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1. Introduction

The notion of a well-bounded operator was introduced by Smart (9). The
properties of well-bounded operators were further investigated by Ringrose
(6, 7), Sills (8) and Berkson and Dowson (2). Berkson and Dowson have
developed a more complete theory for the type (A) and type (B) well-bounded
operators than is possible for the general well-bounded operator. Their work
relies heavily on Sills' treatment of the Banach algebra structure of the second
dual of the Banach algebra of absolutely continuous functions on a compact
interval.

The main result of this paper (Theorem 5) is the characterisation of a
type (B) operator by means of the weak compactness of its .s/j-operational
calculus (as in Theorem 4.2 of (2)) and the description of the operational
calculus using Stieltjes integrals of a kind suggested by Krabbe (5). Our results
are also stronger than those of Berkson and Dowson in that we show the
^-operational calculus for a type (B) operator to be continuous on point-
wise convergent nets of uniformly bounded variation.

We are indebted to H. R. Dowson for much valuable advice and encourage-
ment during the preparation of this paper.

2. Preliminaries

Let X be a complex Banach space with dual space X'. We write <x, x'y
for the value of the functional x' in X' at x in X. When Y is a subset of X we
write Yw for the weak closure of Y, and Yt for {y e Y: || y || g 1}.

Let L(X) be the Banach algebra of bounded linear operators on X. When
T is in L(X), let T in L(X') be its adjoint.

We shall abbreviate " weak/strong operator topology " to " weak/strong
topology ". When V is a subset of L(X), we write &~w and STS for the weak and
strong closures of ST. We write " wk lim " and " st lim " for limits in the
weak and strong topologies.

Lemma 1. 3T is relatively weakly compact in L(X) if and only ifSTx is relatively
weakly compact in X (for every x in X).

Proof. The proof is as indicated in (3, VI, 9.2).
Let {Ta: a e a} be a net in L(X). Following (1) we say that y is a weak

x-cluster point of {Ta} if y is'a weak cluster point of the net {Tax: a. e a}.
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36 P. G. SPAIN

An operator E in L{X) is called a projection if E2 = E. We write E ^ F
when £• and F are two projections such that EF = FE = E. When E and F
are commuting projections both £ v F ( = E+F—EF) and £ A F ( = EF) are
also projections.

A net {£„: aeo} of projections is said to be naturally ordered if Ea ^ Ef

whenever a ^ /?.

Lemma 2. Lef {£„: a e a} be a naturally ordered uniformly bounded net
of projections on X. Then \j Ea exists, and is equal to st lim £a, if and only if

a a

{£•„} has a weak x-cluster point for each x in X.

Proof. (1, Theorem 1.)

We shall extend this terminology and say that the net {Ex: a e a} is a
naturally ordered net of operators if Ex = ExEfi = E9Ea whenever a</?; we
do not require the operators Ea to be projections.

Lemma 3. Let {Ea: a e a) be a naturally ordered uniformly bounded net
of operators on X. Then st lim Ex exists if and only if{Ex} has a weak x-cluster

tr

point for each x in X.

Proof. The proof is a straightforward adaptation of the proof of (1,
Theorem 1) and is therefore omitted.

We say that E: R-*L(X) is a naturally ordered function if

E(s) = E(s)E(t) = E{t)E{s)

for s< t. We write E(s+) for st lim £(0 and E(s-) for st lim £(l) when the
r->s+ «->s —

limits exist.
Let T be an operator on X. By an (#"-)operational calculus for T we mean

a bounded algebra homomorphism ij/: ^-*L{X), where 3F is a normed algebra
of functions on a compact subset of the complex plane C, 3F contains the
functions Ai->1, h-*k, and \j/{h-*l) = /, i/̂ (Ah->A) = T. We write iK/) and/(r)
interchangeably. For each x in X and x' in X' we define \px: &->X: fi-*ip(f)x
and tfrXi ,.: J^->C: f*+WJ) x, x'}.

Let / = [a, b~\ be a compact interval in the real line R. Let 3Sj be the
Banach algebra of complex-valued functions of bounded variation on / with
norm ||| • | | | j , | | |/ | | |j = |/(fe)| + var (/, / ) . Let si} be the Banach subalgebra
of absolutely continuous functions on / . For/ in $4},

Ill/lll, =

Let sf 3 and ^ J be the Banach subalgebras

{fe tfy. f{b) = 0} and {/e St,>. f(b) = 0}
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of sij and 28j. Let JTj be the Banach subalgebra of 38j consisting of the
functions in SHj which are left continuous on {a, b~\. Let 0>} be the subalgebra
of sfj consisting of the polynomials on / . OPj is dense in sij.

3. Integration theory

The integrals described here are based on the modified Stieltjes integrals of
Krabbe (5).

Let Sj (J = [a, b~\) be the family of functions E.R-+L (X) satisfying

(i) E(s—) exists, seR;
(ii) E(s) = E(s+), SBR;

(iii) E(s) = 0, ' s<a;
(iv) E(s) = E{b), s^b.

It is clear that sup || E(s)\\ = sup || £(s)| < oo for E in Sj.
R J

We say that a sequence u = (uk: 0 ^ k ^ w) is a subdivision of 7 if
a = wo<«i <... <um = Z>. The set £/, of all subdivisions of / admits a partial
order ^ defined by refinement: we write

u = (uk: 0 ^ k ^ m) ^ v = (u,-: 0 g ; ^ « )

when M refines u; that is, when each \uk-\, MJ(1 ^ A: ^ m) is contained in
some [tfj-i, »y](l ^ / S n).

Let M(M) be the family of sequences u* = (w*: 1 ̂  It g m) such that

for each w in XJ}.
A pair i7 = (u, u*) with ue Uj and w* e M(w) is called a marked partition

of / . We write %j for the family of marked partitions of / and define the
pre-order 2: on n} by setting («, «*) ^ (D, V*) if and only if u ^ D.

Let ^j = {u = (u, u*) e nji uk^1<u*<uk, 1 g k ^ m} and let

ftj = {" = (M> "*) enji u* = uk, I ^ k ^ m}.

The sets Uj, nj, nlj and n'j are directed by ^ . Also, nj and nrj are cofinal
in 7ij.

We define n9, for each g in ^ 7 thus:

Let Eu = £ £(«t-i)&k.,,a i)+E(%[k, oo) w h en E e ^ and u e Uj.
1

Let ga = g(a)x{a)+ £ 3("*)Z(Uk-,,Ut] when g e @} and u e 7ij.
i
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Let O and *¥ be functions on J, one taking values in C, the other in L(X)
or in C. When w e Uj we define

1

The following two inequalities are evident:

I ^E(gAu)--LF(gAu)\\ ^ var (g, J) sup || E(s)-F(s)\\, ge@j,E,Fe Sy, (1)

|| ?,E(gAu)x — 'LF(gAu)x || ̂  var (g, J) sup || E(s)x—F(s)x \\,
j

xeX, geSSj, E, FeSj. (2)

The following integrals are defined as net limits in the strong topology
(when they exist):

I

Edg = st lim ££(#Au), ge@j,Ee Sj.

Lemma 4. lim sup II £(s)x-£u(s)x || = 0, xeX,EeSj.
Vj J

Proof. Let Ee£j,xeX. Let e > 0.

For eachj in [a, b) there exists rs(s<rs<b) such that || E(t)x—E(t')x \\ g e
when t, t' e [s, rs), since E(s) = E(s+).

For each s in (a, b~] there exists ls(a<ls<sy such that || £(;)x—f^')-^ II ̂  e
when f, /' e \_ls, s), since ^ J — ) exists.

The sets [a, ro), (4, 6], (/,, rs)(a<s<b) form an open cover of / . Let
[a, ra), (lb, b], (lSj, rSj) (J in some finite set) be a finite subcover.

Let u be the partition of / with points a, b, ra, lb, Sj, lSj, rSj (J in the finite
set). Then sup || £(s)x-£o(s)x || ̂  e.

j

Lemma 5.

(0 <j> TXlb, m)dg = 0, ge@j,T

(ii) (j> TXis, t)dg = (g(t)-g(s))T, geS^Te L(X), a^
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ON WELL-BOUNDED OPERATORS OF TYPE (B) 39

(iii) <j) Eudg = ££(«t_

= st lim S£U(0AP), ge@j,Ee£j,ue Uj.

Proof. (i)LetuenJ. Then

u*m<b.

Hence st lim HTxlb oo^Au) = 0.
«5

(ii) Let a<s ^ b, u en9j, u^(a, s, b) (no condition if s = b). Then s = un

for some n with 1 ^ « ̂  m, and
n - l

\g{s)-g{.a), u*<un = s.

Hence st lim ETx[a s)(^Au) = (^(s) -g(a))T. Since

% [ S , 0 = Xla, t ) ~ X u , S ) ( . " S t ^

(ii) is proved.

(iii) is a direct corollary of (i) and (ii).

r
Theorem 1. Let g be in @)j and E in Sj. Then (p Edg exists, and

Also,

(J) Edg = st lim <p Eudg.
Jj Vj Jj

Edg
J

Edgx

Proof. By (1) above,

, J)sup|£(s)|,

gvar(0,J)sup| | ,E(s)x| , xeX.

I IE(gAu)|| ^ var (g, J) sup || £(s)||, v e %j.
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Let u e Uj, let v, w e nsj and let xeX. Then

I ZE(gAv)x-ZE(gAw)x || g | XE(gAv)x-lEu(gAv)x

g 2 var (<?, 7) sup || E(s)x-Eu(s)x \\ + \\ ZEu(gAv)x-ZEu(gAw)x ||.

Lemmas 4 and 5 now show that || I,E(gAv)x—2,E(gAw)x ||->0 as i; and vv
increase in n9,. Therefore {LE(gAv); v e TTJ}} is a uniformly bounded strongly
Cauchy net in L{X), and so converges to its unique strong limit.

The other statements of the theorem are immediate from (1) and (2).

Theorem 2. Let Ee Sj, g eSSj and Jet {ga: a. e a) be a net in @)j with
sup var (ga, J) < oo and g(s) = lim ga(s)(s e J). Then

a

Edg = st lim <h Edga.
j a JJ

Proof. Let K = var (#, J) + sup var (#„, J). Let u e Uj. Then

Edg- & Edgx= &> (E-Eu)dg- (j) (E-Eu)dga+ (j) Eud(g-ga).
j J j Jj J j J J

Let xeX. Then

Edg x- d) Edgax S K sup || E(s)x-Eu(s)x ||
j

+ sup || E(s)x 1 1 \{g
j i

and this expression can be made arbitrarily small by choosing u fine enough
(Lemma 4), then a large enough.

Let S(g, E) = g(b)E(b)- <b Edg when geSSj, Ee <Sj.

Lemma 6.

( i ) S { g , x l s , « ) T ) = g(s)T, g e aJt T e L{X), a ^ s ^ b ;

(ii) || S(g, E) || ^ HI 5 HI, sup || £(s)||, sr e ^ , , £ e <fy,

(iii) I S(ff, £)̂ c || £ III 5 III j sup || E(s)x ||, j e J , , £ e ^

(iv) S(xla. .i, -E) = £(«), £ e <?„ s e J.
Proof, (i), (ii) and (iii) follow directly from Lemma 5 and Theorem 1.

As to (iv):

(a) s = b. S(XJ, £) = 1. E(b)- <J> £^/y = £(6).
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(b) s<b. Then

st lim <p Eudxra s] (Theorem 1)

Vj 1

= - st lim (-£(«„_!>) where s e \un-U un)
Vj

= st lim £0(s)
Uj

= £(s) (Lemma 4).

Lemma 7. Let g e 38j and u e n9j. Then gB e 88], and

g(s) = lim gs(s), s e J.

Also, var (ga, J) ^ 2 sup | g(s)| / /g w rea/ monotonic increasing.

Proof. gfl e ^ j , trivially; and gB(a) = g(a). If a < j ^ b and w ̂  (a, s, b)
(no condition if s = 6) then s = un for some «(1 ^ n ^ w) and

Therefore lim 5s(s) = g(s) (s e J) .

If g is real monotonic increasing, then var (g, J) ^ 2 sup [ g(s)\ and #s is

also monotonic increasing. Hence var (ga, J) ^ 2 sup | ga(s)\ ^ 2 sup | g(s)\.

Theorem 3. Let E e Sj. Then

S(g, E) =

g(a)E(a)+ gdE,

g(a)E(a)+ gdE,
JJ

Proof. Let u e %9
}. Then

S(gB, E) = g(a)S(xla), E)+ £ ff(uf)(S(Z[.,„,], £ ) -S( Z [ . , „ , . , ] , £))
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We can assume that g is real monotonic increasing, without loss of generality.
Theorem 2 and Lemma 7 now give the result.

re
We shall write gdE instead of S(g, E) when g eSBj and E e Sj.

The proofs above give us analogous scalar integrals defined for functions of
bounded variation on J and functions satisfying the scalar version of the
definition of S3.

Let 3)j be the algebra of complex-valued functions on R generated by the
functions Xis, «> (a ^ s< t ^ b). Let SLj be the closure of 3>} in the supremum
norm. Then SLj is the algebra of functions which vanish on (—oo, a) and on
[b, oo) and are right continuous and left limitable on R (Lemma 4 or (4,
Theorem 4.5)).

Hewitt showed in (4) that the integral codg can be defined for g in
J[o,»)

38 } and co in SLj as the limit of any sequence < condg> where {co^c2)j,
U [a, *) J

a> = lim con in the supremum norm, and xu t)dg = g(t) - g(s) (a g s < ( g b)
J[a,b)

by definition. The scalar version of Theorem 1 shows that

codg (g e@j,coe £Lj).codg =
J [a, b) JJ

Let Ej be the algebra of subsets of [a, b) generated by sets of the form
Is, t)(a^ s<t ^ b). Theorem 4.10 of (4) shows that (.2,)' may be identified
with the space of bounded finitely additive measures on ~Lj. Each such measure
fi defines a function g^ in <%)% by gj^s) = —n([_s, b))(seJ): conversely, each
functiong in ^ 5 defines such a measure pig by ng(£s, t)) = g(t)—g(s)(a ?^s<t^b).
This correspondence is one-to-one.

We can therefore identify (2.j)' and 38°. The pairing between 2.j and 3S°}

is given by

>, g> = codg,
J [a, 6)

j;= | codg, coe2.j,ge 3d°j.

Lemma 8. Let {g^: a. e a) be a bounded net in Sfj and let g e 38°. Then
g = lim ga in the Mj-topology of 3S° if and only if g{s) = lim ga(s)(a g .

Proof. (Cf. (3, IV, 13.35).) Note that <x[s> b), g} = -g(s)(a g s<b) and
apply Theorem 2.

The following result seems not to be known generally.
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Theorem 4. Let g e 38}. Then there is a net {ga: ae a} in s4j such that
g = lim gxpointwise on J and sup ||| ga HI, g ||| g \\\j.

a

Proof. Since g can be written as (g —g(b)xj)+g(b)/j we see that it is enough
to show that if g e &)0. then there is a net {ga: a. e a) in st0

} such that g = lim gx
a

pointwise on [a, b) and sup var (gx, J) g var (g, J).

Now each co in 2L} defines a bounded functional on s/° by f\-* codf.

Therefore 2.} can be identified with a subspace of (s/°)', that is, with Z,°°(/)
under the ess-sup norm.

Each function g in 3S°j defines a bounded functional Lg on 2.j by

• £ •
L.(co)= codg

Since the sup and ess-sup norms agree on Stj, we see from Theorem 1 that

l l i . l l ^ III » I I I / = v a r (^, J ) .
The Hahn-Banach theorem allows us to extend Lg to a functional (also denoted
by) Lg on (s#°)' without increasing its norm. So Lg e (JJ/J)". By Goldstine's
theorem (3, V, 4.5) there is a net {ga: a e a] in s4° converging to Lg in the
(^S)'-topology of (j/S)» and satisfying sup ||| ga \h ^ || £9 || ^ ||| g \\\j. Then
^ = lim gx in the Jj-topology of 38°., so gf(s) = lim gx(s)(a ^s<b) (Lemma 8).

4. Well-bounded operators of type (B)
Let T be a bounded operator on the Banach space X. We define />(r)

in the natural way for each polynomial p by setting p(T) = ^anT" when
p(s) = "La^". The map p\->p(T) is an algebra homomorphism.

We say that T is well-bounded (on / ) if there is a compact interval / such
that i]/: 0>j-^L{X): p\-+p(T) is an operational calculus; that is, T is well-
bounded if there exist a compact interval / and a constant K such that

\\p(T)\\ ^KWlplh, Pe0>j.

If T is well-bounded, so is 7" (with the same / and K).
Smart introduced this definition and proved the following result.

Lemma 9. Let T in L(X) be a well-bounded operator with natural operational
calculus ij/: ^j^L{X) of norm K. Then \ji has a unique extension to an opera-
tional calculus {also denoted by) \p: s/j-*L(X), of norm K, such that

(i) ifS in L{X) satisfies TS = ST, then Sf(T) =f{T)S,fe sty,
(H) f(T')=f(T)',fes/j.

Proof. (9, Lemma 2.1.)
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The notion of a decomposition of the identity was introduced by Ringrose
in (7). A decomposition of the identity for X (on / ) is a family {F(s): seR}
of projections on X' such that

(i) F(s) = 0, s <a,

F(s) = I, s^b;

(ii) F(s)F(t) = F(OF(s) = F(s), s g /;

(iii) there is a positive constant Kfe 1) such that

\\F(s)\\ ^K, seR;

(iv) the function JI-»<X, F(s)x'} is Lebesgue measurable for each xeX
a n d x ' e * ' ;

(v) if xe X, x' e X', se[a, b), and if the function <i-> <x, F(ju)x"ydu
Ja

is right differentiate at s, then the right derivative at 5 is <x, F(sr)x'>;

(vi) for each x in X, the map X'-*Lx(a, b): x'h-*(x, F( )x} is continuous
when X' and Lm(a, b) are] given their weak* topologies (as duals of X and
L\a,b)).

An operator T in L(X) is said to be decomposable (on / ) if there is a
decomposition of the identity for X on J such that

, x'> = b<x, x ' } - j<Tx, x'> = b<x, x'}- j <x, F(s)x'}ds, xeX,x'e X'.

Theorems 2 and 6 of (7) show that T is decomposable on / if and only if
T is well-bounded on / ; and the two constants K coincide. Also, we can
choose F(-) so that S'F(s) = F(s)S' (s eR) for all S in L(X) satisfying ST = TS.
Furthermore, the operational calculus of Lemma 9 is given by

- l
J

\ x , F(s)x'}f\s)cls,

where x e X, x' e X', / e si'}.
Let T be a well-bounded operator on X. T is said to be decomposable in X

if there is a family {E{s): s e If} of projections on X such that {£'(J) '• s e R}
is a decomposition of the identity for T. If an operator is decomposable in X,
then it has a unique decomposition of the identity (7, Theorem 8).

Let T be decomposable in X with unique decomposition of the identity
{E'{s): seR}. Following Berkson and Dowson (2), we say that T is well-
bounded of type (B) if Ee S}\ that is, if E(s+) = E(s)(seR) and E(s-) is
defined at each s in R.

The following theorem (cf. (2, Theorem 4.2)) characterises the well-bounded
operators of type (B) in a manner similar to the characterisation of scalar-
t ype spectral operators in (10).
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Theorem 5. Let T be a bounded operator on the Banach space X. The
following five conditions are equivalent:

(i) T is well-bounded of type (B) with an s/j-operational calculus of norm K;
(ii) there exist a compact interval J and a naturally ordered family {E(s): s e R}

of projections on X such that Ee SJy E{b) = /, K= sup || E(s)\\ and

re
sdE(s);

(iii) T is well-bounded with an operational calculus \p: s4j^>L{X) of norm
K, such that 4>{(.^j)\) 's weakly relatively compact in L{X);

(iv) T is well-bounded with an operational calculus \j/: s#j-+L{X) of norm K,
and \j/x is weakly compact for each x in X;

(v) T is well-bounded with an operational calculus \//: jrfj-+L(X) of norm K,
and tj/x is compact for each x in X.

Proof. We show that (i)=>(v)=>(iv)=>(iii)=>(ii)=>(i).

(i)=>(v). Let {E'(s): s e R} be the unique decomposition of the identity for T.
By the definition of a type (B) operator, Ee S}. We define \j/: jrfj-+L (X) by

<K/) = fdE, festj.

The map \j/ is linear and bounded; also,

re
Î (SI—>1) = I dE = J;

moreover,

= | sd(E(s)x,x'}

i)x, x'}ds

= <Tx, x'>, xeX,x'e X'.
Hence \}/(s\-^s) = T.

Since E is naturally ordered,

{f(a)E(a) + Xf(EAu)}{g(a)E(a) + Eg (EAu)}

= fg(a)E(a) + Xfg(EAu), f g e s/j, uenj.
Thus i// is an algebra homomorphism. By Lemma 9, \j/ is the unique jtfj-
operational calculus for T.

For each x in X, the function st->E(s)x is right continuous. Hence its
range Sx = \E(s)x: s e R} is separable, and its set of discontinuities is countable
(9, 330).

Let {E(sn)x: n e N} be a sequence of points in Sx. Since E(s) = 0(s<a)
and E(s) = I(s g b), we can assume that sne[a—s, b~\ (any e>0). We can
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therefore extract a monotone (convergent) subsequence {s'n} from {sn}. The
sequence {E(s'n)x: n e N} converges because Ee Sj\ thus Sx is relatively
compact in X. Let tfx be the closed absolutely convex hull of Sx. Then j f x

is compact (by the argument of (3, V, 2.6)).
Le t / e stJt HI/HIj ^ 1; let fi e *,. Then

/(b)E(fc)x-IE(/Au)x =f(b)x- £ (/(ut)-/(«*_OM)* e Xx.
i

Therefore ^x(/) e JTX. Thus i/^ is a compact map.
(v)=>(iv). Trivial.
(iv)=s>(iii). This is immediate from Lemma 1.
(iii)=>(ii). We define the function ks< h on R for each s in R and h>0 by

fl, * ^ s,

[0,

then fcs> h e J3?j and ||| ks> h\\\j £ 1. Also, x(-co>S] = ""m fcs.ft. pointwise.
A->0

Let <̂  be an ultrafilter on (0, oo) converging to 0 in the usual topology of
R. When / is a continuous function on (0, oo) we write lim f{h) for the value

fc->0

at °U of the extension of / to the Stone-Cech compactification of (0, oo).
Lemmas 2 and 4 of (7) show that every bounded functional on s/j has the

form

/i-»L(/) = mLf{b)- P coL(s)f'(s)ds, fe j / J f

where wL eC,coLe L™(J) and

f1

a>L(s + ht)dt, a ̂
f1

i = lim

"r.° Jo
We define Lx< x. on s/j for x in X and x' in A" by

Lx,xW = <^(f)x,x'}, xeX,x'eX',fes/j.

Let /wI>X' and a>xx. be the associated constant and LK(J) function:

Lx, Af) = mXt x.f(b) - {" coXt As)f'{s)ds, xeX,x'eX',festj.
J a

Then

Also

JoJo
The set
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is compact and Hausdorff in the weak topology of L{X) because iKCs/j)i) is
weakly relatively compact. JT may therefore be considered as a complete
Hausdorff uniform space with the uniformity defined by the functions

{( >
Since

fl (.-0

Joo *
the filter {i//(kSt h): h e U, Ue °U) is Cauchy, and therefore has a unique weak
limit point, say E(s), in jf. Let E(s) = 0(s<a) and E(s) = I(s ^ b).

Since ks<hktk = kttkksh = ksih for 0<h<t—s, 0<k, we have
E(s)E(t) = E(t)E(s) = E(s)

when s<t. Thus E: R-*L(X) is a naturally ordered function. By Lemma 3
and the weak compactness of jf, the strong limits E(s+) and E(s—) exist for
all J in R. Also, since

<£(s)x, x'> = cox> x.(s), a g s < Z>, x e X, x' e X',
we have

<£(s)x, x'> = lim wx x.
hZ°Jo

= <£(s+)x, x'>, a^

Therefore E(s) = £(5+)(a ^ J<6); hence each £(5) is a projection. Thus
- — J -

re
We define ^i': sfj^>L(X): /(-»• fdE. Then

}J

K,X">- f <£(S)X, X')

c,x'>- fV -WW
Ja

c, x'>, x e X, x' e X', fe sfj.
re

So tj/ = 1]/' and T = sd£(s) (take/: sh^s).

By Lemma 6, || \f/' \\ ^ sup || E(s)\\. Since £(s) = st lim \j/(k,rh), we see that
*

|| ip' || = sup || £(s)||.
R

(ii)=>(i). The operational calculus \p' constructed above shows that (ii)=>(i).
The theorem is proved.
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We note that each projection E(s)(a ^ s<b) is the strong limit of the
sequence {ip(kSi „.,): ne N}.

Theorem 6. Let T be a bounded operator on the Banach space X satisfying
the equivalent conditions of Theorem 5. Then the operational calculus \j/ extends
to an operational calculus \j/': $)j-*L(X) having the same norm. Let {ga: a e a}
be a uniformly bounded net in 38 j converging pointwise to a function g in 38 j :
then g(T) = st lim ga(T). Also {g(T): g e 38j}<={f(T): fe tfj}s.

a

c®

Proof. We define \p': 3&j^>L(X): /i-» fdE. It is clear that ij/' is a

linear map of norm sup || E(s)\\, and that tj/' extends ij/. The argument in the
proof of Theorem 5 ((i)=>(v)) shows that \j/' is an algebra homomorphism.
{g(T): g e <%j}cz{f(T): fe < , } s since {E(s): s e R}cz{f(T): fe ^ } s and the
integrals defining \p' exist in the strong topology.

The rest of the theorem follows directly from Theorem 2.
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