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We present a detailed comparison of the rheological behaviour of sheared sediment beds
in a pressure-driven, straight channel configuration based on data that were generated
by means of fully coupled, grain-resolved direct numerical simulations and experimental
measurements previously published by Aussillous et al. (J. Fluid Mech., vol. 736, 2013,
pp. 594–615). The highly resolved simulation data allow us to compute the stress balance
of the suspension in the streamwise and vertical directions and the stress exchange between
the fluid and particle phases, which is information needed to infer the rheology, but has
so far been unreachable in experiments. Applying this knowledge to the experimental
and numerical data, we obtain the statistically stationary, depth-resolved profiles of the
relevant rheological quantities. The scaling behaviour of rheological quantities such as
the shear and normal viscosities and the effective friction coefficient are examined and
compared to data coming from rheometry experiments and from widely used rheological
correlations. We show that rheological properties that have previously been inferred for
annular Couette-type shear flows with neutrally buoyant particles still hold for our set-up of
sediment transport in a Poiseuille flow and in the dense regime we found good agreement
with empirical relationships derived therefrom. Subdividing the total stress into parts from
particle contact and hydrodynamics suggests a critical particle volume fraction of 0.3 to
separate the dense from the dilute regime. In the dilute regime, i.e. the sediment transport
layer, long-range hydrodynamic interactions are screened by the porous medium and the
effective viscosity obeys the Einstein relation.
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1. Introduction

Understanding and predicting the behaviour of mobile, granular sediment beds exposed
to shearing flows is essential for a number of natural phenomena (e.g. sediment transport
in rivers and oceans) but also for numerous engineering processes (e.g. slurry transport
in the mining and petroleum industries). While many of these flows are turbulent, this is
not always the case, and laminar flows are also present in many situations, such as the
debris flow of highly concentrated suspensions or the creeping motion of soils down a hill
slope (Jerolmack & Daniels 2019). The underlying physical mechanisms leading to the
morphology of sediment beds, i.e. ripples and dunes, observed in the turbulent case seem
also to bear many similarities to those seen in the laminar case (Lajeunesse et al. 2010).
Studies for laminar cases can thus be important to create analogues of phenomena that
occur in turbulent flows at larger field scales but are also of interest by themselves. The
present study focuses on this laminar regime.

Modelling sediment transport requires the understanding of the rheological behaviour of
the granular material (Vowinckel 2021, and references therein). Gravity plays an important
role as it controls the level of stress experienced by the grains. The motion of the grains
is caused by the shearing forces exerted by the fluid at the surface of the sedimented bed
but the grain packing is controlled by gravity and is free to dilate as the shearing forces
are increased. This rheological situation, termed pressure imposed, has been the subject
of significant recent advances. It has been shown that a description in terms of a frictional
rheology can be applied to both dry granular flows and viscous suspensions, despite
the fact that the interactions between particles may be different. Inter-particle collisions
and friction between contacting particles dominate in granular flow while hydrodynamic
interactions are important in viscous suspension although the role of contacts becomes
increasingly predominant with increasing concentration (see e.g. Guazzelli & Pouliquen
2018).

In the inertial case of a dry granular material sheared at a shear rate γ̇ under
an imposed granular pressure pp, the rheology is determined by the particle volume
fraction, φ, and the macroscopic friction, μ = τ/pp, where τ is the shear stress, which
both are functions of a single dimensionless inertial number I = dpγ̇

√
ρp/pp, where

dp is the particle diameter and ρp the particle density (GDR Midi 2004; Forterre
& Pouliquen 2008). A similar formalism can be applied to viscous suspensions of
non-Brownian spheres but with a viscous number J = ηf γ̇ /pp in place of the inertial
number I (Boyer, Guazzelli & Pouliquen 2011), where ηf is the dynamic viscosity. This
frictional formulation is equivalent to the more classical presentation using viscosities
depending solely on φ, where the relative shear and normal viscosities can be obtained
as ηs = τ/ηf γ̇ = μ/J and ηn = pp/ηf γ̇ = 1/J. The transition from the viscous to the
inertial regime is far from being completely understood but is supposed to occur when
the Stokes number St = I2/J = ρpγ̇ d2

p/ηf is ∼ O(1–10) (Bagnold 1954; Ness & Sun
2015).

Traditionally, the rheology of dense suspensions has been assessed in rheometry
experiments of neutrally buoyant spheres, by imposing a constant volume fraction, φ, to
obtain the shear viscosity ηs as a function of φ (see e.g. Stickel & Powell 2005; Guazzelli &
Pouliquen 2018). The pressure-imposed rheometry described in the preceding paragraphs
is a recent addition and has been found to be particularly useful in the range of large
φ, which is less amenable to conventional rheometry (Boyer et al. 2011; Dagois-Bohy
et al. 2015; Guazzelli & Pouliquen 2018; Tapia, Pouliquen & Guazzelli 2019). This latter
approach where the suspension is free to expand (or to contract) under shear is particularly
well suited to study the rheology close to the jamming transition and to measure the
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maximum volume fraction, φc, where the viscosities diverge. Another valuable aspect of
this pressure-controlled rheometry is the direct measurement of the particle pressure, pp,
which is usually not accessible to conventional rheometry.

The rheological measurements can be described by empirical correlations relating
the shear viscosity, ηs, to the volume fraction, φ (see e.g. Stickel & Powell 2005).
There are also phenomenological relations for the normal viscosity, ηn, vs φ, in
particular that proposed by Morris & Boulay (1999) to match experimental results on
shear-induced migration. Of particular interest to sediment transport, wherein two different
phases need to be addressed, are the relations proposed by Boyer et al. (2011) as the
expressions for μ(J) and φ(J) and equivalently for ηs(φ) and ηn(φ) that contain two
terms, one coming from the hydrodynamic interactions and one coming from direct
contacts. The viscous term is constructed to yield the Einstein viscosity at low φ

while the contact term is similar to that found for dry granular media and produces
the observed power-law divergence at the jamming transition. It is important to note
that these phenomenological relations are inherently empirical, because they involve
adjustable parameters that have been determined by best fit to experimental data of
sheared dense suspensions with particle volume fractions φ/φc > 0.5. Hence, using these
correlations to describe sediment transport may be problematic, because the bed-load
transport layer can easily reach values lower than the data range of the rheometry
experiments. Consequently, there is a need to investigate sediment transport by means
of highly resolved data to test the validity of the empirical correlations as constitutive
laws.

Modelling sediment flows on a continuum scale indeed requires application of a
two-phase approach, and thus use of the appropriate constitutive relationships for the
stresses of the fluid and particle phases is essential. This search started with the pioneering
studies of Bagnold (1956), who applied the results of his rheological experiments (Bagnold
1954) to the non-uniform case of grains flowing over a gravity bed, i.e. a sediment bed
stabilised by gravity. Recognising the necessity of a frictional view of the problem has
been found to be instrumental. In particular, Ouriemi, Aussillous & Guazzelli (2009) used
a frictional rheology similar to that proposed for dry granular media to describe the stress
of the particle phase as they considered that the grains were mainly interacting through
contact forces inside the bed. They also took a Newtonian rheology for the fluid phase with
an Einstein dilute viscosity, as for grains in contact higher-order hydrodynamic interactions
are shielded and the viscosity reduced to its dilute value.

Two-phase modelling using a μ(J) frictional rheology has been tested against bed-load
experiments in channel flows by Aussillous et al. (2013) and was found to be successful
in predicting the flow inside the mobile bed. However, the rheological coefficients were
adjusted to match the experimental velocity and concentration profiles and overall differ
from those found by Boyer et al. (2011). Another method followed by Houssais et al.
(2016) was to consider heavy particles sheared in an annular channel and to infer the
rheological properties of the settled suspension. The rheology of Boyer et al. (2011) was
recovered, but with the addition of a pressure at the interface of the free-fluid flow and
the sediment bed, which corresponded to some fraction of the weight of an individual
particle. These experiments, which aim at studying the rheological behaviour of mobile
sediment beds, are particularly difficult as they require great accuracy in the measurements
of the packing fraction and of both the particle and fluid motion. There are additional
difficulties coming from the choice of the shearing flows. In annular Couette flows
(Mouilleron, Charru & Eiff 2009; Houssais et al. 2016), the thickness of the flowing
suspension is merely two particle diameters, and using a continuum description may
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not be fully justified. The mobile layer is much thicker in Poiseuille-type flows and is
better suited to a comparison with a continuum modelling. This set-up is also a more
realistic representation of a natural channel because, unlike in annular flows, the sidewalls
have no curvature (Lobkovsky et al. 2008; Aussillous et al. 2013; Allen & Kudrolli
2017). However, using a straight channel configuration may also prove to be problematic
as there is a continuous erosion in the channel, and consequently the generated data
always contain a transient component where erosion and deposition may not be in full
equilibrium.

Consequently, uncertainties remain as to how rheological models derived for Couette
flows are applicable to the situation of natural sediment transport, where the flow is
typically driven by a volume force, such as a pressure gradient or a downhill force.
For these types of flows, the key differences are (i) total shear increasing with flow
depth, which yields a wide range of viscous numbers J, (ii) settled particles where the
particle pressure pp and viscous number J vary vertically and (iii) non-homogeneous
particle volume fractions throughout the bed-load transport layer at the interface between
the free-fluid flow and the sediment bed. In particular, this latter region close to the
interface remains poorly accessible by means of experimental measuring techniques.
A promising alternative route for investigating the rheological behaviour of sediment beds
is to use direct numerical simulations (DNS) at the particle scale. There are only a few
contributions in the context of bed-load transport. In particular, the study of Kidanemariam
& Uhlmann (2014), which uses the immersed boundary method (IBM) for the fluid-solid
coupling and a soft-sphere approach for solid–solid contact (discrete element models
(DEM)), investigated the flow-induced motion of a thick bed of spherical particles
and found excellent agreement with the mean flow properties reported by Aussillous
et al. (2013) even though the Reynolds number in the simulations was two orders of
magnitude larger than in the experiment. Furthermore, Kidanemariam (2016) presented a
first attempt to directly infer the rheology of a sheared sediment bed. The present paper is
following this route to verify if previous rheological considerations from pressure-imposed
rheometry remain applicable for the set-up of sediment transport in a pressure-driven
flow.

The objective of the present contribution is, hence, to quantify the stress exchange of
the fluid and particle phases in the mixture to access the highly complex fluid particle
interactions in the bed-load transport layer. This analysis is crucial to compute directly the
rheological behaviour of sediment beds exposed to a pressure-driven flow and allows for a
comparison to previous rheological studies of annular Couette flows with neutrally buoyant
particles. Towards this goal, we employ particle-resolved DNS using the IBM (Uhlmann
2005; Kempe & Fröhlich 2012a) and the DEM validated by Biegert, Vowinckel & Meiburg
(2017a). The simulation framework is applied to reproduce the experimental configuration
of Aussillous et al. (2013), albeit for higher flow rates but by still remaining in the viscous
regime of flow with St < 10, see §§ 2 and 3. We then apply in § 4 the strategy of Biegert
et al. (2018) and Vowinckel et al. (2019) to capture quantities unreachable in experiments
such as the stress balances for the fluid and particle phases and the whole fluid–particle
mixture in the streamwise and vertical directions. Rheological quantities are also inferred
from these highly resolved data and are compared to the reconstructed rheological data
from the experimental data of Aussillous et al. (2013) in § 5. The scaling behaviour of the
shear and normal viscosities as well as of the effective friction coefficient are explored
and compared to the data of Boyer et al. (2011), Dagois-Bohy et al. (2015) and Tapia et al.
(2019) obtained by pressure-imposed rheometry as well as with widely used correlations
(Morris & Boulay 1999; Boyer et al. 2011).
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2. Experimental data

We use the experimental data of Aussillous et al. (2013) who examined the mobile layer
of a granular bed in laminar flows in a rectangular-channel flow. This database yields
depth-resolved profiles of particle velocity for a range of fluid heights hf as the height of
the clear-liquid layer above the granular bed and flow rates in the laminar regime.

We summarise below the main features of the experimental apparatus used to obtain
this database. Further details can be found in Aussillous et al. (2013). Two batches of
particles, consisting respectively of borosilicate spheres having a mean diameter dp =
1.1 ± 0.1 mm and a specific density (ρp − ρf )/ρf = 1.1 and of polymethyl methacrylate
(PMMA) spheres having a mean diameter dp = 2.04 ± 0.03 mm and a specific density
(ρp − ρf )/ρf = 0.1, were selected, where ρf is the fluid density. The particles were
immersed in a viscous fluid (mainly composed of Triton X-100 and water) having the
same refractive index as the respective particles. A dye (Rhodamine 6G) that fluoresces
when illuminated by the laser in the wavelength range greater than 555 nm was added
to the fluid. The flow set-up consisted of a horizontal rectangular channel of length
Lx = 100 cm, height Ly = 6.5 cm and width Lz = 3.5 cm, where x, y and z denote the
streamwise, vertical and spanwise coordinates, respectively. To create a sediment bed, the
channel was filled up with monodisperse particles and fluid, then turned upside down and
tilted to consolidate the sediment bed. Afterwards, the channel was set horizontally and
flipped back to its original position and a pressure gradient was applied to generate a small
flow rate. This procedure was applied to fill solely the channel entrance with sedimented
particles, leaving an empty buffer space near the outlet of the channel. A constant fluid
flow rate, Qf , was then applied to erode the sedimented bed of particles into the empty
buffer space. In this way, the fluid shear stress at the top of the bed decreased as the
fluid–particle interface (upstream from the buffer region) receded (i.e. hf increased) with
time. The fluid–sediment interface is detected by computing the maximum change of slope
of the averaged grey level profile (green line in figure 1a,c). Several runs were conducted
for each particle type, by varying the imposed flow rate. Data for the velocity profile
(particle velocity, up and fluid velocity, uf , in solely the pure fluid zone for the PMMA
particles) were collected by averaging 10 images over 0.5 s every 5 s. In addition, bulk
quantities were deduced such as the time evolution of the particle bed height, hp, and the
flow rate per unit width, qf ,exp, by neglecting the role of the moving granular layer. The
experiments were conducted in the viscous regime with a Reynolds number defined as
Re = ρf Qf /ηf Lz in the range 0.2 < Re < 1.2. The Stokes number based on the shear rate
γ̇ was St = ρpd2

pγ̇ /ηf ≈ 0.01 on average.
The most difficult quantity to extract from the experiments is the particle volume

fraction, φ. In Aussillous et al. (2013), the volume-fraction profile for the borosilicate
particles was evaluated by using the averaged grey-level profile, PI( y), of the same images
as those utilised to infer the velocity profile and by scaling it by the grey-level profile of
the immobile initial bed, which is assumed to be at the constant maximum particle volume
fraction φc = 0.585. However, the laser intensity was likely to have changed during a run
and the maximum packing in the bed measured with this method was found to vary with
the fluid height. We thus decided to revisit these data and to consider another method (also
based on the averaged grey-level profile) to evaluate the volume fraction. As in Aussillous
et al. (2013), we suppose that the grey-level intensity gradient is mainly due to a linear
broadening of the laser line due to the use of a laser line generator with a finite fan angle
(Dijksman et al. 2012). First, we adjust the intensity decay in the pure fluid zone by a
linear function, PI = P0l(1 − y/y0), where P0l and y0 are constants which depend on the
laser and the fluid properties, see figure 1(a,c) corresponding respectively to run 1 and run
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Figure 1. Depth-resolved quantities extracted from the experiments for (a,b) borosilicate particles with Qf =
2.7 × 10−6 m3 s−1 and hf = 6.3 mm and for (c,d) PMMA particles with Qf = 2.7 × 10−6 m3 s−1 and hf =
15.3 mm corresponding to runs 1 and 12 of Aussillous et al. (2013), respectively. (a,c) Averaged images over
10 s having a length scale (a) 0.029 mm pixel−1 and (b) 0.046 mm pixel−1 with the corresponding grey-level
profile (green curve) and the linear adjustment in the pure fluid zone (yellow straight line). (b,d) Normalised
volume-averaged velocity profile, U/Umax (red ◦), and volume-fraction profile, φ/φc (blue �). The full line
corresponds to the theoretical velocity profile in the pure fluid zone (2.3). The white and grey horizontal dashed
lines in (a,c) and (b,d) respectively indicate the fluid–particle interface at y = hp.

12 of Aussillous et al. (2013). Second, for the liquid–particle mixture we assume that
PI( y) = [(1 − φ)P0l + φP0s](1 − y/y0) where P0s is related to the particle properties.
We then introduce A = PI( y)/(1 − y/y0), which is averaged over the same box size as
that used for the velocity profile. If we suppose that φ(hc) = φc and A(hc) = Ac at the
bottom of the mobile granular layer hc, i.e. the height for which particle motion ceases, the
volume fraction is given by φ = φc[A( y) − 1]/(Ac − 1). In figure 1(b,d), we have plotted
the normalised volume fraction, φ/φc, vs the vertical position made dimensionless using
the particle diameter, y/dp, for (b) borosilicate particles (Qf = 2.7 × 10−6 m3 s−1 and
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Rheology of sediment beds sheared by pressure-driven flows

hf = 6.3 mm) and (d) PMMA particles (Qf = 2.7 × 10−6 m3 s−1 and hf = 15.3 mm).
We observe that the volume fraction increases rapidly downward from the fluid–particle
interface and reaches quickly a constant value after approximately two sphere diameters.

To examine the rheological behaviour of the sheared sediment bed, we need to infer
the depth-resolved shear rate, γ̇ , the mixture shear stress, τ , and the particle pressure,
pp, from the particle velocity profile, up, and the volume-fraction profile, φ. First, we
interpolate linearly the velocity and volume-fraction profiles to obtain their value at
the fluid–bed interface, up,in and φin, see the red x and blue + on the dashed line
in figure 1(b,d). The shear rate profile, γ̇ ( y) = dup/dy, is simply deduced numerically
from the particle velocity profile using a second-order finite difference approximation. To
evaluate the total shear stress and the particle pressure, we use the two-phase modelling
developed in Aussillous et al. (2013). In this approach, a flat particle bed of thickness hp
is subjected to a Poiseuille flow driven by a pressure gradient, ∂pf /∂x, in a horizontal
channel. The flow is assumed to be two-dimensional, stationary and uniform in the
streamwise direction, also parallel and laminar. From the fluid phase equation (i.e. the
Brinkman equation), the volume-averaged velocity in the horizontal x-direction is found
to be U = φ up + (1 − φ) uf ≈ up ≈ uf in the bed due to the small permeability. In the
laminar regime, the momentum equations for the mixture (particles plus fluid) then write

τ(y) = τf (hp) − ∂pf

∂x
(hp − y), (2.1)

∂pp

∂y
= φ( y)�ρg, (2.2)

where g is the gravitational acceleration and �ρ = ρp − ρf corresponds to the density
difference between the two phases. To compute the particle pressure profile inside the bed,
(2.2) is integrated numerically along the vertical y-direction. It shows that the pressure of
the particle phase is proportional to the apparent weight of the solid phase and increases
when penetrating inside the bed. The total stress profile inside the bed is deduced from
(2.1), provided the stresses applied by the fluid at the fluid/bed interface, τf (hp), and the
imposed fluid pressure gradient, ∂pf /∂x, are given.

Due to the lack of measurements of the fluid velocity in the pure fluid zone for the
borosilicate particles, we need to reconstruct the fluid velocity profile for this batch of
spheres based on the following assumptions:

(i) The fluid velocity, uf , is zero at the top wall (y = Ly) and matches the particle
velocity, up,in, at the bed height (y = hp).

(ii) The fluid velocity profile is parabolic for y > hp which yields the analytical solution
for a mixed Couette–Poiseuille flow

uf = ∂pf /∂x
2ηf

(
y2 − L2

y

)
−

[
up,in

hf
+ ∂pf /∂x

2ηf

(
hp + Ly

)]
( y − Ly), (2.3)

where hf = Ly − hp is the height of the clear fluid layer.
(iii) The fluid flux, qf ,exp, is written as

qf ,exp =
∫ hp

0
(1 − φ)up dy +

∫ Ly

hp

uf dy︸ ︷︷ ︸
qf

, (2.4)

considering that the fluid velocity matches the particle velocity inside the bed.
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Using the experimental flow rate per unit width, qf ,exp, and the experimental vertical
profiles of φ and up, the pure fluid flow rate qf is deduced from (2.4) by numerical
integration and the pressure gradient for the parabolic velocity profile is then obtained
as ∂pf /∂x = (6ηf /h3

f )(hf up,in − 2qf ). Inserting this value in (2.3), we can calculate the
fluid velocity profile in the pure fluid zone, see the black full curves in figure 1(b–d). The
agreement with the experimental fluid velocity measurement for the PMMA particles is
found to be good, see figure 1(d). This validates the present reconstruction method and
its use for the borosilicate particles. Note that this method does not enforce a continuity
of stress from the clear fluid phase to the particle phase; the obtained fluid and particle
velocity profiles exhibit a change in slope at the fluid/bed interface. The fluid shear stress
at the bed interface is then given by τf (hp) = 1

2(∂pf /∂x)(Ly − hp) − ηf up,in/hf and the
vertical profile of the shear rate is simply given by (2.1).

The extraction and reconstruction methods described above provide all the quantities
needed to investigate the rheology of the mobile sediment bed: μ(J) and φ(J) or
equivalently ηs(φ) and ηn(φ).

3. Simulation data

In the present work, we use the framework described in detail in Biegert et al. (2017a,b) to
execute several simulations in an attempt to compare to the different experimental results
of Aussillous et al. (2013) at different flow rates and fluid heights. In order to keep the
paper self-contained, we provide a brief summary of the computational approach.

The particle-laden flows of interest require us to solve the Navier–Stokes equation

ρf

[
∂uf

∂t
+ ∇ · (uf uf )

]
= ∇τ f + f b + f IBM, (3.1)

where uf = (uf , vf , wf )
T denotes the fluid velocity vector and t time. The fluid stress tensor

is given by τ f = −pf E + ηf [∇uf + (∇uf )
T], where pf represents the fluid pressure with

the hydrostatic component subtracted out and E the identity matrix. The right-hand side
includes the volume forces f b = ( fb,x, 0, 0)T and f IBM . The former is a source term used
to create the pressure gradient driving the flow and the latter an immersed boundary force
used to enforce the no-slip condition on the particle surface. We discretise the equations
of motion for the fluid on a cubic finite difference mesh (λ = �x = �y = �z).

The numerical treatment is based on the IBM for fluid–particle coupling (Uhlmann
2005; Kempe & Fröhlich 2012a) and the scheme of Biegert et al. (2017a) for
particle–particle interaction.

We solve for the translational velocity, up,

mp
dup

dt
=

∮
Γp

τ f · n dA︸ ︷︷ ︸
=F h,p

+ Vp (ρp − ρf ) g︸ ︷︷ ︸
=F g,p

+F i,p, (3.2)

and the angular velocity, ωp,

Ip
dωp

dt
=

∮
Γp

rp × (τ f · n) dA︸ ︷︷ ︸
=T h,p

+T i,p, (3.3)

of spherical particles, where mp is the particle mass, Ip the particle moment of inertia,
Vp the particle volume and g = (0, −g, 0)T the gravitational acceleration vector. The fluid
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Rheology of sediment beds sheared by pressure-driven flows

acts on the particles through the hydrodynamic stress tensor τ f , where rp represents the
vector from the particle centre to a point on the surface Γp and n is the unit normal vector
pointing outwards from that point. The net force and torque acting on the particle centre
of mass due to particle interactions are given by F i,p and T i,p, respectively.

We evaluate the particle interaction forces and torques according to Biegert et al.
(2017a). The resulting collision model involves normal contact forces, F n, tangential
(frictional) contact forces, F t, and short-range hydrodynamic lubrication forces, F l, to
provide the total collision force

F i,p =
Ntot∑

q, q /= p

(
F l,pq + F n,pq + F t,pq

)
, (3.4)

where Ntot is the total number of particles and the subscript pq indicates interactions of
particle p with particle q. According to Cox & Brenner (1967), we model the unresolved
hydrodynamic component of the lubrication forces in our simulations as

F l,pq =

⎧⎪⎨
⎪⎩

−
6πηf R2

eff

max(ζn, ζmin)
gn 0 < ζn � 2h

0 otherwise

(3.5)

where ζn is the gap size, Reff = RpRq/(Rp + Rq) the effective radius and Rp and Rq are
the radii of the two interacting particles. Furthermore, ζmin = 3 × 10−3Rp is a limiter
as calibrated by Biegert et al. (2017a) that can be interpreted as the roughness of the
particle surface and gn is the normal component of the relative velocity of the two colliding
particles. The repulsive normal component is represented by a nonlinear spring-dashpot
model for the normal direction

F n,pq = −kn|ζn|3/2n − dngn, (3.6)

where kn and dn represent stiffness and damping coefficients that are adaptively calibrated
for every collision/contact to prescribe a restitution coefficient of edry = −uo/ui = 0.97
(Kempe & Fröhlich 2012b). Here, uo and ui indicate the normal components of the relative
particle speed immediately after and right before the particle contact, i.e. ζn = 0. The
forces in the tangential direction are modelled by a linear spring-dashpot system capped
by the Coulomb friction law as

F t,pq = min
(−ktζ t − dtgt,cp, ||μf F n||t

)
, (3.7)

where kt and dt are stiffness and damping computed according to Thornton, Cummins &
Cleary (2011) and Thornton, Cummins & Cleary (2013), μf = 0.15 represents the friction
coefficient between the two surfaces, ζ t is the tangential displacement integrated over
the time interval for which the two particles are in contact (Thornton et al. 2013) and t
is a unit vector pointing into the tangential direction. The empirical parameters edry =
0.97 and μf = 0.15 have been taken from experiments involving glass spheres (Gondret,
Lance & Petit 2002; Joseph & Hunt 2004). Using these values, the contact model has been
validated in detail by Biegert et al. (2017a) against seminal experimental benchmark data
involving the same material (Foerster et al. 1994; Gondret et al. 2002; Ten Cate et al. 2004;
Aussillous et al. 2013). Note that these parameters were not measured for the particles used
in the experiments of Aussillous et al. (2013) and may, hence, be different.
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Figure 2. (a) Initial conditions for fluid velocity and bed configuration at t/tbase = 0 and (b) fully developed
state at t/tbase = 10 for simulation Re67 as listed in table 2. Lines indicate the average streamwise (x-direction)
fluid velocity (dark grey, red online) and particle velocity (light grey, yellow online), where the consecutive
averaging in the horizontal plane and time is defined by (3.9).

In the present work, we consider a computational set-up very similar to the
one presented in Aussillous et al. (2013) (figure 2a). The domain has dimensions
Lx × Ly × Lz = 20dp × 30dp × 10dp. We discretise the domain with a regular grid that
is equidistant in all three directions and has a resolution of 25.6 grid cells per particle
diameter, which is a fine enough resolution to obtain results independent of the grid
cell size, as shown by Biegert et al. (2018). We generate the bed by allowing 4339
monodisperse particles to settle under gravity, without the influence of the surrounding
fluid, onto a layer of 200 fixed particles whose centres randomly vary in height above the
bottom wall within a range of dp, providing an irregular roughness (Jain, Vowinckel &
Frhlich 2017). The resulting bed fills the domain to approximately a height of hp ≈ 20dp
from the bottom wall, where hp is the particle bed height, leaving a gap of approximately
10dp between the top wall and the top of the particle bed. For the simulation runs, we
use a particle density ρp/ρf = 2.1 and a Galileo number of Ga = 0.85. A definition of
Ga as well as a summary of the relevant simulation parameters is given in table 1. We
employ a predefined Poiseuille flow in the clear fluid region above the sediment bed as a
reference case for the simulation. For this reference case, we define the reference length
yref = 10dp = Ly/3, the reference velocity of uref = −y2

ref fb,x/(12ηf ) and the reference
stress σref = −yref fb,x/2 to compute the corresponding Reynolds and Shields numbers
(cf. table 2).

We enforce different volumetric flow rates, governed by the volume force fb,x. As it
can take a long time for a simulation to reach a statistically steady state when initialised
from rest, we found it to be more efficient to obtain a steady state by initialising the
flow with a large pressure gradient that mobilises the entire bed (run Re67 in figure 3(a)
and table 2). To allow for a direct comparison among the different runs, we therefore
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Rheology of sediment beds sheared by pressure-driven flows

Number of particles Ntot 4339

Galileo number Ga = ρf

ηf

√(
ρp

ρf
− 1

)
g d3

p 0.85

ρp/ρf 2.1
Timestep CFL = 0.5
Domain size (Lx/dp × Ly/dp × Lz/dp) 20 × 30 × 10
Domain grid size (Lx/λ× Ly/λ× Lz/λ) 512 × 768 × 256
Domain boundary conditions periodic × no-slip × periodic
Initial hf /dp 10.0
Particle resolution, dp/λ 25.6

Table 1. Simulation parameters for the pressure-driven flow over a bed of particles.
CFL, Courant–Friedrichs–Lewy.

Simulation run Reref Shref tsim/tbase tavg/tbase

Re67 66.7 11.1 [0.00, 10.00] initialisation
Re17 16.7 5.53 [10.00, 47.20] [16.00, 47.20]
Re33 33.3 2.77 [10.00, 58.80] [44.00, 52.15]
Re8 8.33 1.38 [47.20, 92.05] [77.00, 92.05]

Table 2. Simulation parameters for different runs of the pressure-driven flow over a bed of particles. The
Reynolds and Shields numbers based on the reference case (predefined Poiseuille flow above the sediment
bed), i.e. Reref = ρf uref yref /ηf and Shref = σref /[(ρp − ρf )gdp], respectively. The individual simulation is run
for the duration tsim, and the momentum balance is analysed by using time-averaged data over the interval tavg.
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t/tbase

0 20 40 60 80 100

t/tbase

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

q p/
(y

re
f u

ba
se

)

Re67
Re8
Re17
Re33

1.9

2.0

2.1

2.2

2.3

2.4

h p/
y re

f

(b)
(a)

Figure 3. Sheared particle bed. (a) Particle volumetric flux qp = (1/Lx Lz)
∑Ntot

p=1 Vpup,x, for the different
simulation runs. Dotted lines indicate the average particle flux over the averaging time interval for each
simulation. (b) Bed height, defined at 〈φ〉 = 0.05.

define ubase = uref (Re67), tbase = yref /(1.5ubase) and σbase = σref (Re67). By the end of
the simulation Re67, the bed has dilated to a height of hp/yref ≈ 2.3 (figure 3b), and the
particles just above the fixed layer at the bottom of the domain are moving (figure 2b).
After this initialisation phase, the imposed pressure gradient is reduced to produce
simulations Re17 and Re33. Re8 is carried out by continuing Re17 with an even lower
imposed pressure gradient. This procedure allows us to quickly reach a steady state for
runs Re17 and Re8, as can be seen in figure 3(a), whereas Re33 is still in the process of
dilation.

To compare the simulation results to rheological models, we have to analyse the discrete
information of the particle phase in our simulations, such as particle velocities and forces,
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from a continuum viewpoint. To this end, we employ the coarse-graining method (CGM)
based on the works of Goldhirsch (2010) and Weinhart et al. (2012). This CGM conserves
quantities of interest, but additionally smooths out the resulting continuum field. For a
given discrete particle quantity θp, we define its coarse-grained continuous counterpart,
θcg, as

θcg(x, t) =
Ntot∑
p=1

θpW(x − xp(t)), (3.8)

where xp(t) is the position of the centre of particle p, and W(r) is the conservative
coarse-graining function that smears a given local quantity in a spherical volume of
radius |r|. The main property is that

∫
R3 W(r) dr = 1. We implemented a coarse-graining

function based on the Dirac delta function of Roma, Peskin & Berger (1999), which is the
same delta function used in the IBM (Uhlmann 2005). The filter |r| has to be as small as
possible to fully exploit the highly resolved simulation data for our rheological analysis,
but large enough to smooth out the sub-particle scale. Here, we choose |r| = 1.5dp, which
was deemed to be a good compromise to satisfy these requirements.

The steady-state configuration for the moving bed is steady only in a time-averaged
sense, because particle collisions and positions continuously fluctuate. We therefore define
the time average of a given continuous field θ to be

〈θ〉( y) = 1
tavg,2 − tavg,1

∫ tavg,2

tavg,1

1
LxLz

∫ Lz

0

∫ Lx

0
θ(x, y, z, t) dx dz dt, (3.9)

where the overbar and angular brackets represent averaging in time and space, respectively
(Vowinckel, Kempe & Fröhlich 2014; Vowinckel et al. 2017a,b). Note that this averaging
operator applies for both continuous fluid quantities and coarse-grained particle quantities.
We present the values for tavg,1 and tavg,2 in table 2. These time-averaging windows were
chosen to capture the steady-state results, or as large a time span as possible for as similar a
particle flux as possible (figure 3). We will show, however, that our results for the rheology
are independent of transient behaviour for all Reynolds numbers investigated.

We can use (3.8) to obtain a continuous field of φ and (3.9) to generate vertical
profiles of 〈φ〉 and

〈
uf

〉
by computing double-averaged values (in space and time, cf.

figure 4). For the analysis of the rheology, we exclude values for y/yref < 0.68 to eliminate
boundary effects from the artificial bed roughness at the bottom wall. We observe the same
evolution for the volume fraction as in the experiments with a rapid increase downward
from the fluid–particle interface to reach a constant value after a few sphere diameters.
Here, we follow the definition of Biegert et al. (2017a) to determine the fluid–sediment
interface at 〈φ〉 = 0.05. The oscillations of 〈φ〉 in this region reflect the sub-particle scale
as the particle are layered within the sediment bed (figure 4a). We therefore apply the
coarse-graining radius of |r| = 1.5dp to the grid resolved data shown in this figure to
smooth out the layered structure in these vertical profiles. Note that figure 4(b) yields γ̇ =
∂
〈
uf

〉
/∂y as another rheological quantity. Looking at the double-averaged fluid velocity

profiles in figure 4(b), the three cases represent three distinctively different regimes
(Jenkins & Larcher 2017). The sediment bed of Re8 reaches a quasi-static regime of the
granular suspension, whereas the sediment motion in Re17 and Re33 can be considered
‘layered’ and ‘collisional’, respectively. There is a clear qualitative difference between run
Re8, whose velocity profile is concave and goes to zero within the bed at y/yref ≈ 0.5,
and run Re33, whose velocity profile is convex, goes to zero only at the fixed particles at
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Figure 4. Sheared particle bed: profiles for the different simulation runs averaged horizontally and in time
for (a) the particle volume fraction and (b) the streamwise velocity. The average fluid velocity (solid coloured
lines) is given by (3.9), while the average coarse-grained particle velocity (circles) is given by (3.8).

the lower wall. Note that the fluid velocity is to a good approximation equal to the particle
velocity, which is consistent with the observation of Aussillous et al. (2013). The Stokes
number is in the range 0.19 � St � 0.77, which is 20 to 80 times larger than the values
obtained from the experimental data § 2, but still expected to be in the viscous regime
(Ness & Sun 2015).

While we can readily extract the quantities for φ and γ̇ from figure 4, an additional
investigation of the total stress balance of the fluid–particle mixture in x- and y-directions
is needed to compute the total shear stress τ and the granular pressure pp as will be detailed
in the next section.

4. Stress balance of the simulation data

This section presents the analysis of the stress balance for the fluid–particle mixture to
compute wall-normal profiles of the rheological quantities τ and pp. To this end, we
follow the argument of the previous numerical work (Biegert 2018; Biegert et al. 2018;
Vowinckel et al. 2019), where the full derivation of the stress balances in both shearing
(x) and wall-normal (y) directions is given from first principles. In addition, a detailed
analysis of the present data sets for all components entering the stress balances in the
shear and wall-normal directions can be found in Biegert (2018).

4.1. Stress balance in the x-direction to obtain the total stress
To obtain the total shear stress, we consider the momentum balance of the fluid phase,
i.e. the Navier–Stokes equations (3.1), over the control volume ΩCV in the x-direction
spanning from the top wall Γw to some arbitrary height y with the lower boundary being Γy
and involving multiple particles (figure 5). We distinguish the free fluid from the particle
interior as exemplified in figure 5 using Ω+

CV and Γ +
y for parts of the domain that are

occupied by fluid and the lower boundary, respectively.
We can simplify the momentum balance of the fluid phase for the following reasons.

Owing to the periodic boundary conditions and the fact that we impose the Poiseuille flow
via the volume force f b, the pressure term (∂pf /∂x in (3.1)) does not contribute to the
x-momentum, since our control volume covers the entire streamwise extent of the domain.
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�+
CV

Γ p
CVLCV

Γ +
y

Γw

Γ –
y

Figure 5. Shaded control volume for the averaging involving multiple particles. All of the volumes and
surfaces required for (4.1) are indicated.

At the top wall Γw, the vertical velocity, vf , is zero, so that only ηf ∂uf /∂y contributes to
the fluid stress. At the lower boundary, Γy, the pressure again does not play a role and
the convective term vanishes due to the laminar flow conditions, so that the long-range
hydrodynamic stress originates from the viscous term. Finally, we include fIBM,x as the
sum of all hydrodynamic stresses arising from pressure and viscous forces that act on the
particle surfaces LCV enclosed in ΩCV . These assumptions yield∫

Γw

ηf
∂uf

∂y
dA +

∫
ΩCV

fb,x dV︸ ︷︷ ︸
External force

=
∫

Γ +
y

ηf

(
∂uf

∂y
+ ∂vf

∂x

)
dA︸ ︷︷ ︸

Fluid force

−
∫

LCV

fIBM,x dV︸ ︷︷ ︸
Particle force

. (4.1)

The last term Particle force provides the linkage to the momentum balance of the particle
phase, which can be obtained by applying the CGM (3.8) to the particle equation of motion
(3.2). This yields

acg = F cg
h + F cg

g + F cg
i , (4.2)

where acg, F cg
h , F cg

g and F cg
i are the coarse-grained forces due to the particle acceleration,

hydrodynamic stress due to the IBM, gravity and particle interactions, respectively. Similar
to the fluid momentum balance, we can analyse the coarse-grained particle forces within a
control volume spanning the entire domain in the streamwise and spanwise directions and
extending from the top wall to an arbitrary height y. Integrating (4.2) over this volume, we
obtain ∫

ΩCV

acg dV =
∫

ΩCV

(
F cg

h + F cg
g + F cg

i

)
dV. (4.3)

If particles are in a steady state, either naturally or through double averaging, then
the acceleration term vanishes. Furthermore, our set-up of a horizontal channel yields
Fg,x = 0. We can, therefore, use the fact that fIBM,x = Fcg

h,x = −Fcg
i,x and apply (3.4)
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to further distinguish between normal and tangential forces due to particle contact and
friction (Fcg

n,x and Fcg
t,x) and short-range hydrodynamic lubrication forces (Fcg

l,x).
Using the averaging operator (3.9) and dividing by the horizontal area of the domain,

we can rewrite (4.1) as

ηf

〈
∂uf

∂y

∣∣∣∣
Ly

〉
+ f̄b,x(Ly − y)

︸ ︷︷ ︸
External/total stress

= ηf

〈
γ

(
∂uf

∂y
+ ∂vf

∂x

)∣∣∣∣
y

〉
−

∫ Ly

y

〈
Fcg

l,x

〉
dy

︸ ︷︷ ︸
Hydrodynamic stress

+
∫ Ly

y

(〈
Fn,x

〉 + 〈
Ft,x

〉)
dy︸ ︷︷ ︸

Contact stress

, (4.4)

where γ is an indicator function for the fluid (γ = 1 outside the particle and γ = 0 inside
the particle), resulting in double-averaged equations for laminar flows akin to Nikora et al.
(2013) and Vowinckel et al. (2017a,b). We have also used the fact that ηf , ρf and fb,x are
constant throughout the domain. It is important to note that we are explicitly separating the
stresses arising from hydrodynamic interactions and particle contacts, respectively (Gallier
et al. 2014; Gallier, Peters & Lobry 2018), which will be analysed in more detail in § 5.
The right-hand side of (4.4) comprises the long-range fluid stress due to viscous effects
evaluated at height y at the boundaries of the control volumes Γ +

CV occupied by fluid as
well as the short-range lubrication effects within the control volume Γ +

CV . The contact
stress comprises both, normal contact forces and tangential frictional forces. Note that
it was shown in Biegert et al. (2018) and Biegert (2018) that there is also a viscous and
convective stress inside the particles Γ −

CV as a by-product of the IBM. For the present study,
this effect does not contribute a significant part to the total stress balance. The external
stress on the left-hand side of (4.4) consists of the viscous stress at the top wall and the
stress from the body force acting throughout the control volume. It is also equal to all other
stresses arising from the movement of the fluid and particles and is hence equivalent to the
total stress τf needed to compute the rheological quantities μ(J) and ηs.

For the analysis of the stress balance of the fluid phase, we focus on runs Re8 and Re33
to get a sense of the results for different flow conditions. Figure 6 shows the momentum
balance of the fluid phase, given by (4.4), for runs Re8 (figure 6a) and Re33 (figure 6b),
in which we expect the external stress to match the sum of the hydrodynamic and contact
stresses. As expected, the external stress at the top wall is close to 〈σx〉/σref = −1. In the
upper part of the flow (y/yref > 2.15 and y/yref > 2.3 for Re8 and Re33, respectively),
there are no particles, and the hydrodynamic stress matches all of the external stress.
Within the particle bed (y/yref < 2.3), however, the majority of the external stress is taken
up by particle contact. The total stress comes out to be a linear profile. Hence, the present
results support the conceptual model (2.1) proposed by Aussillous et al. (2013) (figure 4(b)
in this reference) and we can use these data to compute ηs and μ in the following.

Naturally, the hydrodynamic stress of the laminar flow is entirely made up of the viscous
term alone. Run Re8 differs from Re33 in that the hydrodynamic stress reaches a higher
positive value above the particle bed and quickly drops to zero within the particle bed. The
hydrodynamic stress for Re33, on the other hand, increases with increasing depth within
the particle bed. Since the entire sediment bed is set in motion for this case, the lubrication
component makes a significant contribution to the hydrodynamic stress. These results are
consistent with the velocity profiles in figure 4(b), where the concavity of the profile
for Re8 results in a high shear stress at the fluid/particle bed interface and low stresses
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Figure 6. Stress balance of the fluid phase in the x-direction for a sheared particle bed according to (4.4).
(a) run Re8 and (b) run Re33. The horizontal dashed line marks the height of the particle bed, hp. As shown in
(a,b), the sum of the hydrodynamic and contact stresses is in equilibrium with the external stress and consists
mostly of the contact stress within the bed and the hydrodynamic stress above the bed.

within the bed, while the convexity of the profile for Re33 leads to a large shear stress at
the lower wall. The total stress, on the other hand, is completely dominated by particle
contact within the sediment bed. This result is consistent with the locations of the sharp
gradients in the stress balance, so that the hydrodynamic and contact stresses together
close the x-momentum balance. It also shows that effects from the local acceleration term
are negligible and that the unsteady flow conditions (figure 3) are expected to have no
impact on the reported results even for cases of dilating and consolidating sediment beds
(e.g. Re33).

4.2. Stress balance in the y-direction to obtain particle pressure
The rheological quantities ηn and μ(J) require information about the particle pressure pp,
which we can obtain by further analysing the particle phase. Another way to interpret the
bed particle pressure pp is to think of it as the total submerged weight of the particles
(Vowinckel et al. 2019). Indeed, this has been done by Stickel & Powell (2005) and
Ouriemi et al. (2009) for continuum modelling. We can demonstrate the validity of this
reasoning by analysing the momentum balance for the particle phase in the y-direction.
To this end, we utilise the coarse-grained momentum balance of the particle phase (4.2)
and apply the averaging operator (3.9) to recast (4.3) as a line integral in the wall-normal
direction

∫ Ly

y
〈acg〉 dy =

∫ Ly

y

(〈
F cg

h
〉 + 〈

F cg
g

〉 + 〈
F cg

i
〉)

dy. (4.5)

Since we are interested in the granular pressure, i.e. the bed weight, we consider only
the vertical y-component. We again neglect the acceleration term, but keep the gravity
term that is acting in the same vertical direction. Furthermore, we subdivide F cg

i into the
short-range hydrodynamic lubrication and particle contact component, F cg

l and F cg
n and
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F cg
t , respectively,

−
∫ Ly

y

〈
Fcg

g,y
〉
dy︸ ︷︷ ︸

Bed weight

=
∫ Ly

y

〈
Fcg

h,y

〉
dy +

∫ Ly

y

〈
Fcg

l,y

〉
dy︸ ︷︷ ︸

Hydrodynamic stress

+
∫ Ly

y

〈
Fcg

n,y
〉
dy +

∫ Ly

y

〈
Fcg

t,y
〉
dy︸ ︷︷ ︸

Contact stress

. (4.6)

Since F g,p = Vp(ρp − ρf )g, coarse graining the particle weight yields the left-hand side
as the submerged bed weight, which is equivalent to the particle pressure

pp = (ρp − ρf )|g|
∫ Ly

y
〈φ〉 dy. (4.7)

We also note that (4.7) is the integral of (2.2), so that the present derivation provides a
direct linkage to the two-phase modelling of Aussillous et al. (2013). Owing to the fact
that we obtain full information of the solid volume fraction (cf. figure 4b), we do not
need to introduce an artificial pressure at the fluid sediment interface. This was suggested
by Houssais et al. (2016) (called P0 in that study), but using such an artificial pressure
would neither be in line with the two-phase modelling, nor would it obey the definition of
our control volume sketched in figure 5. Hence, omitting P0 naturally yields J → ∞ for
φ → 0, because pp → 0. This behaviour is consistent with the approach of Boyer et al.
(2011).

Figure 7 shows the coarse-grained particle phase stresses, given by the time average of
(4.6) for runs Re8 (a) and Re33 (b). In figures 7(a) and 7(b), the bed weight increases
almost linearly from the top of the particle bed down to the lower wall, balanced by
the sum of the hydrodynamic and collision stresses. Again, this observation confirms the
conceptual model of (2.2) of Aussillous et al. (2013). The fact that we have found a linear
profile for this physical quantity simplifies the situation from a modelling perspective, i.e.
one needs the sediment height and the total submerged weight of the sediment bed to
reconstruct depth-resolved profiles of pp. The results for the stress balance in y-direction
show clear differences between runs Re8 and Re33. Owing to the normalisation, the
dimensionless y-momentum collision stress is three times larger for Re8 than for Re33.
Moreover, the hydrodynamic stress is positive for Re8 and negative for Re33, so that the
collision stresses are less than and greater than the bed weight, respectively, for the stress
balance to be in equilibrium. These deviations from zero stem from the fact that Re8 and
Re33 are in the process of consolidation and dilation, respectively.

5. Rheology

We now turn to the examination of the rheological quantities extracted from the
experimental measurements in § 2 and from the numerical simulations in §§ 3 and 4.
We display these data within the pressure-imposed view by plotting the effective friction
coefficient, μ = τ/pp, and the bulk volume fraction, φ, as a function of the viscous
number, J = ηf γ̇ /pp, in figure 8. The macroscopic friction coefficient, μ, is found to be
an increasing function of the viscous number, J, whereas the volume fraction, φ, is a
decreasing function of the viscous number, J, for both the experimental data coming from
the two batches of spheres made of borosilicate (+) and PMMA (×), where no appreciable
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Figure 7. Stress balance of the particle phase in the y-direction for sheared particle beds according to (4.6).
(a) run Re8 and (b) run Re33. The horizontal dashed line marks the height of the particle bed, hp. Panels (a,b)
show that the sum of the hydrodynamic and contact stresses is in equilibrium with the bed weight, i.e. pp, with
most of the weight supported by the contact stress. The hydrodynamic lift force acting on the particles can be
(a) positive or (b) negative.
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Figure 8. (a) Effective friction coefficient, μ = τ/pp, and (b) bulk volume fraction, φ, vs the viscous number,
J = ηf γ̇ /pp. The solid lines are the asymptotic linear regressions in

√
J (blue for the experiments and green

for the simulations).

differences can be seen between the runs of these two particle materials, and the numerical
data coming from the three different runs at different Reynolds numbers.

It is important to note, however, that figure 8 is not meant as a validation of the numerical
results by comparing it to the post-processed experimental data of Aussillous et al. (2013)
for the following reasons. First, the two data sets represent different conditions. The
particle properties edry and μf chosen for the simulations may not correspond to the
(unknown) values of the experiments and the flow conditions expressed by the Stokes
number differ by more than one order of magnitude. Second, owing to the difficulty
in capturing experimentally the sediment transport layer close to the bed interface of
only a few particle diameters thickness, the experimental data present significant scatter.
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Finally, recall that our data processing in § 2 assumes uf = up,in to reconstruct the
experimental velocity profile, which slightly underestimates the fluid velocity in the
sediment transport layer. On a similar note, the averaging operator using coarse-grained
quantities (3.8) for the simulations yields an averaging window of three diameters in height
to smooth out the sub-particle scale. For all these reasons, we can observe a rather large
discrepancy between the experimental and numerical data for large J, i.e. in the sediment
transport layer, but the qualitative trend is correctly reproduced.

Despite the discrepancy at large J, both data sets show asymptotic behaviour for small
J in figure 8(b). The results can therefore be used to deduce the critical parameters μc and
φc and provide proper scaling for our rheological analysis. Among the numerical results,
only the data for the smallest Reynolds number (run Re8) reach the limit of small J, i.e.
J < 10−2 and, hence, small γ̇ . The data coming from run Re8 and from the experiments
show that both φ and μ tend to finite measurable values, φc and μc respectively, at
vanishing J, i.e. at the jamming point where the suspension ceases to flow. The critical
(or maximum flowable) volume fraction, φc, and friction coefficient, μc, can be measured
by fitting the data using an asymptotic linear regression in

√
J for small J (for J < 10−2)

as done by Tapia et al. (2019). The critical volume fraction is found to be φc ≈ 0.59 for
both the experiments and simulations and is similar to the value found for suspensions
made of spheres having only small surface roughnesses or equivalently having moderate
inter-particle sliding friction coefficients (Boyer et al. 2011; Dagois-Bohy et al. 2015; Tapia
et al. 2019). The critical friction coefficient is found to be μc ≈ 0.18 for the experiments
and μc ≈ 0.27 for the simulations. These values are smaller than those found previously
(μc ≈ 0.30–0.37) in a pressure-imposed rheometry (Boyer et al. 2011; Dagois-Bohy et al.
2015; Tapia et al. 2019) but are of the same order of magnitude or even slightly larger than
that given (μc ≈ 0.17) by the correlation of Morris & Boulay (1999), which was meant to
match experimental results on shear-induced migration.

The critical values φc and μc are not universal parameters but depend on particle
properties, i.e. the values of φc and μc depend on the particle size distribution but also
on their surface properties. It is thus convenient to plot the data of figure 8 by scaling
φ by φc and μ by μc for a comparison with pressure-imposed rheological measurements
(Boyer et al. 2011; Dagois-Bohy et al. 2015; Tapia et al. 2019) and correlations (Morris &
Boulay 1999; Boyer et al. 2011). These scaled data shown in figure 9 collapse reasonably
well onto the same constitutive curves for the small J-range (J � 10−2) but present
discrepancies at larger J, i.e. low φ. However, the discrepancy at low φ is not surprising,
because the empirical correlations of Boyer et al. (2011) and Morris & Boulay (1999) have
been derived by fitting to experimental data of volume fractions φ/φc > 0.5 for neutrally
buoyant particles that are homogeneously distributed in a flow cell. In fact, it is worth
noting that there even exist some disparities within the pressure-imposed measurements,
as while the data of Dagois-Bohy et al. (2015) and Tapia et al. (2019) are rather similar,
they differ from the data of Boyer et al. (2011) at large J. This is reflected in the correlation
of Boyer et al. (2011), which is designed to agree with the experimental measurements
of Boyer et al. (2011). This correlation seems to provide a lower bound for the whole
collection of data while that of Morris & Boulay (1999) is more like an upper bound for
the data of μ(J) reported in figure 9(a). The plotted data, therefore, illustrate the range
of uncertainty related to the extrapolation of empirical relations. It is important to stress
that these two correlations have different critical values: φc = 0.585 and μc = 0.32 for
the correlation of Boyer et al. (2011) and φc = 0.68 and μc = 0.17 for the correlation of
Morris & Boulay (1999). Note that value of φc = 0.68 is rather unrealistic as it exceeds
the randomly closed packing fraction.
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Figure 9. Scaled (a) effective friction coefficient, μ/μc, and (b) bulk volume fraction, φ/φc, vs the viscous
number, J = ηf γ̇ /pp. Legend as in figure 8. Comparison with the experiments of Boyer et al. (2011) with
polystyrene (PS, red �) spheres of diameter dp = 580 μm suspended in polyethylene glycol-ran-propylene
glycol monobutylether (PEG) as well as poly(methyl methacrylate) (PMMA, red �) spheres of diameter
dp = 1100 μm suspended in a Triton X-100/water/zinc chloride mixture, of Dagois-Bohy et al. (2015) with
PS spheres of similar sizes suspended in PEG (purple ♦), and of Tapia et al. (2019) with similar PS spheres
which present small roughnesses (SR, grey ◦) and with PS spheres which are highly roughened (HR, grey �).
Comparison with the correlations proposed by Morris & Boulay (1999) (–·–) and Boyer et al. (2011) (——).

We also provide the classical volume-imposed view by plotting the shear, ηs = τ/ηf γ̇ =
μ/J, and normal, ηn = pp/ηf γ̇ = 1/J, viscosities as a function of the scaled volume
fraction, φ/φc, in figure 10. The collection of data shows that both viscosities increase
with increasing φ and diverge at φc. The data coming from the erosion experiments follow
this general trend despite the large scatters. Again, the correlations provide bounds for the
whole collection of data of ηs (figure 10a), but this time the correlation of Boyer et al.
(2011) acts as an upper bound while that of Morris & Boulay (1999) as a lower bound. The
simulation data are notably lower than the pressure-imposed rheological measurements of
Boyer et al. (2011), Dagois-Bohy et al. (2015) and Tapia et al. (2019) in particular for the
smaller φ-range.

The log–log plots shown in the insets of figure 10 are made to analyse the asymptotic
behaviours close to the jamming transition. The data for ηn coming from run Re8 in the
inset of figure 10(b) present a divergence in (1 − φ/φc)

−2, in agreement with previous
work (see e.g. Boyer et al. 2011; Tapia et al. 2019); the other runs are too far from
the jamming point to allow for any conclusions. The log–log plot shown in the inset of
figure 10(a) reveals that the same divergence dominates close to jamming for ηs. This last
point is also demonstrated by the finite value of μ = ηs/ηn at vanishing J for the data
coming from run Re8 and from the erosion experiments in figure 8(a).

Apart from the difficult task to accurately measure within the sediment transport layer
of only a couple particle diameters thickness, the issues described above to recover the
rheological quantities at large J and small φ can be attributed to the fact that sediment
transport can be sub-divided into two different regimens (Revil-Baudard et al. 2015). On
the one hand, the dynamics of dense suspensions with large φ is dominated by frictional
contact. In fact, this is the regime that has been investigated in the experiments of Boyer
et al. (2011), Dagois-Bohy et al. (2015) and Tapia et al. (2019) and for which the empirical
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Figure 10. (a) Shear, ηs = τ/ηf γ̇ , and (b) normal, ηn = pp/ηf γ̇ , viscosities vs the scaled volume fraction
φ/φc. Same comparisons as in figure 9.

correlations shown in figures 9 and 10 have been derived. On the other hand, low volume
fractions represent the dilute regime of mostly binary collisions between particles. It was
therefore concluded by Maurin, Chauchat & Frey (2016) that those empirical correlations
may need adjustments for these flow conditions.

Hence, our observations are in line with the study of Houssais et al. (2016), who
conducted experiments of sediment transported in an annular flume and measured
depth-resolved profiles very similar to the data presented here. In this study, the authors
had to introduce a confinement pressure to correct μ for large values of J. This pressure
was added to the granular pressure and can be interpreted as the artificial weight of the
top plate in a pressure-imposed rheometer. Houssais et al. (2016) found good agreement
with the correlations of Boyer et al. (2011) for μ(J) using this measure, but unfortunately,
the agreement for the correlation φ(J) was not as good in that study. As already
mentioned in § 4.2, we omit using this strategy of an additional confinement pressure
in the present analysis. The high resolution of the numerical data did not require such
a treatment, because all relevant quantities could be recovered by our statistical analysis in
a straightforward manner. This way, we ensure to stay consistent with the two-phase flow
model (2.1) and (2.2) from Aussillous et al. (2013). The same applies for the revisited
data of Aussillous et al. (2013), but for these data we use the additional assumption
of uf = up,in to reconstruct the fluid velocity profile from a mixed Couette–Poiseuille
flow, which yields a slight underestimation of the fluid velocity in the range of large J
and low φ.

To further investigate the governing effects in both the dilute and the dense regime
as a function of the particle volume fraction, we make use of the highly resolved data
and the stress balance (4.4) derived in § 4 and separate the stresses due contact and
hydrodynamic interaction. These are plotted in figure 11 (without the normalisation by
φc) together with a comparison of the data of Gallier et al. (2014), who carried out
three-dimensional simulations of neutrally buoyant, non-Brownian, frictional spheres in
a Couette cell of constant size, i.e. volume-imposed rheometry. For our simulation results,
the data of the three simulation runs collapse onto a single master curve for both the
contact and the hydrodynamic stress components. For φ > 0.3, there are no significant
long-range hydrodynamic effects possible and the particle contact is the main contribution
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Figure 11. Relative contributions of the frictional contact (red) and the hydrodynamic (blue) stress to ηs.

to the total stress, whereas hydrodynamic effects prevail below this threshold value of
φ. The analysis therefore reveals the reason why the considerations for pressure-imposed
rheometry also hold for sediment transport in the dense regime, i.e. φ > 0.3, where the
rheology is dominated by particle contact.

In the dilute regime, i.e. φ < 0.3, the hydrodynamic component scales very well
with the Einstein relation ηs = 1 + 5

2φ (Einstein 1956) and the contribution from
particle contact becomes negligible. Our analysis furthermore shows that the deviation
of the hydrodynamic component from its clear fluid value (ηs = 1) is induced by the
lubrication forces (not shown here). This observation differs from the simulation results
of Gallier et al. (2014) obtained using volume-imposed rheometry for 0.1 � φ � 0.45,
where particles are distributed homogeneously in the simulation domain. In the present
simulations, the dilute regime represents the thin layer of active sediment transport, where
particles are still touching and aligned in the shearing direction so that the particle volume
fraction decreases rapidly from densely packed to zero within a thin layer that is only a
couple of diameters thick. Hence, long-range hydrodynamic effects are screened by the
highly anisotropic distribution and the steep gradient of φ in this layer. As a result, the
hydrodynamic component resembles a porous medium flow behaviour, as anticipated in
the two-phase modelling of Ouriemi et al. (2009) and Aussillous et al. (2013).

To the knowledge of the authors, the only numerical study of particle-resolved DNS that
was able to perform the analysis of the rheological behaviour of a sheared sediment bed has
been presented by Kidanemariam (2016), who has carried out a total of 24 simulation runs
with varying Reynolds and Galileo numbers in the laminar flow regime. Interestingly, this
study also deviates from the empirical correlations of Boyer et al. (2011) by overestimating
μ(J) and underestimating φ(J)/φc for large J, whereas our simulation data overestimate
the volume fraction in this regime (cf. figure 9b). The low values of φ for large J in the data
of Kidanemariam (2016) can in parts be attributed to the difference in handling particle
collisions and contact. Kidanemariam (2016) did not resolve lubrication forces, which
imposes the constraint that one has to keep a minimum distance between the particles.
Consequently, the granular packing has to be less dense so that unusually low values of
0.43 � φc � 0.53 were reported for the maximum packing fraction. Hence, the data and
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the analysis presented here demonstrate a substantial improvement over previous efforts to
capture the rheology of sediment beds over a wide range of J.

6. Concluding remarks

Serving the need to use constitutive laws for macroscopic sediment transport models, the
present paper introduced a new means to generate highly resolved data for the rheological
behaviour of granular sediment beds sheared by a viscous, pressure-driven flow. The
rheology is assessed by a statistical analysis to extract the physical quantities needed to
compute the rheological parameters. The highly resolved simulations provide the data
needed to assess the stress exchange of the fluid–particle mixture by deriving the stress
balance from first principles. To better understand naturally occurring sediment-laden
flows in pipes and rivers, we focus on pressure-driven flows, where the total stress
increases with flow depth. The analysis verified the conceptual two-phase model of
Ouriemi et al. (2009) and Aussillous et al. (2013) that has been derived from the
Brinkman equations, and deduces the total fluid shear and the granular pressure as the
relevant rheological quantities. We compare our numerical results to the rheology of
corresponding experiments by revisiting the data set of pressure-driven flows investigated
by Aussillous et al. (2013) and found reasonably good agreement between the numerical
and experimental data. The results presented here clearly show that sediment transport by
pressure-driven flows yields results that are similar to those of previous studies of annular
Couette-type flows, even though these studies were conducted with dense suspensions of
neutrally buoyant particles in pressure-imposed rheometers. The analysed data agree well
with the empirical correlations of Boyer et al. (2011) and Morris & Boulay (1999) derived
therefrom. In the more dilute regime, the simulation data fall in between the bounds
set by those two extrapolated correlations. The good agreement of the data obtained
from pressure driven flows with those from Couette flows potentially justifies the use
of these empirical correlations as constitutive equations for two-phase flow solvers for
sediment transport applications in the dense regime. Separating the total shear stress of
our simulation results into the parts from hydrodynamic interaction and particle contact
revealed a critical particle volume fraction of φ ≈ 0.3, for which particle contact becomes
the dominant component, so that classical empirical relations from rheometry become
applicable. In the dilute regime, we obtain a scaling in agreement with the Einstein
relation, which illustrates a flow behaviour that differs from classical rheometry studies,
because the long-range interactions are screened by the porous medium. This effect
corresponds to the thin layer of sediment transport over which hydrodynamic and contact
stresses but also φ vary rapidly, which is very difficult to grasp, but it constitutes the main
difference between classical rheometry of neutrally buoyant suspensions and the rheology
of sediment transport. More work of this kind will be needed in the future to address
different particle properties in complementary experimental and numerical campaigns and
flow situations that are more complex than the two fundamental flow types Couette and
Poiseuille flow.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.457. The
rheological data of figures 8, 9, 10 and 11 are given as supplementary materials available at https://doi.org/10.
1017/jfm.2021.457.
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