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Abstract

Let G be an infinite graph on countably many vertices and let Λ be a closed, infinite set of real numbers.
We establish the existence of an unbounded self-adjoint operator whose graph is G and whose spectrum
is Λ.
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1. Introduction

Our main theorem states that given an infinite graph G on countably many vertices
and a closed, infinite set Λ of real numbers, there is a real symmetric matrix whose
graph is G and whose spectrum is Λ. More precisely, we construct an unbounded self-
adjoint operator T on `2 with spectrum Λ such that the matrix of T with respect to the
standard basis of `2 has the desired zero–nonzero pattern given by the graph G. Here
and throughout, `2 denotes the Hilbert space of square-summable real sequences.

This inverse spectrum problem was considered in [2] under the assumption that
the given spectrum Λ is compact. Since the spectrum of any bounded operator is a
compact subset of the complex plane, the main result of [2] is in this sense optimal for
bounded operators. Additionally, because the spectrum of any unbounded operator is a
closed subset of the complex plane (see, for instance, [5, Proposition 2.6]), it is natural
to ask whether one can replace the compactness assumption of Λ by closedness. This
is precisely what we accomplish in this paper to settle the question of the possibility
of such constructions in the most general setting of closed spectra and unbounded
operators.

Throughout, all vector spaces will be over the field of real numbers making inner
products 〈v,w〉 linear in both v and w.
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2. Preliminaries

In this section we recall some definitions and establish a few basic results that we
shall use later.

Definition 2.1. LetH be a Hilbert space.

(1) A linear map T : H →H is called bounded if there exists a constant C ≥ 0 such
that ‖Tv‖ ≤ C‖v‖ for all v ∈ H . The smallest such C is called the operator norm
‖T‖op of T .

(2) An unbounded operator T on H is a linear map of some dense subspace
Dom(T ) ⊂ H intoH .

According to this definition, ‘unbounded’ means ‘not necessarily bounded’, in the
sense that we allow Dom(T ) =H if T is bounded.

Definition 2.2. Suppose that T is an unbounded operator on H . Let Dom(T ∗) be the
space of all v ∈ H for which the linear functional

w 7→ 〈v,Tw〉, w ∈ Dom(T ),

is bounded. For v ∈ Dom(T ∗), we define T ∗v to be the unique vector such that
〈T ∗v,w〉 = 〈v,Tw〉 for all w ∈ Dom(T ).

Definition 2.3. An unbounded operator T onH is:

(1) symmetric if 〈v,Tw〉 = 〈Tv,w〉 for all v,w ∈ Dom(T ); and, in particular,
(2) self-adjoint if Dom(T ) = Dom(T ∗) and T ∗v = Tv for all v in Dom(T ).

It is easy to check that T is symmetric if and only if T ∗ is an extension of T , that is,
Dom(T ) ⊂ Dom(T ∗) and T = T ∗ on Dom(T ).

The following proposition, involving a ‘discrete version’ of the potential energy
operator in quantum mechanics, will play a key role in proving our main result. Indeed,
the spectral theorem implies that this multiplication operator is the prototype of all
self-adjoint operators. See, for instance, [1, Chs. 9 and 10].

Proposition 2.4. Let {λn}
∞
n=1 be any sequence of real numbers. Let T be the unbounded

operator on `2 with domain

Dom(T ) = {{an}
∞
n=1 ∈ `

2 | {λnan}
∞
n=1 ∈ `

2}

such that T maps {an}
∞
n=1 ∈ Dom(T ) to {λnan}

∞
n=1. Then T is self-adjoint.

Proof. First, observe that Dom(T ) contains all finite sequences and hence it is dense
in `2. Next, since {λn}

∞
n=1 is a sequence of real numbers, T is clearly symmetric and

thus T ∗ is an extension of T . It remains to show that Dom(T ∗) ⊂ Dom(T ).
Suppose that b ∈ Dom(T ∗), so that

a 7→ 〈b,Ta〉 =

∞∑
n=1

bnλnan, a ∈ Dom(T ),
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is a bounded functional. This functional has a unique bounded extension to `2 and,
therefore, by the Riesz representation theorem, it can be represented by a unique c ∈ `2.
That is,

∞∑
n=1

bnλnan =

∞∑
n=1

cnan

or
∞∑

n=1

(bnλn − cn)an = 0

for all a ∈ `2. This immediately implies that bnλn = cn for all n and hence b ∈ Dom(T ).
Thus, Dom(T ∗) ⊂ Dom(T ). �

Let us recall the definition of the spectrum of an unbounded operator.

Definition 2.5. Let T be an unbounded operator on H . A number λ ∈ C is in the
resolvent set of T if there exists a bounded operator S with the following properties:
Sv belongs to Dom(T ) and (T − λI)Sv = v for all v ∈ H , and S (T − λI)w = w for all
w ∈ Dom(T ).

The complement in C of the resolvent set of T is called the spectrum of T and is
denoted by σ(T ).

For instance, one can easily check that the spectrum of the multiplication operator
T in Proposition 2.4 is the closure of {λn | n ∈ N} as a subset of the real line.

Definition 2.6. A sequence {Tn}
∞
n=1 of unbounded operators on a Hilbert space H is

said to be convergent to an unbounded operator T if for each sufficiently large n, T − Tn
is bounded on Dom(Tn) ∩ Dom(T ) and moreover ‖T − Tn‖op → 0 as n→∞.

Lemma 2.7. Suppose that {Tn}
∞
n=1 is a sequence of self-adjoint operators that is

convergent to an unbounded operator T on a Hilbert space H . Assume that
Dom(Tn) =D for all n, whereD is some dense subspace ofH . Then T is self-adjoint
onD.

Proof. Clearly T is symmetric, because each Tn is symmetric onD, and hence, for all
v,w ∈ D,

〈w,Tv〉 = lim
n→∞
〈w,Tnv〉 = lim

n→∞
〈Tnw, v〉 = 〈Tw, v〉.

Thus, T ∗ is an extension of T and Dom(T ∗) ⊃ Dom(T ) =D.
Now let w ∈ Dom(T ∗), so that v 7→ 〈w, Tv〉 is bounded for v ∈ D. We claim that

w ∈ D. This is clear if v 7→ 〈w, Tnv〉 is bounded on D for some n, because in that
case w ∈ Dom(T ∗n ) = Dom(Tn) =D. So, we assume that there exists a sequence of unit
vectors {vn}

∞
n=1 inD such that |〈w,Tnvn〉| > n for each n. But then

| |〈w,Tvn〉| − |〈w,Tnvn〉| | ≤ |〈w,Tvn〉 − 〈w,Tnvn〉|

≤ ‖w‖ ‖T − Tn‖op,

by the Cauchy–Schwarz inequality. The right-hand side of the second inequality above
tends to 0 as n goes to∞, implying that |〈w,Tvn〉| → ∞. This is absurd; hence, w ∈ D.
Therefore, Dom(T ∗) ⊂ D, which finishes the proof that T is self-adjoint onD. �
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Finally, to finish this section, we record a lemma whose easy proof we omit.

Lemma 2.8. Let H be a Hilbert space with an orthonormal basis B. Suppose that B1

and B2 are two subsets of B that partition B and denote the Hilbert spaces generated
by them by H1 and H2, respectively. If Ti is an unbounded self-adjoint operator on
Hi, for i = 1, 2, then the operator T defined by T1 ⊕ T2 is an unbounded self-adjoint
operator onH with Dom(T ) = Dom(T1) ⊕ Dom(T2).

3. Main theorem

In preparation for our main result, we introduce the notion of the graph of a
symmetric matrix (or a self-adjoint operator).

Definition 3.1. Let G be a (finite or infinite) graph whose vertices are indexed by
1, 2, . . . . We say that G is the graph of a real symmetric matrix A = [ai j] if for any
i , j, we have ai j , 0 precisely when the vertices i and j are adjacent in G.

We say that G is the graph of a self-adjoint operator T on `2 if G is the graph of the
standard matrix of T .

We mention in passing that the spectrum of a (locally finite) countable graph
was defined in the 1982 paper of Mohar [4] and some of its basic properties were
established.

Example 3.2. Consider the graph P3, namely a path on three vertices, and a set of
distinct real numbers {λ1, λ2, λ3}. We shall construct a symmetric matrix M with the
zero–nonzero pattern of P3 and the spectrum σ(M) = {λ1, λ2, λ3}. Let

M(x1, x2, x3, y) =

x1 y 0
y x2 y
0 y x3

 .
We show the existence of (infinitely many) real numbers xi and y , 0 such that

σ(M(x1, x2, x3, y)) = {λ1, λ2, λ3}.

Identifying the set of matrices M = M(x1, x2, x3, y) with R3 × R, we define

f : R3 × R→ R3

f (x1, x2, x3, y) = (Tr M,Tr M2,Tr M3).

Note that the equation

F(x1, x2, x3, y) := f (x1, x2, x3, y) −
(∑

λi,
∑

λ2
i ,

∑
λ3

i

)
= 0
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has the trivial solution (λ1, λ2, λ3, 0) given by a diagonal matrix. We use the
implicit function theorem to show that the xi can be expressed as functions of y in
a neighbourhood of 0 such that F(x1(y), x2(y), x3(y), y) = 0. A short calculation of the
Jacobian of F with respect to the xi shows that

J( f )|xi=λi,y=0 =


1 1 1

2λ1 2λ2 2λ3

3λ2
1 3λ2

2 3λ2
3

 ,
which is invertible because the λi are distinct. Thus, the implicit function theorem
can be applied to obtain the desired perturbation of the diagonal matrix with nonzero
y. Finally, since {

∑
λi,

∑
λ2

i ,
∑
λ3

i } uniquely determines {λ1, λ2, λ3} via Newton’s
identities, we have proved the existence of matrices with the zero–nonzero pattern
of P3 and a given spectrum.

The solution of the example above illustrates the construction used in [2] to prove
the following theorem.

Theorem 3.3 [2, Theorem 3.2]. Let {λn}
∞
n=1 be a sequence of distinct real numbers and

suppose that {Gn}
∞
n=1 is a sequence such that Gn is a graph on n vertices and also a

subgraph of Gn+1 for each n ∈ N. Then, for any sequence of positive numbers {εn}
∞
n=1,

we can find a sequence of symmetric matrices {An}
∞
n=1 such that for any n ∈ N:

(i) An has graph Gn and spectrum {λ1, . . . , λn};
(ii) ‖An ⊕ [λn+1] − An+1‖op < εn; and
(iii) An+1 is obtained by perturbing the diagonal and the last row and column of

An ⊕ [λn+1].

Now we proceed to the discussion of our inverse spectrum problem in the context
of infinite graphs and unbounded operators. The next theorem is used in connection
with the spectrum of perturbations of self-adjoint operators. First, we need a definition
for the distance between two subsets of a metric space.

Definition 3.4. Let A and B be two nonempty subsets of a metric space (X, ρ). The
Hausdorff distance between A and B, denoted d(A, B), is defined by

d(A, B) = max
{
sup
a∈A

inf
b∈B

ρ(a, b), sup
b∈B

inf
a∈A

ρ(a, b)
}
.

Theorem 3.5. Let T and A denote a self-adjoint operator and a bounded symmetric
operator on a Hilbert space H , respectively. Then S = T + A is self-adjoint and the
Hausdorff distance between the spectra of S and T , namely d(σ(S ), σ(T )), satisfies

d(σ(S ), σ(T )) ≤ ‖A‖op.
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This theorem, whose proof can be found in [3, Theorem 4.10], implies the following
corollaries that we shall refer to later on.

Corollary 3.6. Let {Tn}
∞
n=1 be a sequence of unbounded self-adjoint operators on a

Hilbert space H . Assume that {Tn}
∞
n=1 converges to a self-adjoint operator T and

that Dom(T ) ∩ Dom(Tn) is dense in H for all n. Then, for any λ ∈ σ(T ) and any
neighbourhood U of λ, there exists an N ∈ N such that U intersects σ(Tn) nontrivially
for all n > N.

Proof. Since Dom(T − Tn) = Dom(T ) ∩ Dom(Tn), the density of the right-hand side
in H guarantees that the difference T − Tn of self-adjoint operators is symmetric.
Also, ‖T − Tn‖op → 0 implies that, for sufficiently large n, T − Tn is bounded on
Dom(T ) ∩ Dom(Tn) and hence it can be extended to a bounded symmetric operator
onH . By definition of the Hausdorff distance,

d(σ(T − Tn), {λ}) ≤ d(σ(T − Tn), σ(T ))

for λ ∈ σ(T ). Now the corollary follows from Theorem 3.5. �

If {Tn}
∞
n=1 is a sequence of noninvertible bounded operators on a Hilbert space and

{Tn}
∞
n=1 converges to an operator T , then T is also noninvertible. This is a well-known

consequence of the openness of the invertibility condition in unital Banach algebras.
Instead of explicitly referring to noninvertibility of Tn, one can equivalently assume
that 0 belongs to σ(Tn). This formulation has the advantage of making sense in more
general contexts such as the next corollary.

Corollary 3.7. Suppose that {Tn}
∞
n=1 is a sequence of self-adjoint operators on a

Hilbert spaceH with Dom(Tn) =D, for n = 1, 2, . . . , whereD is a dense subspace of
H . If {Tn}

∞
n=1 is convergent to an operator T and λ ∈ σ(Tn) for all n, then λ ∈ σ(T ).

Proof. Observe that T is a self-adjoint operator on D by Lemma 2.7. Thus, T − Tn

is bounded and symmetric on D for each n. If λ < σ(T ), then, since σ(T ) is a closed
subset of R, there exists an open subset U of R containing λ that is disjoint from σ(T );
hence, 0 < d({λ}, σ(T )). This, together with Theorem 3.5, implies that, for each n,

0 < d(σ(Tn), σ(T )) ≤ ‖T − Tn‖op,

which is in contradiction with the assumption that {Tn}
∞
n=1 is convergent to T .

Therefore, λ must be in σ(T ). �

Consider the standard Hilbert basis B = {e1, e2, . . . } of `2, where ek is the sequence
whose kth term is 1 and whose other entries are all 0. The standard matrix of a linear
operator T on `2 is the infinite matrix whose kth column is [Tek]B, consisting of the
terms of the sequence Tek. Now we are ready to state and prove our main theorem.
This is done by taking the limit, in a suitable sense, of the matrices that are constructed
in Theorem 3.3.
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Theorem 3.8. Given an infinite graph G on countably many vertices and a closed,
infinite set Λ of real numbers, there exists an unbounded self-adjoint operator T on
the Hilbert space `2 such that:

(i) the (approximate point) spectrum of T equals Λ; and
(ii) the (real symmetric) standard matrix of T has graph G.

Proof. Let {λ1, λ2, . . . } denote a countable dense subset of Λ. Suppose that the vertices
of G are labelled by the numbers in N and, for each n ∈ N, let Gn be the induced
subgraph of G on the first n vertices. By Theorem 3.3, for any ε > 0, we can find
matrices {An}

∞
n=1 such that An has graph Gn and spectrum {λ1, . . . , λn} and, moreover,

‖An ⊕ [λn+1] − An+1‖op <
ε

2n . (3.1)

For each n define the unbounded linear operator Tn on the Hilbert space of square-
summable sequences `2 with domain

D = {{an}
∞
n=1 ∈ `

2 | {λnan}
∞
n=1 ∈ `

2}

such that the matrix representation of Tn with respect to the standard Hilbert basis
B = {e1, e2, . . . } of `2 is

Mn = An ⊕ diag(λn+1, λn+2, . . . ).

(Note that the definition of Dom(Tn) does not depend on the value of n.)
Proposition 2.4 and Lemma 2.8 imply that Tn is self-adjoint. It follows from (3.1)
that, for any i in N,

‖Mnei − Mn+1ei‖2 <
ε

2n .

Thus, the sequence of partial sums {
∑n−1

k=1(Mk+1ei − Mkei)}∞n=2 is absolutely convergent
and therefore the sequence {Mnei}

∞
n=1 satisfying

Mnei = M1ei +

n−1∑
k=1

(Mk+1ei − Mkei)

is convergent in `2. Let M denote the matrix whose columns are obtained by this
limiting process, that is, M is the matrix such that Mei = limn→∞ Mnei for each i ∈ N.
Note that for each n = 1,2, . . . , the graph of An is the induced subgraph of G on the first
n vertices. Thus, by construction, G is the graph of M; this uses the fact that nonzero
entries of Mn remain nonzero in the limit thanks to point (iii) of Theorem 3.3.

Our next objective is showing that M is indeed the standard matrix of an unbounded
linear operator T on `2. Observe that Tm − Tn is a bounded operator on D, by
construction of Tm and Tn. Therefore, Tm − Tn has a unique bounded extension
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to B(`2). We shall denote this extension by Tm − Tn as well. Then

‖Tn − Tn+1‖op = sup
‖v‖2=1

‖Tnv − Tn+1v‖2

= sup
‖v‖2=1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥




An


v1
...

vn


λn+1vn+1

 − An+1


v1
...

vn+1


0
...
0



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

= sup
‖v‖2=1

∥∥∥∥∥∥∥∥∥∥
([

An

λn+1

]
− An+1

) 
v1
...

vn+1


∥∥∥∥∥∥∥∥∥∥

2

<
ε

2n ,

where the inequality in the last line is due to the submultiplicative property of the
operator norm together with (3.1). This inequality immediately implies that the
sequence of partial sums {

∑n−1
k=1(Tk+1 − Tk)}∞n=2 is absolutely convergent in the Banach

space of bounded operators B(`2) and hence the sequence {Tn}
∞
n=1 satisfying

Tn = T1 +

n−1∑
k=1

(Tk+1 − Tk)

is convergent to an unbounded operator T . This means that we can define T by

T = T1 + lim
n→∞

n−1∑
k=1

(Tk+1 − Tk),

which is the sum of the unbounded self-adjoint operator T1 and a bounded self-adjoint
operator on `2. Therefore, T is self-adjoint with domain given by D = Dom(T1).
Since, for each i ∈ N, we have Tei = limn→∞ Tnei and Tnei = Mnei, we conclude that
Tei = Mei and thus M is the standard matrix of T .

It remains to prove that σ(T ) = Λ. First, we claim that each λi ∈ {λ1, λ2, . . . } ⊂ Λ is
in the spectrum of T . To see this, note that Tn was defined so that {λ1, λ2, . . . } ⊂ σ(Tn)
for each n. Hence, by Corollary 3.7, we have {λ1, λ2, . . . } ⊂ σ(T ), as claimed. By
taking closures, this inclusion implies that Λ ⊂ σ(T ), because {λ1, λ2, . . . } is dense in
Λ and σ(T ) is closed in R.

Next, since the sequence {Tn}
∞
n=1 is convergent to T and σ(Tn) = Λ for all n, by

Corollary 3.6, we conclude that for any λ ∈ σ(T ), every neighbourhood of λ intersects
the closed set Λ. Hence, the reverse inclusion σ(T ) ⊂ Λ is also established.

Finally, to complete the proof of point (i) in the statement of the theorem, note that
the spectrum of any self-adjoint operator equals its approximate point spectrum and,
as shown above, T is self-adjoint. �
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Remark 3.9. At the end of the proof of Theorem 3.8, it is possible to give a direct
argument to show that σ(T ) = Λ. Indeed, by construction, the operators Tm are
isospectral with σ(Tm) = Λ for all m ∈ N,

T = Tm + lim
n→∞

n−1∑
k=m

(Tk+1 − Tk), (3.2)

and ∥∥∥∥∥ lim
n→∞

n−1∑
k=m

(Tk+1 − Tk)
∥∥∥∥∥

op
→ 0 as m→∞.

Thus, Theorem 3.5 applied to (3.2) implies that d(σ(T ),Λ) = 0 and hence σ(T ) = Λ,
since both sets are closed in R.
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