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Abstract

In this paper, we investigate the value distribution of difference polynomials and prove some difference
analogues of results of Hayman and the Brück conjecture.
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1. Introduction

In [5, Theorem 8] Hayman proved, among other results, that a differential polynomial
f n
+ a f ′ − b with constant coefficients a, b admits infinitely many zeros, provided

that f is transcendental entire and n ≥ 3 (or n ≥ 2 if b = 0). The main purpose of this
paper is to establish a partial difference counterpart of the Hayman result by proving
that whenever f is a nonperiodic entire function of finite order, c is a nonzero complex
constant, and f (z)n + f (z + c)− f (z)− b has finitely many zeros, then f must be a
polynomial, provided n ≥ 3 (or n ≥ 2 if b = 0). Simple examples show that the claim
fails if n = 2 (or if n = 1 and b = 0). A little more generally, we prove the following
two theorems.

THEOREM 1.1. Let f be a transcendental entire function of finite order ρ, not of
period c, where c is a nonzero complex constant. Then the difference polynomial
f (z)n + f (z + c)− f (z) has infinitely many zeros in the complex plane, provided
that n ≥ 2.

THEOREM 1.2. Let f be a transcendental entire function of finite order ρ, not of
period c, where c is a nonzero complex constant, and let s(z) be a nonzero function,
small compared to f . Then the difference polynomial f (z)n + f (z + c)− f (z)−
s(z) has infinitely many zeros in the complex plane, provided that n ≥ 3.
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Assuming that the shift constant c is fixed, in what follows, we introduce the
difference operator

1 f =11 f := f (z + c)− f (z),

inductively defining
1n f :=1n−1(1 f )

for all natural numbers n ≥ 2. We also prove the following theorem.

THEOREM 1.3. Let f be a transcendental entire function of order ρ( f ) < 2 not
having period c. If f and 1n f share the value 0 CM, then 1n f/ f reduces to a
nonzero constant.

REMARK 1.4. From the function f (z)= Aez log(c+1)
− ((1− c)/c), where c ∈ R/{0},

c >−1, and A is an arbitrary constant, we get ( f (z + 1)− f (z)− 1)/( f (z)− 1)= c.
The example suggests that (1n f − a)/( f − a) may reduce to a nonzero constant,
at least if ρ( f )= 1 and N (r, 1/ f ) 6= S(r, f ). We believe that (1n f − a)/( f − a)
reduces to a nonzero constant, provided that f is a transcendental entire function of
order 1< ρ <∞ not having period c, and that f and 1n f share CM a nonzero value
a ∈ C. Unfortunately, we have not succeeded in proving this.

Observe that Theorem 1.3 above and the preceding remark are closely related to
what could be called a difference counterpart of the Brück conjecture [1]. For a related
result in the difference setting, see [7, Theorem 2.1].

In what follows, we assume that the reader is familiar with the basic notation and
results in the Nevanlinna value distribution theory [6, 8] as well as in the uniqueness
theory of entire and meromorphic functions [9].

2. Three preliminary lemmas

In the proof of Theorem 1.1 below, we make use of three key lemmas. For the
convenience of the reader, we recall these lemmas here.

The following result is due to Yang and Yi (see [9, Theorem 1.56]).

LEMMA 2.1. Let f1, f2, f3 be meromorphic functions such that f1 is not constant. If
f1 + f2 + f3 = 1 and if

3∑
j=1

N (r, 1/ f j )+ 2
3∑

j=1

N (r, f j ) < (λ+ o(1))T (r),

where λ < 1 and T (r) :=max1≤ j≤3 T (r, f j ), then either f2 = 1 or f3 = 1.

Next, we need to apply the well-known Clunie lemma (see [3]). The following
version [8, Theorem 2.4.2], slightly more general than the original one, has been
reinvented several times in the literature.
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LEMMA 2.2. Let f be a transcendental meromorphic solution of

f n P(z, f )= Q(z, f ),

where P(z, f ), Q(z, f ) are differential polynomials in f and its derivatives with
small meromorphic coefficients aλ, λ ∈ I , in the sense of m(r, aλ)= S(r, f ) for all
λ ∈ I . If the total degree of Q(z, f ) as a polynomial in f and its derivatives is n or
less, then

m(r, P(z, f ))= S(r, f ).

Finally, we recall a variant on [2, Corollary 2.5] of the difference counterpart of the
logarithmic derivative lemma (see also [4, Corollary 2.2]).

LEMMA 2.3. Let f be a meromorphic function of finite order ρ, and let η1, η2 be two
distinct complex numbers. Then for any ε > 0, we have

m

(
r,

f (z + η1)

f (z + η2)

)
= O(rρ−1+ε).

3. Proof of Theorem 1.1

Suppose that f (z)n + f (z + c)− f (z) admits finitely many zeros only. Then there
are two polynomials r(z), p(z) such that

f (z)n + f (z + c)− f (z)= r(z)ep(z). (3.1)

Differentiating (3.1) and eliminating ep(z), we obtain

f (z)n−1
(

n f ′(z)−

(
p′(z)+

r ′(z)

r(z)

)
f (z)

)
= f ′(z)− f ′(z + c)+

(
p′(z)+

r ′(z)

r(z)

)
( f (z + c)− f (z)).

(3.2)

If n f ′ − (p′ + r ′/r) f vanishes identically, then f = seq , where s, q are polynomials.
Substituting this into (3.1), we get

f1 + f2 + f3 = s(z)n−1e(n−1)q(z)
+

s(z + c)

s(z)
eq(z+c)−q(z)

−
r(z)

s(z)
ep(z)−q(z)

≡ 1.

Since f is nonconstant, we have either f2 = 1 or f3 = 1 by Lemma 2.1. If f2 = 1,
then f has to be periodic, which contradicts our assumptions. If f3 = 1, we see that
f =−rep. Therefore, (3.1) takes the form f (z)n + f (z + c)= 0. Now substituting
f = seq in this identity, we get

s(z)n−1e(n−1)q(z)
+

s(z + c)

s(z)

eq(z+c)

eq(z)
= 0. (3.3)
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Applying the lemma of logarithmic differences (Lemma 2.3), we conclude that

T (r, eq)= m(r, eq)= S(r, eq),

a contradiction.
It remains to consider the case where n f ′ − (p′ + r ′/r) f 6= 0. First, if n ≥ 3, we

may rewrite (3.2) in the form

f (z)n−2
(

n f ′(z)−

(
p′(z)+

r ′(z)

r(z)

)
f (z)

)
=

f ′(z)

f (z)
−

f ′(z + c)

f (z + c)

f (z + c)

f (z)
+

(
p′(z)+

r ′(z)

r(z)

)(
f (z + c)

f (z)
− 1

)
.

By the Clunie lemma (Lemma 2.2), we conclude that

T

(
r, n f ′ −

(
p′ +

r ′

r

)
f

)
= O(rρ−1+ε)+ S(r, f )

and

T

(
r, f

(
n f ′ −

(
p′ +

r ′

r

)
f

))
= O(rρ−1+ε)+ S(r, f )

as well. Combining these two estimates, we obtain

T (r, f )= O(rρ−1+ε)+ S(r, f ),

a contradiction.
Therefore, we may finally assume that n = 2 and 2 f ′ − (p′ + r ′/r) f 6= 0. Clearly,

there exist polynomials r(z), p(z) such that

f (z)2 + f (z + c)− f (z)= r(z)ep(z). (3.4)

Differentiating (3.4) and eliminating ep(z) now results in

f (z)

(
2 f ′(z)−

(
p′(z)+

r ′(z)

r(z)

)
f (z)

)
= f ′(z + c)− f ′(z)−

(
p′(z)+

r ′(z)

r(z)

)
( f (z + c)− f (z)).

(3.5)

Dividing (3.5) by f (z) and applying the standard lemma of the logarithmic derivative
as well as its difference counterpart (see [4]), we conclude that ψ(z) is small compared
to f (z) in the usual sense of Nevanlinna theory. By differentiation of ψ(z) we obtain

2 f ′′ −

(
p′ +

r ′

r

)
f ′ −

(
p′ +

r ′

r

)′
f = ψ ′ =

ψ ′

ψ
ψ =

ψ ′

ψ

(
2 f ′ −

(
p′ +

r ′

r

)
f

)
,
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and so

2 f ′′ −

(
p′ +

r ′

r
+ 2

ψ ′

ψ

)
f ′ −

(
p′′ − p′

ψ ′

ψ
+

(
r ′

r

)′
−

r ′

r

ψ ′

ψ

)
f = 0.

This may be written as

2
(

f ′

f

)′
+ 2

(
f ′

f

)2

−

(
p′ +

r ′

r
+ 2

ψ ′

ψ

)
f ′

f

−

(
p′′ − p′

ψ ′

ψ
+

(
r ′

r

)′
−

r ′

r

ψ ′

ψ

)
= 0.

(3.6)

We next proceed to show that f has a few zeros only in the sense that N (r, 1/ f )=
S(r, f ). Suppose that f (z0)= 0. Since r is a polynomial, we may assume that
r(z0) 6= 0. Suppose first that ψ(z0) 6= 0. Then the double pole terms on the left-hand
side of (3.6) cancel only if the zero of f is a simple one. To avoid a contradiction on
the left-hand side of (3.6), we must have that p′ + (r ′/r)+ 2(ψ ′/ψ) vanishes at z0.
Therefore, the points where f (z0)= 0, r(z0) 6= 0 and ψ(z0) 6= 0 make a contribution
of S(r, f ) to N (r, 1/ f ). Assume, finally, that f (z0)= 0, r(z0) 6= 0 and ψ(z0)= 0.
Let α and β, respectively, be the multiplicities of the zeros of f and ψ at z0. Now
substitution into (3.6) results in α = 1+ β ≤ 2β, again implying a contribution of
S(r, f ) to N (r, 1/ f ). Therefore, f (z) takes the form f (z)= φ(z)eq(z), where q(z) is
a polynomial and N (r, 1/φ)= S(r, f ). Plugging this expression into (3.4), we obtain

φ(z)2e2q(z)
+ φ(z + c)eq(z+c)

− φ(z)eq(z)
= r(z)ep(z),

which may be written in the form

φ(z)eq(z)
+
φ(z + c)

φ(z)
eq(z+c)−q(z)

−
r(z)

φ(z)
ep(z)−q(z)

= 1. (3.7)

Recalling Lemma 2.1, either f2(z) := (φ(z + c)/φ(z))eq(z+c)−q(z)
≡ 1 or f3(z) :=

−(r(z)/φ(z))ep(z)−q(z)
≡ 1. If f2(z)≡ 1, then f is periodic, a contradiction. Finally,

if f3(z)≡ 1, then f (z)≡−r(z)ep(z). Substituting into (3.4), we get

(φ(z)ep(z))2 − φ(z + c)ep(z+c)
= 0. (3.8)

Writing (3.8) in the form

φ(z)ep(z)
−
φ(z + c)

φ(z)

ep(z+c)

ep(z)
= 0,

and recalling again the lemma of logarithmic differences from [4], we conclude that

T (r, ep)= m(r, ep)= S(r, ep),

a contradiction, completing the proof.

REMARK 3.1. The basic exponential function ez may be used to show that the claim
of Theorem 1.1 fails if n = 1. In fact, taking c 6= 2π im for an arbitrary natural
number m, we have that f (z)+ f (z + c)− f (z)= ecez has no zeros.
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4. Proof of Theorem 1.2

Suppose that f (z)n + f (z + c)− f (z)− s(z) has finitely many zeros. Then there
exist two polynomials r(z) and p(z) such that

f (z)n + f (z + c)− f (z)− s(z)= r(z)ep(z). (4.1)

Differentiating (4.1) and eliminating ep(z), we obtain

f (z)n−1
(

n f ′(z)−

(
p′(z)+

r ′(z)

r(z)

)
f (z)

)
= f ′(z)− f ′(z + c)+ s′(z)

+

(
p′(z)+

r ′(z)

r(z)

)
( f (z + c)− f (z)− s(z)).

(4.2)

If n f ′ − (p′ + r ′/r) f vanishes identically, then f n
= Crep. Writing f = hep/n ,

where h is a polynomial, and substituting f into (4.1), we get

(C − 1)r(z)ep(z)
+ h(z + c)ep(z+c)/n

− h(z)ep(z)/n
− s(z)≡ 0. (4.3)

Let g = ep/n . If C 6= 1, then we obtain, from (4.3) and Lemma 2.3, that

nT (r, g)≤ 2T (r, g)+ S(r, g),

in contradiction to n ≥ 3.
Therefore, we must have C = 1. From (4.3), we get

h(z + c)ep(z+c)/n
− h(z)ep(z)/n

− s(z)≡ 0.

Applying the second main theorem for three small targets [6, Theorem 2.5] we get

T (r, f ) ≤ N (r, f )+ N

(
r,

1
f + s(z)

)
+ N

(
r,

1
f

)
+ S(r, f )

= N

(
r,

1
f (z + c)

)
+ S(r, f )

= S(r, f ),

a contradiction.
It remains to treat the case where n f ′ − (p′ + r ′/r) f is not vanishing identically.

Since n ≥ 3, we may apply the Lemma 2.2 and (4.2) to conclude that

T

(
r, n f ′ −

(
p′ +

r ′

r

)
f

)
= O(rρ−1+ε)+ S(r, f )

and

T

(
r, f

(
n f ′ −

(
p′ +

r ′

r

)
f

))
= O(rρ−1+ε)+ S(r, f )

as well. Combining these two estimates, we obtain

T (r, f )= O(rρ−1+ε)+ S(r, f ),

a contradiction, completing the proof.
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REMARK 4.1. Theorem 1.2 is not true if n = 2. This can be seen by considering
f (z)= ez

+ 1, c = π i . Then f (z)2 + f (z + c)− f (z)− 1= e2z has no zeros.

5. Proof of Theorem 1.3

By assumptions, there exists a polynomial Q(z) such that

1n f

f
= eQ . (5.1)

We can immediately verify that

1n f (z)= f (z + nc)+ An−1 f (z + (n − 1)c)+ · · · + A0 f (z), (5.2)

where A0, . . . , An−1 are constants. We may now write (5.1) in the form

eQ(z)
− A0 =

f (z + nc)

f (z)
+ An−1

f (z + (n − 1)c)
f (z)

+ · · · + A1
f (z + c)

f (z)
.

Given ε > 0 small enough to satisfy ρ + ε < 2, we obtain, by Lemma 2.3, that

T (r, eQ)= m(r, eQ)= O(rρ−1+ε)+ O(1).

Therefore, the polynomial Q reduces to a constant, completing the proof.
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