
3
Field parameters

The parameters which measure change in dynamical systems have a unique
importance: they describe both the layout and the development of a system.
Space (position) and time are the most familiar parameters, but there are other
possibilities, such as Fourier modes.

In the previous chapter, it was seen how the unification of spatial and temporal
parameters, in electromagnetism, led to a tidier and deeper form of the Maxwell
equations. It also made the equations easier to transform into other relativistic
frames. In the covariant approach to physics one is concerned with what
does and does not change, when shifting from one perspective to another,
i.e. with the properties of a system which are dependent and independent of
the circumstances of observation. In a continuous, holonomic system, this is
summarized by two independent concepts: parameter spaces and coordinates.

• Parameter space (manifold). This represents the stage for physical
reality. A parameter space has coordinate-independent properties such
as topology and curvature.

• Coordinates. These are arbitrary labels used to mark out a reference
scheme, or measurement scheme, in parameter space. There is no unique
way to map out a parameter space, e.g. Cartesian or polar coordinates.
If there is a special symmetry, calculations are often made easier by
choosing coordinates which match this symmetry.

Coordinates are labels which mark a scale on a parameter space. They measure
a distance in a particular direction from an arbitrary origin. Clearly, there
is nothing fundamental about coordinates: by changing the arbitrary origin,
or orientation of measurement, all coordinate labels are changed, but the
underlying reality is still the same. They may be based on flat Cartesian (x, y, z)
or polar (r, θ, φ) conventions; they can be marked on flat sheets or curved shells.

32
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3.1 Choice of parametrization 33

Underneath the details of an arbitrary system of measurement is a physical
system which owes nothing to those details.

The invariant properties or symmetries of parameter spaces have many
implicit consequences for physical systems; not all are immediately intuitive.
For this reason, it is useful to study these invariant properties in depth, to see
how they dictate the possibilities of behaviour (see chapter 9). For now it is
sufficient to define a notation for coordinates on the most important parameter
spaces.

This chapter summarizes the formulation of (n + 1) dimensional vectors in
Minkowski spacetime and in its complementary space of wavevectors k, usually
called momentum space or reciprocal lattice space.

3.1 Choice of parametrization

The dynamical variables, in field theory, are the fields themselves. They are
functions of the parameters which map out the background space or spacetime;
e.g.

ψ(t), φ(t, x), χ(t, r, θ, φ). (3.1)

Field variables are normally written as functions of spacetime positions, but
other decompositions of the field are also useful. Another ubiquitous choice
is to use a complementary set of variables based upon a decomposition of the
field into a set of basis functions, a so-called spectral decomposition. Given
a complete set of functions ψi (x), one can always write an arbitrary field as a
linear super-position:

φ(x) =
∑

i

ci ψi (x). (3.2)

Since the functions are fixed and known, a knowledge of the coefficients ci in
this decomposition is equivalent to a knowledge of φ(x), i.e. as a function of x .
However, the function may also be written in a different parametrization:

φ(c1, c2, c3 . . .). (3.3)

This is a shorthand for the decomposition above, just as φ(x) is a shorthand for
a polynomial or series in x . Usually, an infinite number of such coefficients is
needed to prescribe a complete decomposition of the field, as, for instance, in
the Fourier expansion of a function, described below.

Spacetime is an obvious parameter space for a field theory since it comprises
the world around us and it includes laboratories where experiments take place,
but other basis functions sometimes reveal simpler descriptions. One important
example is the complementary Fourier transform of spacetime. The Fourier
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transform is important in situations where one suspects a translationally invari-
ant, homogeneous system. The Fourier transform of a function of x is defined
to be a new function of the wavenumber k (and the inverse transform) by the
relations:

f (x) =
∫

dk

2π
eikx f (k)

f (k) =
∫

dx eikx f (x). (3.4)

k is a continuous label on a continuous set of functions exp(ikx), not a discrete
set of ci , for integer i . In solid state physics, the space parametrized by k is
called the reciprocal lattice space. Fourier transform variables are useful for
many purposes, such as revealing hidden periodicities in a function, since the
expansion is based on periodic functions. The Fourier transform is also a useful
calculational aid.

Spacetime (configuration space) and the Fourier transform are two com-
plementary ways of describing the basic evolution of most systems. These
two viewpoints have advantages and disadvantages. For example, imagine a
two-state system whose behaviour in time can be drawn as a square wave. To
represent a square wave in Fourier space, one requires either an infinite number
of Fourier waves of different frequencies, or merely two positions over time. In
that case, it would be cumbersome to use a Fourier representation of the time
evolution.

3.2 Configuration space

The four-dimensional vectors used to re-write electromagnetism are easily
generalized to (n+1) spacetime dimensions, for any positive n. They place time
and space on an almost equal footing. In spite of the notational convenience of
unified spacetime, some caution is required in interpreting the step. Time is not
the same as space: formally, it distinguishes itself by a sign in the metric tensor;
physically, it plays a special role in determining the dynamics of a system.

3.2.1 Flat and curved space

Physical systems in constrained geometries, such as on curved surfaces, or
within containers, are best described using curvilinear coordinates. Experi-
mental apparatus is often spherical or toroidal; shapes with a simple symmetry
are commonly used when generating electromagnetic fields; rectangular fields
with sharp corners are less common, since these require much higher energy to
sustain.

Studies of what happens within the volumes of containers, and what happens
on their surface boundaries, are important in many situations [121]. When
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generalizing, to study systems in (n + 1) dimensions, the idea of surfaces and
volumes also has to be generalized. The distinction becomes mainly one of
convenience: (n + 1) dimensional curved surfaces are curved spacetimes. The
fact that they enclose a volume or partition a space which is (n+2) dimensional
is not always germane to the discussion at hand. This is particularly true in
cosmology.

It is important to distinguish between curvilinear coordinates in flat space
and coordinate labellings of curved space. An example of the former is the
use of polar (r, θ) coordinates to map out a plane. The plane is flat, but the
coordinates span the space in a set of curved rings. An example of the latter
is (θ, φ) coordinates (at fixed r ), mapping out the surface of a sphere. Over
very short distances, (θ, φ) can be likened to a tiny planar patch with Cartesian
coordinates (x, y).

Einstein’s contribution to the theory of gravity was to show that the laws of
gravitation could be considered as an intrinsic curvature of a (3+1) dimensional
spacetime. Einstein used the idea of covariance to argue that one could view
gravity in one of two equivalent ways: as forced motion in a flat spacetime,
or as free-fall in a curved spacetime. Using coordinates and metric tensors,
gravitation could itself be described as a field theory, in which the field gµν(x)
was the shape of spacetime itself.

Gravitational effects may be built into a covariant formalism to ensure that
every expression is general enough to be cast into an arbitrary scheme of
coordinates. If one allows for general coordinates (i.e. general covariance),
one does not assume that all coordinates are orthogonal Cartesian systems, and
gravity and curvature are not excluded from the discussion.

Spacetime curvature will not be treated in detail here, since this topic is widely
discussed in books on relativity. However, we take the issue of curvature ‘under
advisement’ and construct a formalism for dealing with arbitrary coordinates,
assured that the results will transform correctly even in a curved environment.

3.2.2 Vector equations

Vector methods express spatial relationships, which remain true regardless of
the system of coordinates used to write them down. They thus play a central
role in covariant formulation. For example, the simple vector equation

A · B = 0 (3.5)

expresses the fact that two vectors A and B are orthogonal. It says nothing about
the orientation of the vectors relative to a coordinate system, nor their position
relative to an origin; rather, it expresses a relationship of more intrinsic value
between the vectors: their relative orientation. Vector equations and covariance
are natural partners.
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36 3 Field parameters

Vector equations are form-invariant under changes of coordinates, but the
details of their components do change. For instance, in the above equation,
if one fixes a coordinate system, then the components of the two vectors take on
definite values. If one then rotates or translates the coordinates, the values of the
components change, but the equation itself remains true.

3.2.3 Coordinate bases

A coordinate basis is a set of (n + 1) linearly independent reference vectors
eµ, used to provide a concise description of any vector within a vector space.
They are ‘standard arrows’; without them, every direction would need to have a
different name.1

In index notation, the components of a vector a are written, relative to a basis
or set of axes ei , as {ai }, i.e.

a =
∑
µ

aµ eµ ≡ aµ eµ. (3.6)

Note that, as usual, there is an implied summation convention over repeated
indices throughout this book. The subscript µ runs over the number of
dimensions of the space.

Linearity is a central concept in vector descriptions. One does not require
what happens within the space to be linear, but the basis vectors must be locally
linear in order for the vector description to be single-valued. Consider, then,
the set of all linear scalar functions of vectors. Linearity implies that a linear
combination of arguments leads to a linear combination of the functions:

ω(cµeµ) = cµω(eµ). (3.7)

Also, the linear combination of different functions results in new linear func-
tions:

ω′(v) =
∑
µ

cµω
µ(v). (3.8)

The space of these functions is therefore also a vector space V ∗, called the dual
space. It has the same dimension as the vector space (also called the tangent
space). The duality refers to the fact that one may consider the 1-forms to be
linear functions of the basis vectors, or vice versa, i.e.

ω(v) = v(ω). (3.9)

1 In terms of information theory, the vector basis provides a systematic (n+1)-tuple of numbers,
which in turn provides an optimally compressed coding of directional information in the vector
space. Without such a system, we would be stuck with names like north, south, east, west,
north-north-west, north-north-north-west etc. for each new direction.
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Vector components vi are written

v = vµeµ, (3.10)

and dual vector (1-form) components are written

v = vµωµ. (3.11)

The scalar product is

v · v = v∗v = (vµωµ)(vνeν)
= vµvν (ωµeν)

= vµvν δ νµ
= vµvµ, (3.12)

where

(ωµeν) = δµν. (3.13)

The metric tensor gµν maps between these equivalent descriptions:

vµ = gµνv
ν

vµ = gµνvν, (3.14)

and

eµ · eν = gµν (3.15a)

ωµ · ων = gµν. (3.15b)

When acting on scalar functions, the basis vectors eµ→ ∂µ are tangential to the
vector space; the 1-forms ωµ→ dxµ lie along it.

In general, under an infinitesimal shift of the coordinate basis by an amount
dxµ, the basis changes by an amount

deµ = � λ
µν eλ dxν. (3.16)

The symbol � λ
µν is called the affine connection, or Christoffel symbol. From

this, one determines that

∂νeµ = � λ
µν eλ, (3.17)

and by differentiating eqn. (3.13), one finds that

∂νω
λ = −� λ

νµ ωµ. (3.18)

The connection can be expressed in terms of the metric, by differentiating
eqn. (3.15a):

∂λgµν = ∂λeµ · eν + eµ · ∂λeν
= � λ

µλ gρν + gρµ�
λ

νλ . (3.19)
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38 3 Field parameters

By permuting indices in this equation, one may show that

� σ
λµ = 1

2
gνσ

{
∂λgµν + ∂µgλν − ∂νgµλ

}
. (3.20)

The connection is thus related to cases where the metric tensor is not constant.
This occurs in various contexts, such when using curvilinear coordinates, and
when fields undergo conformal transformations, such as in the case of gauge
transformations.

3.2.4 Example: Euclidean space

In n-dimensional Euclidean space, the spatial indices i of a vector’s components
run from 1 to n except where otherwise stated. The length of a vector interval
ds is an invariant quantity, which is defined by the inner product. This may be
written

ds · ds = dx2 + dy2 + dz2 (3.21)

in a Cartesian basis. In the index notation (for n = 3) this may be written,

ds · ds = dxi dxi . (3.22)

Repeated indices are summed over, unless otherwise stated. We distinguish, in
general, between vector components with raised indices (called contravariant
components) and those with lower indices (called, confusingly, covariant
components,2 and ‘normal’ components, which we shall almost never use. In a
Cartesian basis (x, y, z . . .) there is no difference between these components. In
other coordinate systems, such as polar coordinates however, they are different.

Results which are independent of coordinate basis always involve a sum over
one raised index and one lower index. The length of the vector interval above
is an example. We can convert an up index into a down index using a matrix
(actually a tensor) called the metric tensor gi j ,

ai = gi j a
j . (3.23)

The inverse of the metric gi j is written gi j (with indices raised), and it serves to
convert a lower index into an upper one:

ai = gi j a j . (3.24)

The metric and its inverse satisfy the relation,

gi j g
jk = g k

i = δ k
i . (3.25)

2 There is no connection between this designation and the usual meaning of covariant.
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3.2 Configuration space 39

In Cartesian components, the components of the metric are trivial. It is simply
the identity matrix, or Kronecker delta:

(Cartesian) : gi j = gi j = δi j . (3.26)

To illustrate the difference between covariant, contravariant and normal
components, consider two-dimensional polar coordinates as an example. The
vector interval, or line element, is now written

ds · ds = dr2 + r2dθ2. (3.27)

The normal components of the vector ds have the dimensions of length in this
case, and are written

(dr, rdθ). (3.28)

The contravariant components are simply the coordinate intervals,

dsi = (dr, dθ), (3.29)

and the covariant components are

dsi = (dr, r2dθ). (3.30)

The metric tensor is then defined by

gi j =
(

1 0
0 r2

)
, (3.31)

and the inverse tensor is simply

gi j =
(

1 0
0 r−2

)
. (3.32)

The covariant and contravariant components are used almost exclusively in the
theory of special relativity.

Having introduced the metric tensor, we may define the scalar product of any
two vectors a and b by

a · b = ai bi = ai gi j b
j . (3.33)

The definition of the vector product and the curl are special to three space di-
mensions. We define the completely anti-symmetric tensor in three dimensions
by

εi jk =


+1 i jk = 123 and even permutations
−1 i jk = 321 and other odd permutations
0 otherwise.

(3.34)
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This is also referred to as the three-dimensional Levi-Cevita tensor in some
texts. Since its value depends on permutations of 123, and its indices run only
over these values, it can only be used to generate products in three dimensions.
There are generalizations of this quantity for other numbers of dimensions, but
the generalizations must always have the same number of indices as spatial
dimensions, thus this object is unique in three dimensions. More properties
of anti-symmetric tensors are described below.

In terms of this tensor, we may write the i th covariant component of the three-
dimensional vector cross-product as

(b× c)i = εi jkb j ck . (3.35)

Contracting with a scalar product gives the volume of a parallelepiped spanned
by vectors a, b and c,

a · (b× c) = εi jkai b j ck, (3.36)

which is basis-independent.

3.2.5 Example: Minkowski spacetime

The generalization of Euclidean space to relativistically motivated spacetime
is called Minkowski spacetime. Close to the speed of light, the lengths of n-
dimensional spatial vectors are not invariant under boosts (changes of speed),
due to the Lorentz length contraction. From classical electromagnetism, one
finds that the speed of light in a vacuum must be constant for all observers:

c2 = 1

ε0µ0
, (3.37)

and one deduces from this that a new quantity is invariant; we refer to this as the
invariant line element

ds2 = −c2 dt2 + dx2 + dy2 + dz2 = −c2 dτ 2, (3.38)

where dτ is referred to as the proper time. By comparing the middle and
rightmost terms in this equation, it may be seen that the proper time is the
time coordinate in the rest frame of a system, since there is no change in the
position variables. The negative sign singles out the time contribution as special.
The nomenclature ‘timelike separation’ is used for intervals in which ds2 < 0,
‘spacelike separation’ is used for ds2 > 0, and ‘null’ is used for ds2 = 0.

In terms of (n + 1) dimensional vectors, one writes:

ds2 = dxµdxµ = dxµgµνdxν (3.39)
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where µ, ν = 0, 1, 2, . . . , n In a Cartesian basis, the contravariant and covariant
components of the spacetime interval are defined, respectively, by

dxµ = ( ct, x, y, z, . . .)

dxµ = (−ct, x, y, z, . . .), (3.40)

and the metric tensor in this Cartesian basis, or locally inertial frame (LIF), is
the constant tensor

ηµν ≡ gµν
∣∣∣
LIF
=



−1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...

0 0 0 · · · 1


 . (3.41)

This is a special case of a metric in a general frame gµν .
This placement of signs in the metric is arbitrary, and two other conventions

are found in the literature: the opposite sign for the metric, with corresponding
movement of the minus sign from the time to the space parts in the covariant
and contravariant components; and a Euclidean formulation, in which the
metric is entirely positive (positive definite), and the time components of
the components are symmetrically ict . This last form, called a Euclidean
formulation (or Riemannian in curved spacetime), has several uses, and thus
we adopt conventions in this text in which it is trivial to convert to the Euclidean
form and back.

Contravariant vectors describe regular parametrizations of the coordinates. In
order to define a frame-invariant derivative, we need to define partial derivatives
by the requirement that the partial derivative of x1 with respect to x1 be unity:

∂

∂x1
x1 = ∂1x1 = 1. (3.42)

Notice that ‘dividing by’ an upper index makes it into an object with an
effectively lower index. More generally, we require:

∂

∂xµ
xν = ∂µxν = δ νµ . (3.43)

From this, one sees that the Cartesian components of the derivative must be

∂µ =
(

1

c
∂t , ∂x , ∂y, ∂z, . . .

)

∂µ =
(
−1

c
∂t , ∂x , ∂y, ∂z, . . .

)
. (3.44)
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Velocity is a relative concept, by definition. It is intimately associated with a
choice of Lorentz frame. The relative velocity is defined as the time derivative
of the position

βµ = 1

c

dxµ

dt
= dxµ

dx0
. (3.45)

Unfortunately, because both xµ and t are frame-dependent, this quantity does
not transform like a vector. To obtain a vector, we choose to look at

Uµ = 1

c

xµ

dτ
. (3.46)

The components of the relative velocity are as follows:

βµ = (β0, β i ) = (1, vi/c). (3.47)

The relationship to the velocity vector is given by

Uµ = γ cβµ. (3.48)

Hence,

UµUµ = −c2. (3.49)

3.3 Momentum space and waves

The reciprocal wavevector space of kµ plays a complementary role to that of
spacetime. It measures changes in waves when one is not interested in spacetime
locations. Pure harmonic (sinusoidal) waves are spread over an infinite distance.
They have no beginning or end, only a definite wavelength.

In the quantum theory, energy and momentum are determined by the operators

E → ih̄∂t , pi →−ih̄∂i , (3.50)

which have pure values when acting on plane wave states

ψ ∼ exp i(ki x
i − ωt). (3.51)

In (n + 1) dimensional notation, the wavevector becomes:

kµ =
(
−ω

c
, ki

)
, (3.52)

so that plane waves take the simple form

ψ ∼ exp(ikµxµ). (3.53)
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The energy and momentum are therefore given by the time and space eigenval-
ues of the operator

pµ = −ih̄∂µ, (3.54)

respectively, as they act upon a plane wave. This leads to the definition of an
(n + 1) dimensional energy–momentum vector,

pµ = h̄kµ =
(
−E

c
, pi

)
. (3.55)

The identification pµ = h̄kµ is the de Broglie relation for matter waves. This is
one of the most central and important relations in the definition of the quantum
theory of matter.

In discussing wavelike excitations, it is useful to resolve the components of
vectors along the direction of motion of the wave (longitudinal) and perpen-
dicular (transverse) to the direction of motion. A longitudinal vector is one
proportional to a vector in the direction of motion of a wave kµ. A transverse
vector is orthogonal to this vector. The longitudinal and transverse components
of a vector are defined by

V µ

L ≡
kµkν

k2
V ν

V µ

T ≡
(

gµν − kµkν
k2

)
V ν. (3.56)

It is straightforward to verify that the two projection operators

PL
µ
ν =

kµkν
k2

PT
µ
ν =

(
gµν − kµkν

k2

)
(3.57)

are orthogonal to one another:

(PL)
µ
ν(PT)

ν
λ = 0. (3.58)

3.4 Tensor transformations

Vector equations remain true in general coordinate frames because the com-
ponents of a vector transform according to specific rules under a coordinate
transformation U :

v′ = U v, (3.59)
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or

v′i = U i
j v

j , (3.60)

where the components of the matrix U are fixed by the requirement that the
equations remain true in general coordinate systems. This is a valuable property,
and we should be interested in generalizations of this idea which might be useful
in physics.

Tensors are objects with any number of indices, which have the same basic
transformation properties as vectors. The number of indices on a tensor is its
rank. Each free index in a tensor equation requires a transformation matrix
under changes of coordinates; free indices represent the components in a specific
coordinate basis, and each summed index is invariant since scalar products are
independent of basis.

Under a change of coordinates, x → x ′, a scalar (rank 0-tensor) transforms
simply as

φ(x)→ φ(x ′). (3.61)

For a vector (rank 1-tensor), such a simple rule does make sense. If one
rotates a coordinate system, for instance, then all the components of a vector
must change, since it points in a new direction with respect to the coordinate
axes. Thus, a vector’s components must transform separately, but as linear
combinations of the old components. The rule for a vector with raised index
is:

V µ(x ′) = ∂x ′µ

∂xν
V ν(x) = (∂νx ′µ) V ν(x). (3.62)

For a vector with lowered index, it is the converse:

Vµ(x
′) = ∂xν

∂x ′µ
Vν(x) = (∂ ′µxν) Vν(x). (3.63)

Here we have used two notations for the derivatives: the longhand notation first
for clarity and the shorthand form which is more compact and is used throughout
this book.

The metric tensor is a tensor of rank 2. Using the property of the metric in
raising and lowering indices, one can also deduce its transformation rule under
the change of coordinates from x to x ′. Starting with

V µ(x ′) = gµν(x ′)Vν(x ′), (3.64)

and expressing it in the x coordinate system, using the transformation above,
one obtains:

(∂νx
′µ)V ν(x) = gµσ (x ′)(∂ ′σ xρ)Vρ(x). (3.65)
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However, it is also known that, in the unprimed coordinates,

V ν(x) = gνσ (x)Vσ (x). (3.66)

Comparing eqns. (3.65) and (3.66), it is possible to deduce the transformation
rule for the inverse metric gµν . To do this, one rearranges eqn. (3.65) by
multiplying by (∂ ′µxτ ) and using the chain-rule:

(∂νx
′µ)(∂ ′µxτ ) = δ τν . (3.67)

Being careful to re-label duplicate indices, this gives

δν τ V ν(x) = gµσ (x ′)(∂ ′µxτ )(∂ ′σ xρ) Vρ(x), (3.68)

which is

V τ (x) = gµρ(x ′)(∂ ′µxτ )(∂ ′ρxσ )Vσ (x). (3.69)

Comparing this with eqn. (3.66), one finds that

gρµ(x ′)(∂ ′µxτ )(∂ ′ρxσ ) = gτσ (x), (3.70)

or, equivalently, after re-labelling and re-arranging once more,

gµν(x ′) = (∂ρx ′µ)(∂σ x ′ν)gρσ (x). (3.71)

One sees that this follows the same pattern as the vector transformation with
raised indices. The difference is that there is now a partial derivative matrix
(∂σ x ′ν) for each index. In fact, this is a general feature of tensors. Each raised
index transforms with a factor like (∂σ x ′ν) and each lowered index transforms
with a factor like ∂ ′µxν . For instance,

T µνρσ (x
′) = (∂αx ′µ)(∂βx ′ν)(∂ ′ρxγ )(∂ ′σ xδ)T αβγ δ. (3.72)

3.5 Properties

The following properties of tensors are instructive and useful.

(1) Any matrix T may be written as a sum of a symmetric part T i j = 1
2(Ti j +

Tji ) and an anti-symmetric part T̃i j = 1
2(Ti j − Tji ). Thus one may write

any 2× 2 matrix in the form

T =
(

T 11 T 12 + T̃12

T 12 − T̃12 T 22

)
(3.73)

(2) It may be shown that the trace of the product of a symmetric matrix with

an anti-symmetric matrix is zero, i.e. S
i j

T̃i j = 0.
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(3) By considering similarity transformations of the form T →  −1T , one
may show that the trace of any matrix is an invariant, equal to the sum of
its eigenvalues.

(4) By definition, a rank 2-tensor T transforms by the following matrix
multiplication rule:

T →  T T  , (3.74)

for some transformation matrix  . Consider a general 2× 2 tensor

T =
(

1
2 t +�T11 T 12 + T̃12

T 12 + T̃12
1
2 t +�T22

)
,

where t is the trace t = (T 11 + T 22), and consider the effect of the
following matrices on T :

 0 =
(

a 0
0 d

)

 1 =
(

0 i
−i 0

)

 2 =
(

0 1
1 0

)

 3 = 1√
2

(
1 1
1 −1

)
. (3.75)

For each of these matrices, compute:

(a)  T ,

(b)  T T  .

It may be shown that, used as a transformation on T :

(a) the anti-symmetric matrix  1 leaves anti-symmetric terms invariant
and preserves the trace of T ;

(b) the off-diagonal symmetric matrix  2 leaves the off-diagonal sym-
metric terms invariant and preserves the trace of T ;

(c) the symmetrical, traceless matrix  3, preserves only the trace of T .

It may thus be concluded that a tensor T in n dimensions has three
separately invariant parts and may be written in the form

Ti j = 1

n
T k

k δi j + T i j +
(

T̃i j − 1

n
T k

k δi j

)
. (3.76)
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3.6 Euclidean and Riemannian spacetime

Minkowski spacetime has an indefinite metric tensor signature. In Euclidean
and Riemannian spacetime, the metric signature is definite (usually positive
definite). General curved spaces with a definite signature are referred to
as Riemannian manifolds. Multiplying the time components of vectors and
tensors by the square-root of minus one (i) allows one to pass from Minkowski
spacetime to Euclidean spacetime and back again. This procedure is known as
Wick rotation and is encountered in several contexts in quantum theory. For
instance, it serves a regulatory role: integrals involving the Lorentzian form
(k2 + m2)−1 are conveniently evaluated in Euclidean space, where k2 + m2

has no zeros. Also, there is a convenient relationship between equilibrium
thermodynamics and quantum field theory in Euclidean space.

We shall use subscripts and superscripts ‘E’ to indicate quantities in Euclidean
space; ‘M’ denotes Minkowski space, for this section only. Note that the
transformation affects only the time or zeroth components of tensors; the space
parts are unchanged.

The transformation required to convert from Minkowski spacetime (with its
indefinite metric) to Euclidean spacetime (with its definite metric) is motivated
by the appearance of plane waves in the Fourier decomposition of field variables.
Integrals over plane waves of the form exp i(k · x − ωt) have no definite
convergence properties, since the complex exponential simply oscillates for
all values of k and ω. However, if one adds a small imaginary part to time
t → t − iτ , then we turn the oscillatory behaviour into exponential decay:

ei(k·x−ωt)→ ei(k·x−ωt)e−ωτ . (3.77)

The requirement of decay rather than growth chooses the sign for the Wick
rotation. An equivalent motivation is to examine the Lorentzian form:

1

k2 + m2
= 1

−k2
0 + k2 + m2

= 1

(−k0 +
√

k2 + m2)(k0 +
√

k2 + m2)
.

(3.78)

This is singular and has poles on the real k0 axis at k0 = ±√k2 + m2. This
makes the integral of k0 non-analytical, and a prescription must be specified for
integrating around the poles. The problem can be resolved by adding a small
(infinitesimal) imaginary part to the momenta:

1

k2 + m2 − iε
= 1

(−k0 − iε +√k2 + m2)(k0 − iε +√k2 + m2)
.

(3.79)

This effectively shifts the poles from the real axis to above the axis for negative
k0 and below the axis for positive k0. Since it is possible to rotate the contour
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90 degrees onto the imaginary axis without having to pass through any poles, by
defining (see section 6.1.1)

kE
0 = ik0, (3.80)

this once again chooses the sign of the rotation. The contour is rotated clockwise
by 90 degrees, the integrand is positive definite and no poles are encountered in
an integral over κ0:

1

−k2
0 + k2 + m2 − iε

→ 1

k2
0E + k2 + m2

. (3.81)

All variables in a field theory must be rotated consistently:

x0
E = −ix0 (3.82)

xE
0 = ix0 (3.83)

kE
0 = ik0 = −iω/c. (3.84)

The inner product

kµxµ = k · x+ k0x0 → k · x+ κ0x0 (3.85)

is consistent with

∂0x0 = ∂E
0 x0

E = 1 (3.86)

where

∂E
0 = i∂0, (3.87)

since ∂E
0 → iκ0. Since the Wick transformation affects derivatives and vectors,

it also affects Maxwell’s equations. From

∂νFµν = µ0 Jµ, (3.88)

we deduce that

J E
0 = iJ0 (3.89)

AE
0 = iA0, (3.90)

which are necessary in view of the homogeneous form of the field strength:

−iFE
0i = ∂0 Ai − ∂i A0 = F0i . (3.91)

Notice that, in (3+ 1) dimensions, this means that

1

2
FµνFµν =

(
B2 − E2

c2

)
=

(
B2 + E2

E

c2

)
. (3.92)
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Notice how the Euclideanized Lagrangian takes on the appearance of a Hamilto-
nian. This result is the key to relating Wick-rotated field theory to thermodynam-
ical partition functions. It works because the quantum phase factor exp(iSM/h̄)
looks like the partition function, or statistical weight factor exp(−βHM) when
Wick-rotated:

SE = −iSM, (3.93)

since the volume measure dV E
x = −idVx . The superficial form of the

Lagrangian density is unchanged in theories with only quadratic derivatives
provided everything is written in terms of summed indices, but internally all
of the time-summed terms have changed sign. Thus, one has that

exp

(
i
SM

h̄

)
= exp

(
− SE

h̄

)
∼ exp

(
−1

h̄

∫
dVE HM

)
. (3.94)

A Euclideanized invariant becomes something which looks like a Minkowski
space non-invariant. The invariant F2, which is used to deduce the dynamics of
electromagnetism, transformed into Euclidean space, resembles a non-invariant
of Minkowski space called the Hamiltonian, or total energy function (see
eqn. (2.70)). This has physical as well as practical implications for field theories
at finite temperature. If one takes the Euclidean time to be an integral from zero
to h̄β and take H = ∫

dσH,

exp

(
i
SM

h̄

)
= exp

(
− 1

β
HM

)
, (3.95)

then a Euclidean field theory phase factor resembles a Minkowski space, finite-
temperature Boltzmann factor. This is discussed further in chapter 6.

In a Cartesian basis, one has

gµν → gE
µν = δµν. (3.96)
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