signal is unknown, but this information is not necessary to derive meaningful
information such as the time elapsed between events in the period, or to synchronize the channels.

3. Methods: Acquisition and reconstruction

In order to solve the previously defined problem, we introduce a two-stage method that combines PAAQ
imaging and post-acquisition processing to virtually increase the frame rate. The purpose of PAAQ is to
create a reference signal common to all fluorescence channels that allows synchronizing the sequences
with high precision. We then use the image-processing step to refine the estimate of the phase of each
frame, as well as to compute the main properties of the imaged signal. We illustrate the whole pipeline in
Figure 1. Sections 3.1–3.4 detail the different stages of our method.

3.1. Implementing PAAQ with active illumination

In our previous work,(28) we have introduced a technique that uses active illumination to acquire pairs of
images in quick succession by alternating between temporal illumination patterns. The first image in a pair
encodesmovement information for unequivocally sorting the sequence in order of increasing phase, while

Biological Imaging e20-3

https://doi.org/10.1017/S2633903X23000223 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X23000223


the second uses a short light flash that produces a sharp image used for analysis and display of the
reconstructed sequence. We extend this method to achieve synchronization of multiple fluorescent
channels by switching between imaging modalities at the same time as illumination patterns.

We start by defining a reference signal g x,y,θð Þ that is obtained by imaging the beating heart using
brightfield microscopy. Any modality is suitable to acquire g , and even one of the f c could be the
reference. However, since it is a sacrificial signal that will be discarded after imaging (as the time-
encoding illumination results in blur), we choose to use brightfield as it causes little to no photobleaching.
The intensity of this reference varies over the same space and phase as f c:

g x,y,θð Þ¼ g x,y,θ + k2πð Þ,∀k∈ℤ: (4)

For each channel, we use PAAQ to capture a sequence of N image pairs gc : , : ,n½ �, f c :½ , : ,n�ð Þ ,
consisting of a reference image and a signal image captured in quick succession by switching from
brightfield to fluorescence illumination every other frame:

even frames : gc l,m,n½ � ¼
Z tc + 2nΔT +ΔE

tc + 2nΔT

r t� tc + 2nΔTð Þð Þg lΔx,mΔy,θ tð Þð Þdt (5)

odd frames : f c l,m,n½ � ¼
Z tc + 2n+ 1ð ÞΔT +ΔP

tc + 2n+ 1ð ÞΔT

f c lΔx,mΔy,θ tð Þð Þdt, (6)

where Δx and Δy are the pixel width and height, l¼ 0,…,L�1 and m¼ 0,…,M �1 the row and column
index pairs, and n¼ 0,…,N �1 the time frame index. ΔT is the time interval between two consecutive

Figure 1. Overview of the proposed PAAQ method for virtual high frame rate cardiac imaging. Chain
symbols represent images that we consider as paired because they were acquired in rapid succession.
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frames, and tc the arbitrary time at which the first reference image associated to channel c is acquired.
Since we capture the images without interruption, ΔT directly relates to the acquisition frame rate of the
camera Facq ¼ 1=ΔT . The phase corresponding to each image f c : , : ,n½ � is θc,n ¼ θ tc + 2n+ 1ð ÞΔTð Þ and
r tð Þ is the temporal illumination pattern used to capture images of the reference signal. It is defined over
the interval 0,ΔE½ ÞwhereΔE is the exposure time of the camera.When acquiring images of the fluorescent
signals, a short light pulse of duration ΔP illuminates the sample, withΔP ≤ΔE. By using a short pulse, we
can ensure that the fluorescent images are sharp even if the frame rate of the camera is low. Figure 2
illustrates PAAQ imaging, corresponding to Step (b) in Figure 1.

The PAAQ method is based on the assumption that the delay between a reference image and its
associated signal image is small. By acquiring the reference image at the very end of the exposure time of
the camera, we make this delay entirely independent of the frame rate of the device. Indeed, this delay
becomes ΔC ¼ΔT �ΔE the transfer time of the camera, which is the time between two exposure periods
during which the device reads the pixel information and gets ready to capture a new frame. Even on
devices with low frame rate, this transfer time is typically very low (on the order of a few ms). Therefore,
we shape r tð Þ to capturemost information at the end of the exposure period, minimizing the delay between
images in a pair. Instead of the continuous ramp used in the original method(28) we use a series of pulses of
increasing amplitude for r tð Þ , as this pattern is easier to generate while retaining the same motion-
encoding properties as the ramp.

Given that the delay between a signal frame and its associated reference is very small, the phase
difference between the two will also be small due to the linear trend between time and phase. Over such a
low duration, the variability in the heartbeat cycle is negligible, and we can consider the phase delay
between each reference and its paired signal frame to be a constant. Therefore, since a constant phase shift
does not impact the global error defined in (2), finding the phase of each signal frame is equivalent to
finding the phase of its associated reference. This is amuch easier problem to solve, as all references are of
the same modality, and the results obtained on reference sequences will be directly applicable to their
associated signals from different channels. We are thus able to extend the PAAQ technique to generate
synchronized virtual high frame rate sequences from multiple fluorescent channels at no additional
computational cost.

Figure 2. Illumination modulation for PAAQ imaging. Quickly switching between different channels and
modalities allows associating fluorescence frames to a common brightfield reference. Chain symbols

represent images that we consider as paired because they were acquired in rapid succession.
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3.2. Sorting and orienting the references

Wecombine all the reference images into a single sequence g : , : ,n½ �by concatenating the acquired images
gc for each channel, containing a total of Ng ¼NC reference images. Similarly, we concatenate signal
frames from all channels into a single sequence f : , : ,n½ �. We can then apply a phase-sorting algorithm to
the reference sequence g to obtain a permutation σ : 0,…,Ng�1

� �! 0,…,Ng�1
� �

: n! σ nð Þ that
sorts the references by increasing phase. For this, we use a traveling salesman method introduced in
previous works(21) that finds the permutation σbyminimizing the total absolute image difference between
consecutive images. The obtained sorted sequence g : , : ,σ nð Þ½ �contains all the reference images reordered
to reproduce a single period of the heartbeat, with a virtually increased frame rate that depends only on the
amount of images Ng. This corresponds to Step (c) in Figure 1.

This sorting-based method assumes that the images in the reordered sequence correspond to a uniform
sampling of the signal. It assigns a linear phase estimate based on the position of each frame in the sorted
sequence:

θ̂n ¼ σ�1 nð Þ
Ng

2π: (7)

The traveling salesman solution does not contain directional information. Indeed, the permutation
σ0 nð Þ¼Ng�σ nð Þ+ 1 corresponds to a tour with the exact same cost. However, direction is important for
the reconstruction of a faithful video that follows the chronological order of events. If we assume that the
sampling frequency of the reference frames (i.e., half the frame rate of the camera) is at least twice as big as
the frequency of the imaged phenomenon (similarly to the Nyquist criterion), we can retrieve the direction
of the sequence by computing the average phase distance between consecutively acquired frames:

�Δθ̂ ¼
1

C N�1ð Þ
XC�1

c¼0

XN�2

n¼0

θ̂c,n+ 1 ⊖ θ̂c,n
� �

: (8)

When the sampling frequency assumption is met, the phase distance between consecutive frames must
be smaller than π (half a period), and �Δθ̂must be positive. If �Δθ̂ is negative, the permutation obtained using
sorting is in the wrong direction, and we must use σ0 instead to sort the sequence and compute the uniform

phase estimate θ̂. This is shown as Step (d) in Figure 1.

3.3. Nonuniform phase estimation using image distance

The assumption that the sorted sequence corresponds to a uniform sampling of a single period of the signal
is imprecise and leads to artifacts in the reconstructed sequence. Due in part to the ratio between the
acquisition frequency and the frequency of the imaged signal, and in part to the variations in the
periodicity of the phenomenon, different regions of the period will contain more or less sampling points,
as shown in Figure 3b.When reconstructing a video with the assumption that the sampling is uniformwill
generate distortions: stretching and shrinking will appear in low and high sampling rate areas, respect-
ively, as illustrated in Figure 3c. It is therefore important to refine the phase estimate in order to reconstruct
a faithful signal that correctly represents the dynamics of the imaged system.

In order to correct distortions in volumetric electron microscopy imaging caused by inhomogeneous
sampling in the axial direction, Hanslovsky et al. have developed an image-basedmethod that uses image-
to-image similarity to estimate the position of slices in the volume.(31) Although their application is
concerned with resampling the depth dimension in static volumes rather than the temporal dimension in
videos of the beating heart, the underlying ideas are highly relevant to our cardiac application problem and
we have implemented an algorithm that is inspired by theirs. For the sake of completeness, we provide the
derivation in full and point to similarities and differences.

The gist of themethod is the following. If onewere to fix an origin at the arbitrary time point with index
n in the image sequence and plotted an image-distance between the image at the origin and images located
at continuous-phase positions before or after the origin, one would obtain a function Dn uð Þ, with u the
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phase relative to the origin. If that function was known, one could deduce the phase of any image relative
to the image at the origin simply by computing their image-distance and inverting Dn uð Þ . Since this
function is neither known in practice nor unique – it depends on the image contrast, the field of view, and
the cardiac phase of the image taken as the origin, etc. – the key idea is to approximate it by a model. Two
assumptions allow building the model and estimating its parameters.

The first assumption is that the pixel-based distance between images in the signal increases with their
phase difference. Indeed, images that are temporally close to one another in the signal should be similar,
while images further away are more likely to look different. This echoes the hypothesis on which the
sorting-based virtual high frame rate technique is built.(21) We use the Minkowski distance of order 1 as
the distance metric d between two images a and b of size L×M :

d a,bð Þ¼
XL�1

l¼0

XM�1

m¼0

a l,m½ ��b l½ ,m�j j: (9)

The above assumption means that the distance curve at any n,Dn uð Þ, monotonically increases from 0 at
u¼ 0 to a maximum. Yet since the distance curves also inherit the periodicity of the imaged signal:

Dn uð Þ¼Dn u+ k2πð Þ,∀k∈ℤ, (10)

theDn uð Þmust first increase, thenmonotonically decrease from their maximum back down to 0 at u¼ 2π.
The second assumption of our method is that two distance curves corresponding to two nearby origin

points (whose phase is close) should be near identical. This is referred to as local constancy of shape by the
authors of the volumetric imaging method.(31) This assumption seems reasonable for our problem as the
motion of the heart is continuous, and over any arbitrarily short timespan its speed is near constant.

In comparison to themethod introduced for volumetric imaging(31) our assumptions are similar, except
that we do not assume that the distance curves are monotonic over the whole domain as it could not
account for the periodicity of the cardiac cycle. Instead, we impose that it can be split in two monotonic
parts, one increasing and one decreasing, which repeat periodically. It is noteworthy that our derivation
uses a distance metric (which decreases with the phase difference) rather than a similarity measure (which
increases with the phase difference). Beyond the definition of Dn , we will note further differences in
Sections 3.3.1 and 3.3.2.

Based on our assumptions above, we can now derive a two-step algorithm to estimate the nonuniform
positions of the samples: first, we estimate theDn uð Þ corresponding to each sample in our sequence, and
then we use these to compute new phase estimates, as illustrated in Figure 4. We iterate over these two
steps until the phase estimation converges, which corresponds to Step (e) in Figure 1. The following
subsections describe each step of the algorithm in more detail.

Figure 3. Reconstruction artifacts introduced by the uniform sampling assumption. (a) Fast repeating
process sampled with a low frequency. (b) Rearranged over a single period, the sampled points are not
uniformly spaced. (c) If assuming a uniform phase sampling, the reconstructed signal is deformed.
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3.3.1. Estimating the distance curves locally
We model the distance curves Dn using piecewise-linear functions ~Dn characterized by values ~dn l½ �,
l¼ 0,…,L�2 which we will compute below, defining L intervals over u∈ 0,2π½ Þ:

~Dn uð Þ¼

L
u
2π

~dn 0½ � if
u
2π

<
1
L

L
u
2π

� l
� �

~dn l½ �+ l+ 1�L
u
2π

� �
~dn l�1½ � if

l
L
≤

u
2π

<
l+ 1
L

, l∈ 1,…,L�2f g

L�L
u
2π

� �
~dn L�2½ � if

L�1
L

≤
u
2π

< 1,

0
BBBBB@ (11)

~Dn uð Þ¼ ~Dn u+ k2πð Þ,∀k∈ℤ: (12)

We impose constraints on the values ~dn :½ � to fulfill the monotonicity assumption on Dn (stemming
from the hypothesis that images farther away in phase look less similar):

~dn 0½ �≥ 0 (13)

~dn l½ �≥ ~dn l�1½ � ∀l∈ 1,…,Lmax
n

� �
(14)

~dn l½ �≤ ~dn l�1½ � ∀l∈ Lmax
n + 1,…,L�2

� �
(15)

~dn L�2½ �≥ 0, (16)

where Lmax
n is the position of the maximum of the function ~Dn, which is unknown a priori.

The image distance between any arbitrary origin and any other image at indexes nand i in our sequence
d g : , : ,n½ �,g : , : , i½ �ð Þ should match the value of the associated unknown distance curve evaluated at the
corresponding phase distance:Dn

~θi�~θn
� �

. Taking advantage of the local constancy of shape ofDn, we
can consider all image distances in a local neighborhood around any origin sample n as measurements of
the same distance curve. This allows us to find the values ~dn :½ � for each nby solving a weighted linear least
squares fitting problem that minimizes:

Ldist ~dn
� �¼ XNg�1

i¼0

XNg�1

j¼0

D i, j½ �� ~Dn
~θj ⊖ ~θi
� �� �2

wσ
~θi ⊖ ~θn
� �

, (17)

Figure 4. Image-based phase estimation algorithm. (a)We compute a local average distance curve ~Dn foreach
origin position n via least-squares fitting on the measurements D : , :½ � (b) We update the phase estimates by
minimizing thedistancebetween localmeasurements and the computedaveragedistance curves.We iterate over
these steps until convergence. The distance matrix D : , :½ � gets smoother as the phase estimates improve.
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where D i, j½ � ¼ d g : , : , i½ �,g : , : , j½ �ð Þ is the matrix containing all pairwise image distances between
reference frames, and wσ uð Þ is a Gaussian windowing function of given standard deviation σ that gives
more importance to measurements in a close neighborhood. This step is illustrated in Figure 4a.

If the phase estimates ~θn are close enough to the real phases, then the modeled ~Dn will be good
approximations of the distance curves Dn. When solving this step for the first iteration, we initialize ~θn
with the uniform sampling approximation θ̂n defined in (7) which gives a mean error of less than 10% of
the period if the sorted sequence contains at least 10 images.(22)

Taking into account the monotonicity constraints in (13) and (16), we use an efficient quadratic cone
programming algorithm(32) to minimize (17). However, writing the constraints requires knowing Lmax

n ,
which we find by solving the problem without monotonicity constraints beforehand. We detail the
expression of this quadratic programming problem in Appendix A.

We note here a second set of differences between our method and the volumetric imaging one,(31)

which lie in how we write and solve the curve fitting problem. Indeed, we do not resample the distance
matrix D : , :½ � to compute the loss in (17). This gives a solution that corresponds more closely to the
measurements but makes the least squares problem more complex to write in matrix form. Moreover,
using a constrained solver allows us to guarantee themonotonicity of the estimate, thus removing the need
of an additional truncating step to ensure the validity of the solution. We also choose to use all frames of
the sequence to compute each curve estimate instead of using an additional windowing that would exclude
distant points from the computations. This allows us to obtain distance curves defined over the whole
period, which we will use in the following step to update the phase estimates.

3.3.2. Fitting the phases to the curves
Using the results of the previous step, we can now update the phases ~θn in order tomake themeasurements

D : , :½ � match the estimated distance curves ~Dn as closely as possible. We write this as a weighted least
squares cost function:

C ~θ
� �¼PNg�1

n¼0

PNg�1
i¼0 D n, i½ �� ~Dn

~θi ⊖ ~θn
� �� �2

wσ
~θi ⊖ ~θn
� �

PNg�1
n¼0

PNg�1
i¼0 wσ

~θi ⊖ ~θn
� � : (18)

We use the same Gaussian windowing function wσ as in (17) to give less importance to samples far
from the origin point of the distance curves. This addresses the fact that these samples are more noisy and
less reliable.

We introduce a regularization term derived from the fact that we acquire images consecutively for each
channel, at a constant sampling rate.We consider the neighborhood containing any three reference frames
acquired successively. Over this region, we approximate the evolution of the phase over time using a
partial Taylor sum of degree 1. As the time delay between the acquisition of consecutive reference frames
is constant, according to this local model the phase step between these frames should be nearly constant.
We express this as the following regularization cost:

R ~θ
� �¼ 1

C N�2ð Þ
XC�1

c¼0

XN�2

n¼1

~θc,n+ 1 ⊖ ~θc,n
� �� ~θc,n ⊖ ~θc,n�1

� �� �2
: (19)

We combine the two cost functions using a regularization strength λ:

Lphase
~θn
� �¼ 1� λð ÞC ~θn

� �
+ λR ~θn

� �
: (20)

We minimize this objective function using a gradient descent approach. More specifically, we use the
Adam adaptive learning rate optimizer(33) to find an optimal estimate for ~θn.

Since we update the phase estimates in this step, the modeled distance curves ~Dn are no longer valid,
and we must recompute them with the new phases. We iteratively minimize (17) and (20) until
convergence of the phase estimates. We describe a reliable way to choose the values of the different
hyperparameters for minimization in Section 3.6.
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We note here the third main set of differences between the volumetric imaging method(31) and ours,
which concerns the loss functionLphase used for phase estimation. First, we use the distance metrics rather
than the phases to compute the cost in (18). This circumvents the need to use the inverse of ~Dn, which is
not clearly defined as the distance curves are not bijective functions. Then, we do not use the scaling factor
introduced in the volumetric imaging method, as its purpose is to correct for varying degrees of noise
between images, and localized artifacts on some frames. Given the imagingmethodwe use, the noise level
is comparable in all images, and using this scaling factor would only addmore complexity to the algorithm
with no expected performance improvement. Finally, we introduce a new regularization term in (19),
tailored to our imaging procedure to ensure that the estimated phases are consistent with the acquisition
sampling rate.

3.4. Reconstructing signal sequences

Our assumption that the phase delay between reference and signal images is constant allows us to use the
reference phase estimates ~θn to reconstruct synchronized virtual high frame rate sequences from the signal
frames, as shown in Figure 1f. To generate videos, we resample the sorted sequences at an arbitrary fixed
rate. Each video frame contains the signal frame of the corresponding channel with the closest possible
phase, as shown in Step (g) of Figure 1.

By combining the phase estimates with the known acquisition times, we can compute the average
frequency of the imaged signal over any region of the sequence. Given that the phase estimates are
wrapped over a single period, we first apply a simple temporal phase unwrapping algorithm(34):

~θ
0
c,n ¼ ~θc,n + ϕc,n (21)

ϕc,1 ¼ 0 ∀c∈ 0,…,C�1f g (22)

ϕc,n ¼
ϕc,n�1 + 2π if ~θc,n�~θc,n�1 < �π

2
ϕc,n�1 otherwise

(
∀n∈ 1,…,N�1f g, (23)

where ~θ
0
c,n are the unfolded phases for each channel, and ϕc,n represents how many periods have elapsed

before its associated frame. It increases by a full period when the difference between two consecutive
frames is lower than a threshold of�π

2, which prevents counting too many periods because of small errors
in the phase estimates. We can then compute the average angular frequency over a chosen region of the

signal by fitting a linear model on the points tc,n,~θ
0
c,n

� �
within that interval using linear least squares. The

slope of the model directly gives �ω over the analyzed region.
The frequency information, which was missing in previous sorting-based virtual high frame rate

methods,(21,23,28) allows to study the heart rate of the sample. It also allows converting phases into time
units, which is better suited for analyzing the dynamics of the heartbeat.

3.5. Theoretical analysis of the error caused by heart rate variability

In practice, as the heart rate varies, so does the phase delay between paired frames. This introduces errors
in the reconstruction step described in the previous section, as it is based on the assumption that these
phase variations are negligible. In order to find in which range this approximation is valid, we want to
quantify the impact of the cardiac frequency variability on the performance of our method.

Using (2), we derived (see Appendix B) an upper bound for the error Eϵ that results from the variability
in the heart rate:

Eϵ ≤
ΔC

NC

XC�1

c¼0

XN�1

n¼0

ϵc,nj j, (24)
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where ΔC is the time delay between paired images, and ϵc,n is the deviation between the instantaneous
frequency and its average: ωc,n ¼ �ω+ ϵc,n.

Thus, we can compute the upper bound of the error introduced by heart rate variability if we know the
statistical distribution of the cardiac frequency during the acquisition. For practical applications, it is
easier to describe it by using ωmin and ωmax , the minimal and maximal values (respectively) that this
frequency can take over the imaging process.

In the worst possible case, the heart rate is maximal during half of the acquisition and jumps without
transition to its minimal value for the other half of the acquisition. The bound in (24) then becomes:

Eϵ ≤ΔC
ωmax�ωmin

2
: (25)

If the cardiac frequency is uniformly distributed over its range during the acquisition (e.g., if the heart
linearly accelerates at a constant rate), the bound gets smaller:

Eϵ ≤ΔC
ωmax�ωmin

4
: (26)

And if its distribution is a normal (e.g., if the heart rate oscillates around its average value), using the three-
sigma rule to set the interval, the bound tends toward an even lower value:

Eϵ ≤ΔC

ffiffiffi
2
π

r
ωmax�ωmin

6
: (27)

In the case of a healthy heart that smoothly accelerates or decelerates, and may settle around a given
cardiac frequency, the distribution lies between the uniform and the normal.

For example, we compute the upper bound in a realistic scenario with a delay of ΔC ¼ 10ms between
reference and signal images, and an average heart rate of 2.5 beats per second, considering the cardiac
frequency distribution to be at worst uniform. If the heart rate stays between 0.5 and 4.5 beats per second,
the error due to cardiac frequency variability will be lower than 1% of the period: Eϵ ≤ 10�2 4:5�0:5

4 2π.
We consider a different scenario with all parameters equal except the interval ΔC ¼ 0:033s . This

corresponds, for example, to using a camera with a frame rate of 30 fps in a setup where triggering the
reference acquisition at the end of the exposure time is not possible. To guarantee the same 1% upper
bound as above in this scenario, the heart would have to stay between 1.9 and 3.1 beats per second:
Eϵ ≤ 0:0333:1�1:9

4 2π.
We can use these bounds to predict what performance to expect, based on rough estimates of the range

of heart rates that are expected or measured. This error induced by frequency variability will then be
combined with the precision of the phase estimation algorithm when measuring the overall error of our
method.

3.6. Reliable computation of the hyperparameter values

The performance of our phase estimation algorithm depends on the values ofmultiple hyperparameters. In
order to be able to apply our method in practice, we propose a reliable way to compute optimal values for
these parameters based on the acquired images. This guarantees the reproducibility of our results, and
allows to apply our method in new scenarios without requiring manual hyperparameter tuning.

The regularization strength λis the parameter with themost impact on performance.We find its optimal
value using an L-curve.(35) This consists in plotting the values of the residual cost from (18). The final
regularization cost from (19) for multiple values of λ. The curve resembles the shape of an L, as seen in
Figure 6c. To compute the optimal λ, we first applymin–max normalization to both costs thenmultiply the
regularization cost by a factor of 10. This is because in our case, the regularization corresponds to a strong
prior about the system, and must play a bigger role in selecting λ. We then choose the point in the rescaled
L-curve that is the closest to the origin as the optimal λ.

The width of the Gaussian window σ used in (17) and (18), as well as the number of points L used to
characterize the distance curves also impact the performance. To guarantee good results, σmust be small
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enough to capture local details, but large enough to avoid amplifying noise. The precision overall
improves with larger L, but at the cost of a slower convergence. In Appendix C, we detail our method
to find appropriate values for these parameters and for the gradient descent update step.

To enhance the performance of phase estimation, we can restart our iterative algorithm after conver-
gence, using the obtained phase estimates as the initial guess for the new run.We call this additional step a
precision pass. When restarting the minimization, we halve the width of the Gaussian window σ and
double L to get finer phase estimates. Even with the higher Land smaller σ, the minimization converges as
it starts from a better initial guess. This allows getting better precision using bigger values of L that would
have caused convergence issues if used directly on the initial uniform phase estimates.

4. Methods: Fluorescence cardiac imaging simulation

Previous works used simplified simulation models of the heart for performance characterization,
consisting of a circle (or cylinder) textured with a sinusoidal pattern, with a radius varying over time to
represent beating.(21,22,27,28) These models lack properties such as irregular texture, asymmetric contrac-
tion, or small variations in the periodicity that we find in experimental cardiac images. In order to test the
differentmethods and characterize their performance as reliably as possible, we designed a simulation tool
that reproduces the relevant properties of fluorescent beating heart images.We aim to synthesize a smooth
organic-like textured object that deforms following a nonlinear contraction wave that propagates
periodically through time and space asymmetrically. We also want to generate multiple channels that
contain variable amounts of mutual information, and to emulate the small variations in the periodicity of
the heartbeat.

4.1. Simulating a beating heart section

We define a function h x,yð Þ over a two-dimensional space to simulate a heart section:

h x,yð Þ¼ e x,yð Þσ x,yð Þ, (28)

where e x,yð Þ represents an ellipse with a thick outline and σ x,yð Þ is a two-dimensional simplex noise(36,37)

used for texturing. Simplex noise is a gradient noise function that generates visually isotropic and
continuous textures, and is commonly used in computer-generated graphics to procedurally create
natural-looking images. Its propertiesmake it suitable for creating synthetic textures with realistic features
in biomedical imaging,(38–41) and we use it here to generate an organic-like texture for the heart walls.

For later use in our simulations, we introduce a periodic continuously smooth pulse function obtained
by composing a sigmoid and a sine function:

sigsin θð Þ¼ sig sin θð Þ�bð Þsð Þ
sig 1�bð Þsð Þ (29)

sig xð Þ¼ 1
1+ exp �xð Þ , (30)

where b is the sigsin bias and s its slope. b controls the width of the pulse, with higher bias generating
shorter pulses, while s affects the overall slope of the rise and fall of the function, with higher slope
creating a fast-rising pulse.

In order to simulate the propagation of heart contraction through the section, we create a continuous
space transformation that preserves topology. This transformation varies on x and θ in order to model the
propagation of the contraction along one spatial dimension in time. It consists locally of a small rotation
followed by a scaling, representing the twisting and shrinking of the heart walls that happen during
contraction. This transformation can be expressed in matrix form:

T x,θð Þ¼R x,θð Þ �S x,θð Þ, (31)
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where the rotation and scaling matrices R x,θð Þ and S x,θð Þ are defined as follows:

R x,θð Þ¼ cos ϕ x,θð Þð Þ �sin ϕ x,θð Þð Þ
sin ϕ x,θð Þð Þ cos ϕ x,θð Þð Þ


 �
S x,θð Þ¼ 1+ Sx x,θð Þ 0

0 1+ Sy x,θð Þ

 �

: (32)

The rotation angle ϕ x,θð Þ and shrinking factors Sx x,θð Þ and Sy x,θð Þ are governed by a sigsin pulse:

ξ x,θð Þ¼Asigsin θ +
x
λ
+ θ0

� �
, (33)

where A is the amplitude of the pulse, θ0 is its initial phase shift, and λ is the spatial wavelength of the
contraction pulse. The parameters A, θ0, b, and s are set independently for the functions ϕ, Sx, and Sy ,
allowing to adjust the model to obtain a more realistic contraction.

Using the defined transform, we then compute the simulated reference signal as:

gsim x,y,θð Þ¼ h T x,θð Þ � x

y


 �� 
: (34)

In order to generate multiple fluorescent channels, we multiply this reference signal with two-
dimensional masking functions mc x,yð Þ:

f simc x,y,θð Þ¼ h T x,θð Þ � x

y


 �� 
mc T x,θð Þ � x

y


 �� 
: (35)

This method to simulate multiple fluorescent channels is not biologically plausible, but serves only
as a means to easily control the amount of overlap between channels through the shape of the masks.
This is sufficient to characterize the performance of our algorithms, and a biologically more accurate
model is unnecessary in this scope. Simulated heart sections in different positions are visible in
Figure 2.

4.2. Modeling the heart rate variability

We model the variability of the heartbeat as the combination of two contributions: a random jitter that
affects the phase locally, and a random acceleration that affects the phenomenon over a longer time span.
The first is motivated by the imperfect nature of a biological process that creates local variations within a
cycle, while the latter represents a slow variation of the average angular frequency over time. Using this
model, we express the simulated phase at time t as:

θsim tð Þ¼ θsim0 +

Z t

0
ωsim
0 + σωWω tð Þdt + σθWθ tð Þ, (36)

with θsim0 the starting phase and ωsim
0 the initial angular frequency. We use Wiener stochastic processes to

model the variability in phase W θ tð Þ and in frequency Wω tð Þ of the system, defined by:

W 0ð Þ¼ 0 W t + uð Þ�W tð Þ�N 0,uð Þ,∀t,u> 0, (37)

with N 0,uð Þ is a normal distribution of mean 0 and variance u. Their amplitudes σθ and σω allow to
control the overall amount of randomness in the simulation, as well as the strength ratio between the two
sources of stochasticity. We chose Wiener stochastic processes because of their property to generate
continuous paths, which is essential for modeling a heartbeat cycle as the motion of the heart is itself
continuous. We illustrate the evolution of phase variability in multiple scenarios using different strengths
for phase and frequency deviations in Figure 5.

Using the phase θsim tð Þ, we sample the simulated signals gsim and f simc as defined in (5) and (6) to obtain
simulated image pairs gsimc : , : ,n½ �, f simc :½ , : ,n�� �

. Thanks to the biologically inspired simulation models,
these images share the relevant properties allowing us to use them to characterize the methods exposed in
this work. A full simulated heartbeat is visible in Supplementary Video 1, where we also show the
simulation of PAAQ imaging generated with our phase model.
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5. Experiments and results

We characterized our method on both synthetic and real images. The following sections detail how we
conducted these experiments, and discuss the obtained results. For fast computations, we implemented
our gradient descent algorithm using JAX,(42) a high-performance numerical computing framework
accelerated with parallel computing. When running experiments, we noticed that keeping the state of the
Adam optimizer from one iteration of the phase estimation to the next instead of resetting its parameters
greatly speeds up convergence.

5.1. Validation of the simulation model

To confirm the plausibility of our phase simulationmodel, wemeasured the heart rate variability in a high-
speed dataset that was acquired for previous works.(21) It consists in a 55 hpf wild-type zebrafish embryo
imaged on a Leica DMR microscope equipped with a FASTCAM SA3 camera using brightfield at 1000
fps. We randomly isolated a subsequence of 4 seconds in the data, and identified its first period using
image similarity. We assigned linear phases from 0 to 2π to the frames of this first period, and then
estimated the phase of all the other images in the subsequence as the phase of the most similar frame in the
reference period.

We used these estimations tomeasure the phase deviation with respect to a perfectly periodic repetition
of the first period. We repeated this measurement many times with different starting frames to build a
relevant statistical representation of the experimental data. As shown in Figure 5a, the measurements
closely match our model when using the values σθ ¼ 0:15 and σω ¼ 0:04. This corresponds to a relatively
stable heart rate, as illustrated in the bottom-right panel of Figure 5b.

5.2. Characterization on synthetic data

We simulated the imaging of a heart with an average of 2:44beats per second in two fluorescent channels
(C¼ 2) using a camera with a frame rate of 20 frames per second (fps). We generated images of size
256 × 256, and added Poisson noise to each pixel before quantizing their values to 12 bits. We used
σω ¼ 0:04 and σθ ¼ 0:15 to model the variability of the phase with comparable dynamics to what we

Figure 5. Stochastic phase model for simulating heart rate variability. Our model uses two parameters to
represent variability: a phase deviation σθ and a frequency deviation σω. Plots illustrate the model for a
simulated 2.5 beats per second signal. (a) Varying the ratio of these contributions changes how fast the

phase uncertainty increases, with σω generating a rapidly increasing variance. Measurements on
experimental data match the simulation model. (b) Realizations of our model in different scenarios show
that σθ generates local noise, while σω contributes to bigger smoother variations. The bottom-right panel

illustrates values matching experimental measurements.
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measured on experimental data. We used a camera transfer time of 5ms as the gap between reference and
signal frames for PAAQ. We simulated imaging sequences of variable length, repeating each experiment
with 10 different random seeds to generate confidence intervals.

We used L¼ 50 for the phase estimation, and set the other parameters using the strategy described in
Section 3.6. Before applying the method, we downsampled the images by a factor of 2 with spatial
averaging, to reduce the computation time and noise.

As a baseline for performance comparison, we considered the ungated imaging of the fluorescent
channels at low frame rate without using PAAQ, in addition to the acquisition of the brightfield images
without illumination patterns to serve as registration reference. We sorted each channel separately for
virtual high frame rate, and synchronized the obtained sequences using a temporal registration procedure
based on maximizing the mutual information between the fluorescent channels and the brightfield
sequence. This corresponds to a sequential approach to solving virtual high frame rate and multichannel
registration, as discussed in Section 1. As the direction of the sequences is not given by the sorting, we
applied the registration to all possible combinations of orientations for the channels, and kept only the
solution with the maximummutual information. We used a simple temporal upsampling of the sequences
to allow for subframe precision registration.

Figure 6a compares how the phase estimation performance of the methods varies with the number of
frames acquired. The naive sorting method refers to the solution given by using PAAQ imaging and
estimating the phases with the uniform sampling assumption (Steps b and c in Figure 1, i.e., no phase
correction algorithm). The mutual information-based method and the naive sorting obtain a similar
performance over the whole range of experiments, which is expected as they are both limited by the
uniform sampling assumption for phase estimation. Our method consistently improves on this perform-
ance, giving a relative 30% reduction of the phase error overall. Using (24), we computed that the error
caused by heart rate variability is bounded to a maximum of 0.13% of one period on our simulated data.
Therefore, the plotted phase error mostly characterizes the precision of our phase estimates, showing the
benefit of using a nonuniform phase estimation algorithm.

We computed the initial average frequency of the simulated signal over the first two acquired
periods using the method detailed in Section 3.4. The obtained relative error is directly tied to the
error on phase estimation, dropping from 2% to below 1% when N ≥ 50 . We repeated these
experiments with increasing Poisson noise strength, with no noticeable performance impact on
any of the methods.

Figure 6. Quantitative results on synthetic and experimental data. Error bars are 68%
confidence intervals computed over 10 repetitions. (a) On synthetic data, our method yields a

relative precision improvement of 30% over competing methods, independently of the number of
frames acquired. (b) On experimental data, our method performs similarly, with a relative
precision improvement of up to 50% (for N ≤ 25). (c) We choose the regularization strength

for phase estimation using an L-curve, emphasizing the regularization cost due to strong priors.
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5.3. Validation on high-speed experimental data

In order to confirm the applicability of our method on real data, we used the same high-speed dataset as in
Section 5.1. To simulate slow PAAQ imaging, we randomly picked a frame as the start, then sampled the
dataset every 100 frames to obtain the reference sequence, corresponding to a simulated camera frame rate
of 20 fps. To emulate the paired signal frames, we sampled the data similarly starting five frames after the
initial reference frame, corresponding to a simulated camera transfer time of 5ms . We repeated this
process with a different random starting frame to simulate the acquisition of a second channel. In this
experiment, the signal sequences are all acquired using brightfield, but it does not affect the conclusions
that we can draw on the precision of our phase estimation, as we use only the references for computation.

In order to generate the reference phases, we isolated a full period in the high-speed data starting from
the first reference frame of the first channel, using image similarity to automatically find the start of the
next period. We assigned linear phases from 0 to 2π to the frames in this initial period. We then estimated
the ground-truth phase of all signal frames in all channels as the phase of the most similar frame (by image
distance) in the reference period. We cannot know the real ground-truth phase of our samples, but this
estimate is a sufficiently precise approximation given the high acquisition speed of this dataset. Indeed,
since it is an order of magnitude higher than the frame rates we are simulating, the error on the ground-
truth estimate has a negligible impact on our observations.

The high-speed dataset was acquired without the use of a motion-encoding illumination pattern,
therefore it is missing in our simulated reference images. However, these data do not contain similar
frames at different phases that would require motion disambiguation for sorting. Thus, the lack of
patterned reference illumination does not impact the results of our method in this case, since it only
affects the sorting of ambiguous frames. In a practical application, assessing the necessity of a motion-
encoding pattern is only possible if high-speed reference images are available.

We simulated the slow imaging with varying sequence lengths, repeating each experiment 10 times
with different random seeds to compute confidence intervals. For the phase estimation, we used L¼ 50
and set the other hyperparameters according to Section 3.6, running 2 additional precision passes for best
performance.

Figure 6b compares the phase estimation error obtained with naive sorting (see Section 5.2) and our
method. Due to the absence of separate fluorescent channels in the data, we did not evaluate the mutual
information approach. The performance of naive sorting is consistent with what we measured on the
simulated dataset. Our method achieves even better performance here, obtaining a phase error below 1%
of the period for all sequence lengths. This represents a significant relative error reduction of more than
50% for sequences with few acquired frames (N ≤ 25).

The accuracy of the uniform phase sampling assumption increases with the number of acquired frames
in Figure 6a, b. As the sampling becomes denser, the average distance between samples decreases, leading
to a similar drop in phase error. However, even with a high number of frames, the sampling is nonuniform
and our algorithm still provides a better accuracy.

Figure 6c illustrates the L-curve obtained for an experiment with N ¼ 50 . The highlighted point
corresponds to the selected value of regularization strength λused for the phase estimation. It lies close to
the vertical axis, as the regularization corresponds to a strong prior on the data.

5.4. Results on low-frame rate experimental data

We performed experiments with zebrafish (Danio rerio) embryos from animals held at Institute of
Anatomy (National Licence Number 35) from the University of Bern. Adult fish needed for breeding
were raised and maintained at maximal 5 fish/L with the following environmental conditions: 27.5 to 28°
C, with 14 h of light and 10 h of dark, 650–700 μs/cm, pH 7.5 and 10% of water exchange daily. Adult
Tg( fli1a:GFP)y1T(43) and Tg(myl7:mRFP)ko08Tg(44) double transgenic zebrafish were crossed to obtain
homozygous embryos. Eggs were collected within 30 min and kept in E3medium (5mMNaCl, 0.17 mM
KCl, 0.33mMCaCl2, 0.33mMMgSO4) withMethylene Blue (10�5%). 30min after egg collection, those
that did not transition to two-cell stage were removed. The next day, at 24 h after removing the screens,
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chorions were removed by incubating 2 mg/mL Pronase in E3 medium (about 3 min) until gentle shaking
of the Petri dish freed the larvae from the chorion. Subsequently, embryos of the same developmental
stage were selected and the most frequent stage was estimated.(45) Before 24 hpf, we added 0.003%
1-phenyl-2-thiourea (PTU, Sigma-Aldrich) to avoid pigmentation.

We anesthetized the embryos with Tricaine at 0.08 mg/mL, pH 7 and embedded the embryos with the
anterior side (head) up in a fluorinated ethylene propylene tube in 1% low-melting agarose.We imaged the
sample on an implementation of the OpenSPIMmicroscope(46) with two lasers (Vortran Stradus, 488 and
561 nm), a UMPlanFL N 20 × /0.50 W semi-apochromat water dipping objective lens (Olympus), and a
sCMOS camera (Andor Zyla 4.2) mounted on a U-TV 0.5 ×C-3 adapter (Olympus).

We designed a low-cost hardware controller to generate modulated illumination patterns in four
different channels based on an Arduino microcontroller. We used standard BNC connexions to make it
compatible with most imaging and illumination hardware found on the market. We implemented drivers
and plugins to integrate it into the μManager control software(47) and provide a user-friendly interface to
use the device. Supplementary Figure 1 shows the controller and its schematics. We open-sourced our
custom hardware and software at https://github.com/idiap/CBI-MMTools. This provides a low-cost and
easy way to implement our method on devices that cannot easily generate the required temporal
illumination patterns.

We used this controller to generate the PAAQ illumination patterns depicted in Figure 2. We acquired
imageswith a frame rate of 14.42Hz, corresponding to a 60ms exposure timeΔE and a camera transfer time of
10ms.We set a pulsewidthΔP of 10msfor the signal illumination, and a linear ramp containing three pulses of
10ms separated by 15ms gaps for the reference pattern. We used L¼ 50 for the phase estimation, and used
Section 3.6 to set the other hyperparameters, running one additional precision pass for performance.

Our first experiment compares the performance of our algorithm to the mutual information-based
method when processing two fluorescent channels with varying number of images.We extract a region of
size 512 × 512 centered on the heart and downsample the image by a factor 2 with spatial averaging
before using the algorithms. Figure 7a shows a frame in each of the reconstructed videos forN ¼ 100 and
N ¼ 20, corresponding to a single estimated phase in the signal. With a high number of frames, the two
methods give visually similar results, however, with fewer frames the mutual information video contains

Figure 7. Comparison of the reconstructed videos using our method and a mutual information approach,
4 dpf transgenic Fli1V/Myl7mR zebrafish heartbeat. Cross marks highlight anatomically implausible
spots where myocardium (red) intersects with endocardium (green). (a) With high number of frames both
methods give similar results, but mutual information gives artifacts with N ¼ 20, while our method is not
impacted. (b) When working on small images, mutual information gives incorrect channel synchron-
ization between red and green, while our method generates a plausible solution. See also Supplementary

Videos 2–4.
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artifacts in the synchronization of the channels. This is highlighted at the cross mark, where the
myocardium (red) appears to intersect with the endocardium (green), which is anatomically implausible.
With the same number of frames, our method does not generate this artifact, and stays consistent with the
solutions computed with more frames. This illustrates the better robustness of our algorithm with respect
to the amount of images available. Moreover, the solution obtained using mutual information contains
anatomical artifacts evenwhen using a high number of frames, as visible in Supplementary Video 2. In the
same situation, our method generates a video that does not contain visible anatomical artifacts, benefiting
from the better phase estimates.

Our second experiment compares the performance of the twomethodswhen the amount of information
available is limited. We achieve this by restricting the field of view to only a smaller part of the heart in a
region of interest of size 256 × 256. We also downsample by a factor 2 before applying both methods. For
this experiment, we acquired N ¼ 50 images in C¼ 3 channels, treating the brightfield modality as an
additional signal channel. As shown in Figure 7b, the mutual information reconstruction fails to correctly
synchronize the red and green channels, even though the synchronization between red fluorescence and
brightfield is correct. In the highlighted area, the myocardium (red) and endocardium (green) visibly
intersect in an impossible way in the solution given by mutual information, while in the corresponding
frame obtained with our method the channels are correctly synchronized. The incorrect solution obtained
with mutual information is visible in Supplementary Video 3, where the green channel follows the
movement of the red one with an obvious delay. In the smaller image, the amount of mutual information
between channels is lower, partly because there are not enough relevant data available to build a
meaningful statistical representation of the sequences. Our method does not require mutual information
between the channels to give a correct solution, making it suitable to work on data with limited size but
also in cases where the different channels contain entirely uncorrelated signals.

Supplementary Video 4 illustrates the whole reconstruction process, showing the acquired images and
the virtual high frame rate multichannel video reconstructed using our method. It corresponds to the top-
right frame in Figure 7a.

6. Discussion

Our method is able to generate multichannel videos with a virtual high frame rate with high temporal
precision. As derived in Section 3.5, the channel synchronization error caused by heart rate variability is
bounded and depends only on the transfer time of the imaging device. Therefore, the overall accuracy of our
method mainly depends on the total number of images acquired, which can be chosen as high as needed to
achieve a desired temporal resolution. The frame rate of the acquisition device has no direct impact on the
precision of the reconstruction. Nevertheless, a faster frame rate will speed up the overall imaging time. In
practice, imaging over a shorter period means that the heartbeat is more likely to remain regular.

Although we used a sensitive camera with low noise to obtain the experimental results presented in
Section 5.4, we expect our method to perform similarly well on more noisy images. Indeed, the spatial
averaging and downsampling step applied before sorting reduces the strength of noise present in the
images used for phase estimation. This is supported by the results in Section 5.2, where we observed that
increasing the noise in our simulations did not noticeably impact the performance of the algorithm.

Prospective optical gating methods(19,20) provide a high accuracy, with a better control on when the
cardiac cycle is sampled. They can also be used for 3D imaging, by using the same trigger to synchronize
videos at different depths. However, our technique has lower hardware requirements, making it more cost-
effective and easier to integrate into existing imaging platforms. Our method is currently limited to 2D
imaging, although it might be generalized by implementing depth sweeping during imaging, combined
with a method that removes the induced scan aberrations.(22) Another possibility would be to use an
imaging modality with a large depth of field for the reference frames, allowing to accurately synchronize
neighboring sections of the volume through a temporal registration step.

Methods that do not use PAAQ imaging (such as the mutual information synchronization used for
comparison) have no hardware requirements at all. Nevertheless, we have shown that our technique is
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more robust to the size of the data available, both in terms of amount of images and their size. At the cost of
a more complex acquisition procedure requiring illumination switching, it guarantees a better temporal
resolution. Therefore, our method offers a compromise, giving high accuracy while still keeping the
hardware cost and complexity low.

The virtual high frame rate reconstructions obtained with our method can still contain artifacts where
the sample ismoving aperiodically, or according to a period different from the cardiac cycle. This is visible
in Supplementary Video 4, where a trabecula at the top of the reconstructed video appears to have an
aperiodic motion. This limitation is inherent to slow frame rate imaging and only a fast acquisition device
would be suitable to capture such aperiodic phenomena accurately.

Similarly, registration between channels is not possible in regions of the sample if they have an
aperiodic motion and channels would need to be acquired simultaneously. In a scenario requiring exact
registration in all regions despite local aperiodicity, one could use a hybrid method using beam-splitting
optics for simultaneous acquisition of the channels, paired with our phase estimation to enhance the frame
rate. This would however not solve the limitation expressed above regarding temporal resolution in
aperiodically moving regions.

Althoughwe only described the use of fluorescence imaging pairedwith a brightfield reference, PAAQ
could exploit other combination of imaging modalities, provided that it is possible to switch quickly
enough between them. The reference signal could be any modality, but one that induces minimal
phototoxicity, like brithgfield, is clearly preferable.

7. Conclusion

Wehave introduced amethod to reconstruct virtual high frame rate multichannel videos from slow single-
channel acquisition of periodic processes.We have validated ourmethod on experimental data, and shown
that it does not contain the anatomical artifacts visible when using a state-of-the-art technique based on
mutual information.

PAAQ is based on alternating acquisitions between a common reference modality and fluorescence
channels, allowing to reconstruct synchronized videos of multiple modalities without requiring mutual
information between channels. We have shown that the synchronization error caused by variability in the
signal periodicity is small, even with big frequency variations if the transfer time of the imaging device is
small enough.

We have proposed an image-only phase estimation algorithm that improves on existing sorting-based
virtual high frame rate methods thanks to a nonuniform sampling assumption. We have shown on both
synthetic and experimental data that our algorithm brings an overall relative reduction of the phase error
by 30% compared to that of techniques that use a uniform sampling assumption. For synthetic experi-
ments, we designed a simulation framework that reproduces the most relevant properties of cardiac
fluorescence microscopy, and can model the heart rate variability with statistical properties matching
experimental observations. We have proposed a reproducible way to compute the optimal hyperpara-
meters for our method that guarantees good performance without manual tuning.

We released the schematics and drivers for a hardware controller that can modulate light sources and
synchronize active illumination with imaging devices. Similarly, we released the simulation framework
and the implementation of our algorithms.

Although we developed our method for the specific case of cardiac microscopy, our algorithm is
generic and we foresee that it could be applied in other scenarios involving the imaging of a cyclic
phenomenon with a slow device.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/
S2633903X23000223.
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A. Appendix. Constrained weighted linear least squares expression for distance curve fitting
In Section 3.3.1, we compute the parameters ~dn of the estimated distance curves by solving a linear least squares problem. It is
expressed as follows:

XT
nWnXn

� �
~dn ¼XT

nWnyn, (A.1)
where the matrices are defined as:

yn Ngi + j
� �¼D i, j½ � (A.2)
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Wn Ngi + j,Ngi + j
� �¼wσ

~θi ⊖ ~θn
� �

(A.3)

Xn Ngi + j, l
� �¼ l + 2�Δij if l + 1≤Δij < l + 2

Δij� l if l≤Δij < l + 1

0 otherwise,

8><
>: (A.4)

with i¼ 0,…,Ng , j¼ 0,…,Ng , and l¼ 0,…,L�2, and

Δij ¼ L
~θj�~θi
2π

+ kL, k ∈ℤ s:t: Δij ∈ 0,L½ Þ: (A.5)

The quadratic programming problem is then:

Ldist ~dn
� �¼ 1

2
~dnQn

~dn + c
T
n
~dn withAn~dn≼bn (A.6)

Qn ¼ 2XT
nWnXn cn ¼�2yTnWnXn bn ¼ 0, (A.7)

with the monotonicity constraint matrix:

An ¼

�1

1 �1

⋱
1 �1

�1 1

⋱
�1 1

�1

2
66666666666664

3
77777777777775

(A.8)

of size L× L�1ð Þ, where the change of sign on the diagonal (highlighted) happens after line Lmax
n .

B. Appendix. Derivation of the upper bound for the heart rate variability error
In Section 3.5, we analyze the phase estimation error caused by heart rate variability using its upper bound. To derive it, we express
the phase delay between a reference frame and its associated signal frame as the product of the time delay between the imagesΔC and
the instantaneous frequency of the heartbeat during that delay ωc,n. We use ϵc,n to describe the deviation between this instantaneous
frequency and its average: ωc,n ¼ �ω + ϵc,n. In order to measure only the error caused by heart rate variability, we imagine that our
phase estimation algorithm finds the exact phases of each reference frame: ~θc,n ¼ θgc,n.

We can then compute the error Eϵ that results from the variability in the heart rate using (2):

Eϵ ¼ min
Θ

1

NC

XC�1

c¼0

XN�1

n¼0

θgc,n + �ω + ϵc,nð ÞΔC ⊖ θgc,n +Θ
� ���� ���: (B.9)

From the definition of the phase operator in (3), it stems that α⊖ βj j≤ α�βj j, and we can find an upper bound for our error:

Eϵ ≤ min
Θ

1

NC

XC�1

c¼0

XN�1

n¼0

θgc,n + �ω+ ϵc,nð ÞΔC � θgc,n +Θ
� ���� ��� (B.10)

≤ min
Θ

1

NC

XC�1

c¼0

XN�1

n¼0

�ωΔC �Θ + ϵc,nΔCj j: (B.11)

Given that ϵc,n is sampled from a distribution with a zero mean, the right term is minimized when Θ¼ �ωΔC , leaving the final
expression of the upper bound:

Eϵ ≤
1

NC

XC�1

c¼0

XN�1

n¼0

ϵc,nΔCj j ¼ ΔC

NC

XC�1

c¼0

XN�1

n¼0

ϵc,nj j: (B.12)

C. Appendix. Hyperparameters selection method
In Section 3.6, we highlighted that selecting optimal values for the hyperparameters is crucial to guarantee the performance of the
phase estimation algorithm.
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The width of the Gaussian window σ used in (17) and (18) influences precision significantly. Indeed, a window too large will
decrease precision due to too much averaging, while a window too narrowwill be too sensitive to noise due to not including enough
measurements. To find good value for σ, we plot the residual error obtained when minimizing (17) with the initial phase estimates,
using different windowwidths up to 2π.We select the last local minimum in that curve as the best value for σ. This represents the best
fitting performance, ignoring the minima obtained with very small σ that correspond to overfitting the noise in the data.

The number of points Lused to represent the distance curves has an impact on both accuracy and performance. The precision of
the method tends to increase with L, as the curve approximation gets finer, but the convergence time of the method increases as well
due to the added complexity. Generally speaking, we have found that our algorithm fails to converge when L is too big (typically
bigger than 2Ng), and that using more than L¼ 200 does not seem to improve performance further.

The update step size of the gradient descent optimizer does not impact the precision much (thanks to the adaptive scaling of the
Adam optimizer), but choosing a good value can speed convergence up.We have found that a default value of 10�3 works well in all
scenarios.

Cite this article: Marelli F, Ernst A, Mercader N & Liebling M (2023). PAAQ: Paired Alternating AcQuisitions for virtual high
frame rate multichannel cardiac fluorescence microscopy. Biological Imaging, 3: e20. doi:https://doi.org/10.1017/
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