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Asymptotic Formulae for the Lattice Point
Enumerator
U. Betke and K. Böröczky, Jr.

Abstract. Let M be a convex body such that the boundary has positive curvature. Then by a well developed
theory dating back to Landau and Hlawka for large λ the number of lattice points in λM is given by G(λM) =
V (λM) + O(λd−1−ε(d)) for some positive ε(d). Here we give for general convex bodies the weaker estimate

|G(λM)−V (λM)| ≤
1

2
SZd (M)λd−1 + o(λd−1)

where SZd (M) denotes the lattice surface area of M. The term SZd (M) is optimal for all convex bodies and
o(λd−1) cannot be improved in general. We prove that the same estimate even holds if we allow small defor-
mations of M.

Further we deal with families {Pλ} of convex bodies where the only condition is that the inradius tends to
infinity. Here we have

|G(Pλ)−V (Pλ)| ≤ dV (Pλ,K; 1) + o
(

S(Pλ)
)

where the convex body K satisfies some simple condition, V (Pλ,K; 1) is some mixed volume and S(Pλ) is the
surface area of Pλ.

1 Introduction

As we work with concepts from convex geometry and the geometry of numbers, our no-
tation is taken from the standard books [S], [GL]. More specifically we denote by Ed the
d-dimensional Euclidean space with norm ‖ · ‖ and by Kd the family of all convex bodies
with non-empty interior in Ed. We write Λ for a lattice in Ed, Λ∗ for its dual lattice, i.e.,

Λ∗ = {v | 〈v, u〉 ∈ Z for u ∈ Λ}.

We note that the primitive vectors of Λ∗ are normals to the lattice hyperplanes of Λ. We
denote the determinant of Λ by detΛ and the lattice point enumerator of a set M ⊂ Ed by
GΛ, i.e., GΛ(M) = #(Λ ∩M). In the special case Λ = Zd we frequently write G(M) rather
than GZd (M). For a set M ⊂ Ed we write ∂M for its boundary, cl M for its closure, int M
for its interior, relint M for its relative interior (interior with respect to its affine hull), and
dim M for its affine dimension.

We are interested in the so called “circle problem”; namely, to determine GΛ(λM) for
M ∈ Kd and large real λ. For the unit ball Bd this is a well known problem in the theory of
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numbers which goes back to Gauss. For the more general case that M has positive curva-
ture, G(λM) is estimated by the following formula which goes back to Landau and Hlawka
(see [GL]), and was recently improved by Krätzel and Nowak ([KN]):

GΛ(λM) =
V (M)

detΛ
· λd + O

(
λd−2+3/(2d)(logλ)2/d

)
.(1)

Clearly (1) does not hold anymore if M contains a facet parallel to some lattice (d− 1)-
plane as then the error term can be no better than O(λd−1). Some more insight in the
nature of the error term is given by Ehrhart’s formula for the number of lattice points in
lattice polytopes (see again [GL]). To state Ehrhart’s result we need some more notation.

For a non-zero vector u and M ∈ Kd we write u⊥ for the linear (d−1)-space orthogonal
to u and FM(u) for the face of M with outer normal vector u. In addition, Hk denotes the
k-dimensional Hausdorff-measure normalized so that it coincides with the k-dimensional
Lebesgue-measure along hyperplanes. In particular, the surface-area Hd−1(∂M) of M is
denoted by S(M).

For M ∈ Kd the “lattice surface area” SΛ(M) with respect to Λ is defined by

SΛ(M) =
∑

v∈Λ∗primitive

Hd−1
(
FM(v)

)
det(v⊥ ∩ Λ)

.

Now Ehrhart’s formulae (see [GL]) for GΛ(λP) for a lattice polytope P and natural λ
make the role of SΛ(P) more transparent:

GΛ(λP) =
d∑

i=0

Gi(P)λi ,(2)

GΛ
(
int(λP)

)
=

d∑
i=0

(−1)d−iGi(P)λi(3)

where Gd(P) = V (P)/ detΛ, Gd−1(P) = 1
2 SΛ(P) and G0(P) = 1, while the remaining Gi

have a less obvious meaning (see [DR]).
Ehrhart’s formula can easily be turned into an estimate of Gλ for all λ > 0 for a slightly

more general class than lattice polytopes. For the sake of a better name we say that a poly-
tope P is a lattice-facet polytope if for every facet some normal of the facet is in Λ∗, or in
other words the hyperplanes spanned by the facets of P are parallel to lattice-hyperplanes
of Λ.

Theorem A Let Λ be a lattice in Ed and P be a lattice-facet polytope. Then

∣∣∣∣V (λP)

detΛ
− GΛ(λP)

∣∣∣∣ ≤ 1

2
SΛ(P)λd−1 + O(λd−2).

Ehrhart’s formulae (2), (3) show that the estimate in Theorem A including the error
term is optimal.
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In fact the main result of our paper is a generalization of this result to general convex
bodies which additionally allows some deformation of the shape of M.

Theorem B Let Λ be a lattice in Ed and M ∈ Kd. If a family {Qλ} of convex bodies tends to
M as λ→∞ then ∣∣∣∣V (λQλ)

detΛ
− GΛ(λQλ)

∣∣∣∣ ≤ 1

2
SΛ(M)λd−1 + o(λd−1).

At this point it seems worth while to mention that there is an application of Theorem B
(and Theorem D below) to calculate the densities of large finite lattice packings (see [ABB],
[BB]). If d = 2 then Theorem B is a trivial consequence of Pick’s formula (this celebrated
formula can be found in e.g. [GL]).

We note that for M = Qλ, Theorem B becomes

Corollary C For M ∈ Kd,∣∣∣∣V (λM)

detΛ
− GΛ(λM)

∣∣∣∣ ≤ 1

2
SΛ(M)λd−1 + o(λd−1).

We remark that the same estimate holds if we consider arbitrary translates of λM.
If M is strictly convex then SΛ(M) = 0, and hence

detΛ · GΛ(λM) = V (λM) + o
(

S(λM)
)
.

In view of the formula of Landau and Hlawka and Theorem A, the error term in Theo-
rem B and particularly in Corollary C appears to be very weak, but in fact it is best possible
as a series of examples in Section 6 will show.

For the next theorem we consider a more general family Pλ ∈ Kd, λ ∈ N, such that for
the inradius r we have r(Pλ)→∞. We prove a bound for the lattice point enumerator with
the help of a suitable mixed volume.

Again we need some more notation. Let M,K ∈ Kd and let HK (·) denote the support
function of K. Then V (λM + K) is a polynomial in λ; namely,

V (λM + K) =
d∑

i=0

(
d

i

)
V (M,K; i)λd−i

(see [S]). We are interested in the term V (M,K; 1). It is well known that

V (M,K; 1) =
1

d
·

∫
∂M

HK (nx) dHd−1(x),(4)

where nx is an exterior unit normal at x ∈ ∂M. We note that nx is unique almost Hd−1-
everywhere on ∂M. For a polytope M, (4) becomes simply

V (M,K; 1) =
1

d
·
∑

u∈Sd−1

HK (u) ·Hd−1
(
FM(u)

)
,(5)
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where Hd−1
(
FM(u)

)
6= 0 only if u is the exterior normal to a facet of M. The normalization

reflects the definition of mixed volumes (see [S]).
After these preparations, we state our next

Theorem D Let Λ be a lattice in Ed and assume that for some K ∈ Kd, HK(v) ≥ 1/2 for any
primitive v ∈ Λ∗. If {Pλ} is a family of convex bodies with rd(Pλ)→∞ as λ→∞ then

|V (Pλ)− detΛ · GΛ(Pλ)| ≤ dV (Pλ,K; 1) + o
(
S(Pλ)

)
.

The condition on HK(v) makes sure that K is sufficiently large with respect to Λ: For
v ∈ Λ∗ primitive and u ∈ Λ with 〈u, v〉 = 1 we have that HK (v) ≥ 1 is equivalent to saying
that K intersects u + lin(v⊥ ∩ Λ), which is the closest non-linear affine lattice hyperplane
to the origin normal to v.

While our work deals with large bodies we should remark that for the special case of
Zd there are estimates for G(M) − V (M) for all bodies. A survey on these results can be
found in [BW]. Especially a somewhat related lower bound was given in [BHW]; namely,
GZd (M) ≥ V (M)− 1

2 S(M).
We proceed as follows: Sections 2, 3 and 4 provide the auxiliary statements which we

need for the proofs of Theorem B and Theorem D. In Section 5 we start with a proof of
Theorem A. While the statement of this theorem is folklore, we are not aware of a written
proof. Furthermore the ideas of the proof are the same as in the rather more complicated
Theorem B. Thus we use the proof of Theorem A as an outline of the proof of Theorem B
and it might be useful to start to read the paper at that point. In Section 6, we discuss
the exactness of the estimates in Theorem B. Finally Section 7 is devoted to the proof of
Theorem D.

2 Approximation of Convex Bodies

In Sections 2 and 3, we discuss some elementary metrical properties of convex surfaces.
The standard reference book for this and the next section is [S]. For the basic properties of
Hausdorff measure, consult any monograph on geometric measure theory, for example the
classical book [F].

The Euclidean distance function is denoted by δ(·, ·) and ∆H(·, ·) stands for the Haus-
dorff distance of compact sets. We denote by ∠(u, v) the angle of the vectors u and v. For
σ ⊂ Ed and ω ≥ 0, N(σ, ω) is the set of points with distance less than ω from σ.

Let M be some convex body containing o in its interior. Then for x 6= o, the radial
projection π∂M(x) of x into ∂M is well defined.

For the rest of the section we consider an M ∈ Kd such that for some positive r and R,
rBd ⊂ int M and M ⊂ int RBd.

Lemmas 2.1, 2.2 and 2.3 are easy consequences of the fact that for a convergent se-
quence of convex bodies, supporting hyperplanes can converge only to some supporting
hyperplane of the limit.

Lemma 2.1 Let Π ⊂ ∂M have the property that for x, y ∈ clΠ and all nx and ny,
∠(nx, ny) < α holds. Then there exists a positive ω with the following property: Let Q ∈ Kd

with∆H(Q,M) < ω and u, v ∈ π∂Q(Π). Then ∠(nu, nv) < 2α holds.
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For any set σ ⊂ Sd−1 and convex body P we denote by ψP(σ) the subset of ∂P whose
points have an outer normal contained in σ.

Lemma 2.2 Let u ∈ Sd−1. For positive θ there exist positive α and ω such that if
∆H(M,Q) < ω then ψQ

(
Sd−1 ∩ N(u, α)

)
is a subset of the radial projection of ∂M ∩

N
(
ψM(u), θ

)
onto ∂Q.

For F ∈ Kd we denote by r(F) the relative inradius of F, i.e., the radius of the largest
ball with the same dimension as F that is contained in F. Then for 0 ≤ θ ≤ r(F) we write
F−θ for the subset of F whose points are at least distance θ from each point of the relative
boundary ∂F of F (“inner parallel body”).

Lemma 2.3 Let F = FM(u) such that dim F = d− 1 for some u ∈ Sd−1 and 0 < θ < r(F).
Then for any α > 0 there exists an ω > 0 with the following property: If Q ∈ Kd such that
∆H(Q,M) < ω and x ∈ π∂Q(F−θ) then ∠(nx, u) < α for any normal vector nx at x to Q.

In order to compute GZd (M) − V (M) we introduce some more notation. For z =
(z1, . . . , zd) ∈ Zd we denote by W (z) the unit cube W (z) = {(x1, . . . , xd) | − 1

2 ≤ zi − xi <
1
2 , i = 1, . . . , d}. For a closed convex set Q let zα = (z1, . . . , zi−1, zi +α, zi+1, . . . , zd) ∈ ∂Q
with zi ∈ Z, i = 1, . . . , d and − 1

2 ≤ α < 1
2 such that 〈nzα , ei〉 > 0 (ei is the i-th co-

ordinate unit vector). Then the i-tower Z of Q at zα is the union of all cubes W (z̄) with
z̄ = (z1, . . . , zi−1, z̄i, zi+1, . . . , zd) such that there is an x ∈ W (z̄) ∩ ∂Q with 〈nx, ei〉 > 0.
For 〈nzα , ei〉 < 0 the i-tower Z is defined correspondingly. If for all lattice points z ∈ Z the
points x ∈W (z) ∩ ∂Q are in a common facet of Q then we obviously have

∑
z∈Z,z∈Q

V
(
W (z) \ Q

)
−
∑

z∈Z,z /∈Q

V
(
W (z) ∩ Q

)
=

{
1
2 − α for α ≥ 0

− 1
2 − α for α < 0.

Thus for an i-tower Z at zα we define the deviation dev Z of Z by

dev Z =

∣∣∣∣ ∑
z∈Z,z∈Q

V
(
W (z) \ Q

)
−
∑

z∈Z,z 6∈Q

V
(
W (z) ∩ Q

)
−

1

2
+ α

∣∣∣∣
for α ≥ 0 and

dev Z =

∣∣∣∣ ∑
z∈Z,z∈Q

V
(
W (z) \Q

)
−
∑

z∈Z,z /∈Q

V
(
W (z) ∩ Q

)
+

1

2
+ α

∣∣∣∣
for α < 0.

Lemma 2.4 Let zα = (z1, z2, . . . , zi + α, . . . , zd) ∈ ∂Q with zi ∈ Z for i = 1, . . . , d and
− 1

2 ≤ α < 1
2 , and n ∈ Sd−1 with 〈ei, n〉 ≥ β for β > 0. Let H denote the plane through zα

with normal n. Then for every ε > 0 there exists a γ > 0 depending only on β and ε with the
following property: Let Z be the i-tower at zα. If ∠(n, nx) ≤ γ holds for every x ∈ Z ∩ ∂Q
then
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(a) dev Z < ε.
(b) |Hd−1(H ∩ Z)−Hd−1(∂Q ∩ Z)| < ε.

The next lemma gives bounds for the angles between sections of certain planes:

Lemma 2.5 Let H be a hyperplane with normal n and E be a two-dimensional plane
spanned by the vectors u1, u2 such that ∠(n, u1) ≤ γ < π/2. Then for every ξ > 0 ex-
ists an η > 0 depending only on γ, ξ such that for any hyperplane H1 with normal n1 and
∠(n1, n) ≤ η we have ∠

(
(E ∩H), (E ∩H1)

)
≤ ξ.

In the last section we have to deal with convex bodies, whose extension in some direc-
tions is much larger than their extension in other directions. This situation is conveniently
described by means of different inradii and best approximating planes: For K ∈ Kd we
denote the k-th inradius, that is the radius of the largest k-dimensional ball contained in
K by rk. For every k-plane L exists an ω(L) for which K ⊂ L + ω(L)Bd. Now the best
approximating k-plane Lk(K) is the plane L for which ω(L) becomes minimal. There is a
well-known connection between radii and best approximating planes (see [P]):

K ⊂ Lk(K) + (k + 2)rk+1(K)Bd.(6)

As we frequently need to consider orthogonal projections of sets onto planes we write
πL(M) for the orthogonal projection of the set M onto the plane L. Further we write L⊥ for
the complementary orthogonal linear plane of L.

For some estimates we use a different notion of k-inradius, which was discussed in [BH]:
The k-th inradius rπk (K) with respect to projection is the radius of the largest k-ball, which
is contained in a projection of K onto a k-dimensional plane. Of course the two notions of
k-inradius are not independent:

Lemma 2.6 Let K ∈ Kd. Then

rk(K) ≤ rπk (K) ≤ krk(K).

Proof To prove the right inequality let L be a k-plane, for which πL(K) contains a k-ball B
with radius rπk (K). Let S be a regular k-dimensional simplex with vertices on the relative
boundary of B. S is the projection of a simplex S ′ contained in K. As the ratio of the circum-
radius and the inradius of a regular k-simplex is k (see [BF]), S ′ contains a k-dimensional
inball with radius rπk (K)/k. The other inequality is trivial.

The previous lemma and a result in [BH] immediately give a convenient tool to estimate
volume and surface area of convex bodies:

Lemma 2.7 Let K ∈ Kd. Then there exist positive constants c1, c2, c3, c4 depending only on
d such that

c1r1(K) · · · · · rd(K) ≤ V (K) ≤ c2r1(K) · · · · · rd(K),

c3r1(K) · · · · · rd−1(K) ≤ S(K) ≤ c4r1(K) · · · · · rd−1(K).
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Finally we need a sufficiently interior point of a convex set K. This is provided by the
center c(K) of a (relative) inball.

Now we can state the facts needed in the proof of Theorem D:

Lemma 2.8 Let Kλ be a family of convex bodies, such that rd(Kλ) and rk(Kλ)/rk+1(Kλ) tend
to infinity, but rk+1(Kλ)/rd(Kλ) is bounded. Let ωλ be a sequence of positive numbers with
ωλ → 0. Then for Lλ = Lk(Kλ) and Mλ = (1− ωλ)πLλ(Kλ) + ωλc

(
πLλ(Kλ)

)
, we have

(a) for every ε > 0 there is a λ0 such that for all λ > λ0 and j = 1, . . . , k

r j

(
πLλ(Kλ)

)
≥ (1− ε)r j(Kλ),

(b)

lim
λ→∞

Hd−1
(
(Mλ + L⊥λ ) ∩ ∂Kλ

)
S(Kλ)

= 1.

Proof Let Bλ be a j-ball of radius r j(Kλ) contained in Kλ, Hλ be the affine plane spanned
by Bλ and uλ1 , . . . , u

λ
j be an orthonormal basis of the linear plane parallel to Hλ. We may

write uλi = vλi + wλ
i for i = 1, . . . , j where vλi is in the linear plane parallel to Lλ and wλ

i

is in L⊥λ . Now Kλ ⊂ Lλ + (k + 2)rk+1(Kλ)Bd and rk+1(Kλ)/r j(Kλ) → 0 immediately show
wλ

i → 0 for all i. (a) is a straightforward consequence.
We may assume that c

(
πLλ(Kλ)

)
is the origin. Then we have (1−ωλ)Kλ ⊂ (Mλ + L⊥λ )∩

Kλ. From this we conclude

lim
λ→∞

S
(

(Mλ + L⊥λ ) ∩ Kλ

)
S(Kλ)

= 1.

So it is sufficient to prove

lim
λ→∞

Hd−1
(⋃

x∈∂Mλ
(x + L⊥λ ) ∩ Kλ

)
S(Kλ)

= 0.

Among the sections (x + L⊥λ ) ∩ Kλ let A be the one with largest (d − k)-measure. We have
Hd−k(A) ≤ c1rd−k

k+1 for some constant c1 by (6). The result follows by (a) from the estimates
given in Lemma 2.7.

Finally we need that the volume of certain neighbourhoods of a piece of the boundary
of a convex set cannot be too large.

Lemma 2.9 Let Kλ, Lλ, ωλ and Mλ be as in Lemma 2.8, and denote by σλ the closure of
∂Kλ ∩

(
(Lλ\Mλ) + L⊥λ

)
. Then for any t > 0,

lim
λ→∞

V
(
N(σλ, t)

)
S(Kλ)

= 0.
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Proof Approximating by polytopes, we may assume that Kλ is actually a polytope. Set

M̃λ = (1− 2ωλ)πLλ(Kλ) + 2ωλc
(
πLλ(Kλ)

)
and

σ̃λ = cl
(
∂Kλ ∩

(
(Lλ\M̃λ) + L⊥λ

))
.

Denote by Nk the set of points in N(σλ, t) such that a closest point of ∂Kλ is in the
relative interior of some k-face. Observe that for any point in Nd−1 the closest point is in
σ̃λ for λ sufficiently large, and hence

V (Nd−1) ≤ 2t ·Hd−1(σ̃λ).

We deduce by Lemma 2.8 (b) that

lim
λ→∞

V (Nd−1)

S(Kλ)
= 0.

Now we assume k < d − 1. Then no point of Nk is contained in the interior of Kλ, and
hence the definition of the mixed volumes yields

V (Nk) ≤

(
d

k

)
V (Kλ,B

d; d− k) · td−k.

Since by the monotonicity of the mixed volumes, the inequalities

V (Kλ,B
d; d− k) ≤

1

rd(Kλ)d−k−1
·V (Kλ,B

d; 1) =
1

d · r(Kλ)d−k−1
· S(Kλ)

hold, we conclude the lemma.

3 Lipschitz Maps

We still keep M, r and R as in the previous section.
We need some very basic properties of a Lipschitz map. If f has Lipschitz constant γ,

i.e., ‖ f (x)− f (y)‖ ≤ γ · ‖x − y‖ for all x, y, then

Hd−1
(

f (σ)
)
≤ γd−1 ·Hd−1(σ).(7)

Lemma 3.1 Let Π be a (d− 1)-dimensional convex, compact set and t > 0 be smaller than
the relative inradius of Π. If f : Π→ Ed has Lipschitz constant γ then

V
(

N
(

f (Π), t
))

< 22(d−1) V (Bd)

Hd−1(Bd−1)
(1 + γ)dHd−1(Π) · t.
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Proof We may assume that the origin is the center of the largest (d − 1)-ball contained
in Π and Bd−1 is the unit ball in linΠ. Let X ⊂ Π have maximal cardinality with the
condition that any two elements of X are at least distance t apart. Thus for x, y ∈ X we
have int

(
(x + t

2 Bd−1)∩ (y + t
2 Bd−1)

)
= ∅, (X + tBd−1) ⊂ 2Π and X + tBd−1 coversΠ. Thus

X has at most Hd−1(2Π)/Hd−1( 1
2 tBd−1) elements.

We deduce that

N
(

f (Π), t
)
⊂ f (X) + (1 + γ)tBd,

which in turn yields the lemma.

Now let Q ∈ Kd such that rBd ⊂ Q ⊂ RBd. Then there exists some positive c1 depending
on r and R such that if y, z ∈ ∂Q then

1

c1
· δ(y, z) < ∠(y, z) < c1 · δ(y, z).

Similarly, there exists some positive c2 depending on r and R such that if H is some hyper-
plane supporting M at x ∈ ∂M and y, z ∈ N(x, 1

2 r) ∩H then

1

c2
· δ(y, z) < ∠(y, z) < c2 · δ(y, z).

We conclude

Lemma 3.2 There exists a c depending on r, R and d and an ω > 0 depending on M with
the following property:

Let H be a hyperplane supporting at x ∈ ∂M and Q be a convex body with∆H(Q,M) < ω.
Then for y, z ∈ N(x, 1

2 r) ∩H,

1

c
· δ
(
π∂Q(y), π∂Q(z)

)
< δ(y, z) < c · δ

(
π∂Q(y), π∂Q(z)

)
.

We say that T is a tangent polytope of M if every facet F of T touches M and F ⊂
N(F ∩ M, 1

2 r). We deduce by Lemma 3.2 that for ∆H(Q,M) < ω (where ω comes from
Lemma 3.2) π∂Q is Lipschitz on ∂T and π∂T is Lipschitz on ∂Q.

For positive k and a (d − 1)-polytope F we construct k-patches on F in the following
way: We choose a tiling of aff F by (d − 1)-cubes with edge length 1/k, and call a (d −
1)-dimensional intersection of some tile and F a k-patch. We obtain a dissection of the
boundary of a polytope T by taking all the k-patches of its facets. In general for P ∈ Kd with
o ∈ int P and a polytope T with o ∈ int T the k-patches on ∂P are the radial projections of
the k-patches on ∂T.

Lemma 3.3 Let η > 0. There exists some compact %η ⊂ ∂M with Hd−1(%η) = 0 and a c
depending only on r, R such that if δ(x, y) < θ and ∠(nx, ny) ≥ η hold for outer normals nx

at x ∈ ∂M and ny at y ∈ ∂M then x, y ∈ N(%η, c · θ).
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Proof Choose k so that any k patch on 2RSd−1 has diameter at most R sin 1
2η and denote

by %0 the union of the (relative) boundaries of these patches on 2RSd−1. Writing pM(x) for
the closest point of x to M, we have that % = pM(%0) has zero Hd−1 measure since pM is
Lipschitz (see [S]) and Hd−1(%0) = 0.

Assume that suitable x and y are given. There exists a continuous curve ξ on ∂M
connecting x and y with length less then c · θ where c depends on r, R. We claim that
ξ0 = p−1

M (ξ) ∩ 2RSd−1 is connected: Else there exist disjoint compact sets ξ1, ξ2 with
ξ0 = ξ1 ∪ ξ2. Now there exists an x ∈ pM(ξ1)∩ pM(ξ2), as pM(ξ1) and pM(ξ2) are compact
and ξ is connected. Thus p−1

M (x) ∩ 2RSd−1 is disconnected. But this is a contradiction as
clearly p−1

M (z) ∩ 2RSd−1 is connected for all z ∈ ξ.
Let x0 (y0) be the inverse image of x (y) generated by nx (ny), and let y ′0 be the intersec-

tion of 2RSd−1 and the ray starting from x parallel to ny . Thus δ(x0, y ′0) > 2R sin 1
2η, and

for small θ, we have δ(x0, y0) > R sin 1
2η. Thus x0, y0 are contained in different patches of

2R Sd−1. We conclude, that ξ0 ∩ %0 6= ∅ as otherwise there would be a dissection of ξ0 in
two non-empty open sets. Consequently ξ ∩ % is non-empty too.

In view of the previous lemma it is of interest to look at the neighbourhood of compact
sets with zero measure. Here we have

Lemma 3.4 Let T be a polytope, % ⊂ ∂T compact and Hd−1(%) = 0. For every k ∈ N let K
denote the set of k-patches Π on ∂T such that for every Π ∈ K we have Π ∩ N(%, 1/k) 6= ∅.
Then for every ε > 0 there exists a k ∈ N such that

∑
Π∈K Hd−1(Π) < ε.

Proof By considering the facets separately, it is sufficient to prove for compact % ⊂ Ed−1

with Hd−1(%) = 0 that there is a τ > 0 such that Hd−1
(

N(%, τ )
)
< ε.

As (d−1)-dimensional Hausdorff-measure and Lesbesgue-measure coincide we have by
definition of the measure an open set G containing % with Hd−1(G) < ε. For each x ∈ %,
let τ (x) > 0 be the maximal radius such that N

(
x, τ (x)

)
⊂ G. Clearly τ (x) is continuous,

and hence τ can be chosen as the positive minimum of τ (x).

4 Some Properties of Bounded Lattice Vectors

We establish some simple properties for lattice vectors. The first lemma shows that a family
of lattice vectors with bounded length is not too sparse, but it is also not too “dense” ac-
cording to the second lemma. We close with an observation concerning the approximation
of arbitrary planes by lattice planes in a way that the approximating plane contains short
lattice vectors.

Lemma 4.1 For every χ > 0 there exists an n0 with the following property: Let 0 ≤ ψ ≤ 1.
Then there is an (n,m) ∈ Z2 with n ≤ n0 such that ∠

(
(1, ψ), (n,m)

)
≤ χ and |n ·ψ−m| <

1/n.

Proof We observe that for given χ there exists a δ > 0 such that ∠
(
(1, ψ), (1, η)

)
< χ for

all η with |ψ − η| < δ. Let n0 = d1/δe. By a fundamental theorem from Diophantine
Approximation there exists an n ≤ n0 and m ∈ Z such that |ψ− m

n | <
1

n·n0
(see [C], [GL]).

Apparently (n,m) has the required properties.
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Let e1, . . . , ed denote the canonical basis of Zd, and set Pi j = lin{ei, e j}.

Lemma 4.2 For (large)ϕ, let u1, . . . , um ∈ Sd−1 be the normals of the sub (d−1)-lattices of
Zd such that 〈ui, e1〉 > 1/(2

√
d) and each P1i , i = 2, . . . , d, contains a non-zero lattice vector

of length at most ϕ of the sublattice. Then for any (small) positive α there exists a positive β
with the following property:

For any v ∈ Sd−1, with ∠(v, u j) > α for j = 1, . . . ,m, and 〈v, e1〉 > 1/(2
√

d), there
exists an i ≥ 2 such that if vi ∈ Sd−1 ∩ P1i is perpendicular to v and ∠(w, vi) < β for a
primitive w ∈ Zd ∩ P1i then the length of w is greater than ϕ.

Proof We denote the set of unit vectors v satisfying 〈v, e1〉 ≥ 1/(2
√

d) by Ω. For any
i = 2, . . . , d the map v 7→ v ′i on Ω is continuous where the unit vector v ′i ∈ Sd−1 ∩ P1i

is parallel to the orthogonal projection of v onto P1i . We may choose vi ∈ Sd−1 ∩ P1i

orthogonal to v ′i (and hence also to v) so that the map v 7→ vi is still continuous. We set

f (v) = max
i=2,...,d

min{∠(vi,w) | w ∈ P1i ∩ Zd and ‖w‖ ≤ ϕ}.

Clearly we have f (v) 6= 0 for v 6∈ {u1, . . . , um}. Now for α > 0, let

Ωα = {v ∈ Ω | ∠(v, u j) ≥ α ∀ j = 1, . . . ,m}.

Since Ωα is compact and f (v) is continuous, β can be chosen as the minimum of f on Ωα
(assuming that Ωα 6= ∅).

A Minkowski reduced basis w1, . . . ,wd of a latticeΛ is defined as follows: w1 is a shortest
vector, and wk is a shortest vector of Λ not contained in lin{w1, . . . ,wk−1}. Then there ex-
ists a positive constant c depending only on d (see [GL, p. 150]) such that c‖wd‖Bd contains
no d independent lattice points.

Lemma 4.3 For every linear k-plane L̃ ⊂ Rd and every ε > 0 there exist a lattice k-plane L
of Zd such that for a Minkowski reduced basis w1, . . . ,wk of L ∩ Zd,

(a) the distance of any point of

T =
{ k∑

i=1

αiwi | 0 ≤ αi < 1
}

from L̃ is at most ε, and
(b) for any unit normal u to L̃ there exists an unit normal v to L such that ∠(u, v) < ε.

Proof We choose an orthonormal basis (u11, . . . , u1d), . . . , (uk1, . . . , ukd) of L̃. Now we
use simultaneous Diophantine approximation for the kd numbers ui j . By a well known
theorem (see [GL, p. 44] or [C]) there are infinitely many q ∈ N such that there exist
pi j ∈ Z, 1 ≤ i ≤ k, 1 ≤ j ≤ d with∣∣∣∣ui j −

pi j

q

∣∣∣∣ ≤ 1

q1+ 1
kd

.
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From this it follows that there are constants c1 and c2 depending only on d such that for
infinitely many q ∈ N there are v1, . . . , vk ∈ Zd such that ‖vi‖ ≤ c1 · q and

∠(vi, ui) <
c2

q1+ 1
kd

.

Let L be the plane spanned by v1, . . . , vk which satisfies (b) for large q, even replacing εwith
c3/q1+ 1

kd , where c3 is a constant. If w1, . . . ,wk is a Minkowski reduced bases of L ∩ Zd then
diam T < c4q, where c4 is a constant, which in turn yields (a) for large q.

5 The Proof of Theorem B

We observe that all our statements are invariant under simultaneous linear transformations
of the lattice and the convex bodies. Thus we may assume that Λ = Zd. In this section z
always is a lattice point and W (z) = z + [− 1

2 ,
1
2 )d.

For Q ∈ Kd we have the trivial identity

|G(Q)−V (Q)| =

∣∣∣∣ ∑
z∈Q,

W (z)∩∂Q6=∅

V
(
W (z)\Q

)
−

∑
z /∈Q,

W (z)∩∂Q6=∅

V
(
W (z) ∩ Q

)∣∣∣∣.(8)

The basic idea of Theorem B is that we can rather easily estimate G−V for the union of
certain towers. To this end we introduce the notion of an i-box on the boundary of Q for
i = 1, . . . , d. We say that for z = (z1, . . . , zd) that U is an i-box at z, if

U =

{
x = (x1, . . . , xd) | x ∈ ∂Q,−

1

2
≤ zp − xp <

1

2
, p 6= i, 〈nx, ei〉 > 0

}
.

Analogously there are i-boxes for−ei . We say that a box U is simple, if Z∩U = Z∩∂Q for
the i-tower Z with Z∩U 6= ∅. For the union of certain simple boxes we can easily estimate
G−V .

Lemma 5.1 Let {U0, . . . ,Uq−1} be a set of simple 1-boxes at zi , i = 0, . . . , q− 1 such that

zi +

(
i

q
+ αi

)
e1 ∈ ∂Q

with −1/q < αi < 1/q for i = 0, . . . , q− 1. Finally let dev Zi < ε for every one tower Zi at
zi + ( i

q + αi)e1. Then

∣∣∣∣
q−1∑
i=0

( ∑
z∈Zi ,z∈Q

V
(
W (z) \ Q

)
−
∑

z∈Zi ,z 6∈Q

V
(
W (z) ∩ Q

))
±

1

2
+

q−1∑
i=0

αi

∣∣∣∣ ≤ qε.

Here we have “+”, if α0 < 0 and “−” otherwise.
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Proof By the definition of the deviation in Section 2 and writing {a} for the fractional part
of a we have

∣∣∣∣∑
z∈Zi
z∈Q

V
(
W (z) \ Q

)
−
∑
z∈Zi
z 6∈Q

V
(
W (z) ∩ Q

)
−

1

2
+

i

q
+ αi

∣∣∣∣ ≤ ε

for i
q + αi ∈ [0, 1/2] and

∣∣∣∣∑
z∈Zi
z∈Q

V
(
W (z) \ Q

)
−
∑
z∈Zi
z 6∈Q

V
(
W (z) ∩ Q

)
+

1

2
+

i

q
+ αi

∣∣∣∣ ≤ ε

for i
q + αi ∈ (1/2, 1). The lemma is an immediate consequence.

We shall see that Theorem B is a consequence of the fact, that for large λ most of ∂λQ
can be covered appropriate unions of sufficiently flat simple boxes. As a first application we
give a proof of Theorem A:

Proof of Theorem A Let F be a facet of the lattice-facet polytope Q with primitive exterior
normal u ∈ Zd. Set L = Zd∩lin(F−F) and q = det L. We may assume that u = (u1, . . . , ud)
with u1 > 0.

Let P be a fundamental cell of L. There are exactly q points z0, . . . , zq−1 ∈ Zd such that
wi = zi + i

q e1 ∈ P. We have aff F = lin(F−F) + te1 for some t ∈ R. There is a renumbering
w̃0, . . . , w̃q−1 of w1, . . . ,wq−1 such that

w̃i + λte1 = z̃i +

(
i

q
+ α

)
e1

for suitable z̃i ∈ Zd and

−1/(2q) ≤ α < 1/(2q).(9)

Now let ν > 0 be fixed and

L0(λ) = {l ∈ L | wi + λtei + l ∈ λF−ν/2, i = 0, . . . , q− 1}.

Then every l ∈ L0(λ) defines a set of simple 1-boxes U0,l, . . . ,Uq−1,l at z̃0 + l, . . . , z̃q−1 + l
such that

λF−ν ⊂
⋃
l∈L0

(U1,l ∪ · · · ∪Uq−1,l).
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Thus Lemma 5.1 yields with ε = 0

∣∣∣∣ ∑
l∈L0(λ)

q−1∑
i=0

( ∑
z∈λQ,

W (z)∩Uil 6=∅

V
(
W (z)λQ

)
−

∑
z 6∈λQ,

W (z)∩Uil 6=∅

V
(
W (z) ∩ λQ

))∣∣∣∣

=
∑

l∈L0(λ)

(
1

2
− q|α|

)

=

(
1

2
− q|α|

)
Hd−1λF

det L
+ O(ν · λd−2).

Since at most O(ν · λd−2) cubes W (z) and at most O(ν · λd−2) of the surface area were
not taken into account, the theorem follows.

The proof of Theorem B is quite analoguous to that of Theorem A. We approximate
the boundary of M by k-patches (cf. the definition in Section 3). We distinguish between
flat patches which can be considered as a substitute for facets and bended patches. Among
the flat patches we distinguish further between facets parallel to lattice hyperplanes, “good”
patches, for which the normals are not to close to the normals of lattice hyperplanes with
small determinant and some remaining “bad” patches. For the lattice facets and the good
patches we can apply Lemma 5.1 and for the bended and bad patches we show that there
are not too many of them. We prove Theorem B in the apparently equivalent form:

Theorem 5.2 Let M ∈ Kd. For any ε > 0 there exist positive λ0 and ω such that for all
Q ∈ Kd with∆H(M,Q) < ω and all λ > λ0

|G(λQ)−V (λQ)| ≤ 1
2 SZd (M) · λd−1 + ε · λd−1.

As the proof of Theorem 5.2 is somewhat longish, we shall split it into several lemmas.
First we observe that we may assume that S(M) = 1, and as the surface area is continuous,
also that S(Q) = 1. Further there are positive r, R such that for some t ∈ Ed rBd +t ⊂ int M
and M ⊂ int RBd + t . Now let some ε > 0 be given.

We start with the construction of a suitable tangent polytope and associated patches
(for the definitions see Section 3). First we identify the lattice hyperplanes such that the
facets in the hyperplanes could make significant contributions to G−V . Let H be a lattice
hyperplane, such that ei 6∈ H. Now let us assume that for j = 1, . . . , d, j 6= i, there is a
lattice vector of length at most φ in H ∩ Pi j (the definition of Pi j is in Section 4). Then the
lattice Zd ∩ H has determinant less than φd−1. Thus for φ = 5/ε there exists an m0 ∈ N
such that u1, . . . , um0 ∈ Sd−1 are the normals of the sub (d− 1)-lattices such that for some
i we have 〈ei, uk〉 6= 0 and each Pi j , j 6= i, contains a non-zero lattice vector of length
at most φ of the sublattice. We enumerate the uk such that for k = 1, . . . ,m1 we have
Hd−1

(
FM(uk)

)
> 0 and for k = m1 + 1, . . . ,m we have Hd−1

(
FM(uk)

)
= 0.

Now let T be a fixed tangent polytope of M that has u1, . . . , um0 in its set of normal vec-
tors. We note FM(uk) ⊂ ∂T for k = 1, . . . ,m0. By Lemma 3.2, there exist c, ω0 depending
only on M such that for ∆H(Q,M) < ω0 the maps π∂Q : ∂T → ∂Q and π∂T : ∂Q → ∂T
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have Lipschitz constant c. By possibly taking c larger we may further assume by (7) that for
measurable σ ⊂ ∂T the formula

Hd−1
(
π∂Q(σ)

)
≤ c ·Hd−1(σ)(10)

holds. From now on we assume without further mentioning that∆H(Q,M) < ω0.
In the next step we construct a k such that the k-patches have the right properties. We

write %i for the boundary of π∂T

(
FM(ui)

)
with respect to ∂T and σi(k) for the union of k

patches on ∂T which intersect ∂T ∩ N(%i, 1/k). By Lemma 3.1 there exists a k1 and a λ0

such that for all λ > λ0

m∑
i=1

V

(
N
(
λ · π∂Q

(
σi(k1)

)
,
√

d
))

<
ε

8
λd−1.(11)

Further we observe that by Lemma 2.2 there exist positive α and ω1 < ω0 such that for
all ω < ω1

ψQ

(
NSd−1 (ui , α)

)
⊂ π∂Q

(
σi(k1) ∪ FM(ui)

)
.(12)

Consequently we assume from now that∆H(Q,M) < ω1 and k is a suitable multiple of
k1.

In the next step we assure that most patches become sufficiently flat. Let β1 be the angle
given by Lemma 4.2 for the α above, n0 the smallest integer which satisfies n0 ≥ 5/ε and
1/n2

0 ≤ tan β1, and β2 = ∠
(
(1, 1), (1, 1− 1/n2

0)
)
. Now let η1 = η/2 for the angle η given

by Lemma 2.5 for γ = arccos 1√
2d

and ξ = min{β1, β2}, η2 be half of the angle γ provided

by Lemma 2.4 for β = 1/(2
√

d), η = min{η1, η2} and for ε/10 in place of ε.
For this η we construct the set %η from Lemma 3.3. We write %(k) for the union of k

patches which intersect N
(
π∂T(%η), 1/k

)
. By Lemma 3.4 and Lemma 3.1 we can find a

multiple k2 of k1 such that

V

(
N
(
λ · π∂Q

(
%(k2)

)
,
√

d
))

<
ε

8
λd−1.(13)

Now we can further subdivide the patches, such that most of them become very flat on
M: By Lemma 3.3 there is a multiple k3 of k2 such that all k3-patches Π on M satisfying
Π 6⊂ π∂M

(
%(k2)

)
have the property that for x, y ∈ Π the normals nx, ny satisfy ∠(nx, ny) <

η. We subsume our discussion in the following

Lemma 5.3 There is a k ∈ N such that there are k-patches on M which can be partitioned
into three classes:

(a) Patches, which are contained in the facets FM(ui), i = 1, . . . ,m1 of M.
(b) m2 patches Πq, such that for the numbers α, η given above all x, y ∈ Πq satisfy

∠(nx, ny) < η and ∠(nx, ui) > α for i = 1, . . . ,m0.
(c) Patches, which are not enumerated in (a) and (b). Their union % satisfies

V
(

N
(
λπQ(%),

√
d
))

< ε
4 λ

d−1.
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We do the summation in (8) separately for the patches listed in (a), (b) and (c) above.
Let us start with the facets FM(ur), r = 1, . . . ,m1. For a fixed facet F = FM(ur) and

u = ur , define L, q, z0, . . . , zq−1 and ν as in the the proof of Theorem A. By Lemma 2.3
we may further assume that if Z is a 1-tower at w ∈ π∂λQ

(
(λF)−ν/2

)
then dev Z < 1

16ε.
Then we can proceed exactly as in the proof of Theorem A. We only have to observe, that
the parameters t , α now depend on l and i, we have to replace (9) by

−1/(2q)− ε/16 ≤ α < 1/(2q) + ε/16,

and have to apply Lemma 5.1 with ε/16 instead of 0. Altogether we obtain (a) below and
Lemma 3.1 yields (b):

Lemma 5.4 Let F be a facet of M with normal ur, r ∈ {1, . . . ,m1}. Then there exist
ν, ω, λ0 > 0 such that for∆H(Q,M) ≤ ω and λ > λ0

(a) ∣∣∣∣ ∑
z∈λQ,

W (z)∩π∂λQ((λF)−ν)6=∅

V
(
W (z)\λQ

)
−

∑
z /∈λQ,

W (z)∩π∂λQ((λF)−ν)6=∅

V
(
W (z) ∩ λQ

)∣∣∣∣

≤
1

2
·

Hd−1(λF)

det(u⊥i ∩ Zd)
+
ε

4
Hd−1(λF),

(b) V
(

N
(
λπ∂Q(F \ F−ν),

√
d
))

<
ε

8m1
λd−1.

Next, consider the patches in Lemma 5.3 (b). For z = (z1, . . . , zd) ∈ Zd, we call an
U ⊂ λ∂Q an (i, j)-strip of length q at z, if

U =

{
x = (x1, . . . , xd)

∣∣∣ x ∈ ∂Q, |zp − xp| ≤
1

2
,

p 6= i, j, 〈nx, ei〉 > 0,−
1

2
≤ x j − z j ≤ q−

1

2

}
.

Analogously there are (i, j)-strips for −ei . We say that U is simple if it is the union of q
simple i-boxes.

Lemma 5.5 Let Π be a patch from Lemma 5.3 (b).

(a) There exist ν > 0 and λ0 > 0 such that for all λ > λ0

V
(

N
(
λπ∂Q(Π \Π−ν),

√
d
))

<
ε

8m2
λd−1.

(b) Let x ∈ Π and 〈ei, nx〉 ≥ 1/(2
√

d) for some i ∈ {1, . . . , d} and q ∈ N. Then there are
positive ω2, λ0 with the following property: For all j ∈ {1, . . . , d}, j 6= i, all λ > λ0,
and all Q ∈ Kd with ∆H(M,Q) < ω2 there are simple (i, j)-strips Ul of length q,
l = 1, . . . ,m(λ), such that U =

⋃
Ul covers λπ∂Q(Π−ν) and each Ul is contained in

π∂Q(Π−ν/2).
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Proof The first statement is an immediate consequence of Lemma 3.1. Next observe that
W (z)∩λ∂Q =W (z)∩λπ∂Q(Π−ν/2) holds for every z ∈ Zd with W (z)∩λπ∂Q(Π−ν) 6= ∅.

For each Π we choose fixed i, j, q in Lemma 5.5 (b). For this choice we write Σ(Π) =
{z ∈ Zd | W (z) ∩ U 6= ∅}. We observe by our previous lemma that the sets Σ(Π) are
mutually disjoint.

In the sequel we must take into account the difference between Q and M and that we
have only approximate normals of patches. Thus for given Pi j , v ∈ Pi j , x ∈ Q, and θ ≥ 0
we say that v θ-approximates Q at x if for 0 ≤ µ ≤ 1 there exists a τ (µ) with |τ (µ)| ≤ θ
and x + µv + τ (µ)ei ∈ ∂Q.

Let Π be a fixed patch from Lemma 5.3 (b) and ν the number from Lemma 5.5. Let
x ∈ π∂Q(Π−ν) and nx a normal at x. We may assume that |〈e1, nx〉| = max{|〈ei, nx〉|} ≥
1/
√

d and P12 is the plane given by Lemma 4.2 for nx. Let u = (u1, 1, 0, . . . , 0) be a support
vector at x to Q ∩ P12. Let n0 be the number given in Lemma 4.1 for χ = η, where η is
the angle used in the construction of the patches. We may assume that the conditions of
Lemma 5.5 (b) are satisfied for q = n0. Thus we have a lattice vector (m, n) with n ≤ n0

such that ∠
(
u, (m, n)

)
≤ η. By the choice of η we have on the other hand by Lemma 4.2

that ‖(m, n)‖ ≥ φ.
We now ascertain that nearly all strips on π∂Q(Π) behave nicely: We may assume that

∆H(Q,M) is sufficiently small and λ sufficiently large, that by Lemma 2.1 ∠(nx, ny) ≤ 2η
for all y ∈ π∂Q(Π−ν/2) and by Lemma 5.5 λπ∂Q(Π−ν) is covered by simple (1, 2)-strips U j

of length n such that each U j is contained in π∂Q(F−ν/2).
Let now U j be such a simple (1, 2)-strip at z = (z1 + α, z2, . . . , zd) of length n. Let

z̄ =
(
z1 + ᾱ, z2 + (n − 1)/2, z3, . . . , zd

)
such that z̄ ∈ U j . Now for −n/2 ≤ µ ≤ n/2 let

z(µ) be defined by the condition, that z(µ) =
(
z1 + α(µ), z2 + µ, z3, . . . , zd

)
∈ U j . Then

we have by our construction that |z(µ)− z̄−µu| ≤ µ/n and |µ
(
u− ( m

n , 1)
)
| ≤ µ/n. Thus

(m, n) 1/n-approximates Q at (z1 + α, z2 − 1/2, z3, . . . , zd).
Therefore Lemma 5.1 and Lemma 2.4 yield∣∣∣∣

n−1∑
i=0

( ∑
z∈Zi ,z∈λQ

V
(
W (z) \ λQ

)
−
∑

z∈Zi ,z 6∈λQ

V
(
W (z) ∩ λQ

))∣∣∣∣ ≤ 1

2
+ n

ε

5
.

Since n ≥ φ = 5/ε, we deduce by adding up:

Lemma 5.6 Let Π be a patch given by Lemma 5.3 (b). Then there exist ν, ω, λ0 > 0 such
that for∆H(Q,M) ≤ ω and λ > λ0∣∣∣∣ ∑

z∈λQ,z∈Σ(Π)

V
(
W (z)\λQ

)
−

∑
z /∈λQ,z∈Σ(Π)

V
(
W (z) ∩ λQ

)∣∣∣∣ ≤ ε

4
·Hd−1(λΠ).

Finally, we need some book keeping in order to prove Theorem B. We deduce by
Lemma 5.4 (a) and Lemma 5.6 that the facets from Lemma 5.3 (a) and the patches from
Lemma 5.3 (b) cause all together an error of at most 1

2ελ
d−1 (remember that S(M) = 1).

Now the error caused by the cubes which intersect the rest of λQ is at most 1
2ελ

d−1 by
Lemma 5.3 (c), Lemma 5.4 (b) and Lemma 5.5 (a). Summing up these estimates completes
the proof of Theorem B.
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6 The Optimality of the Estimates of Theorem B and Corollary C

We present series of examples to show that the estimates of Corollary C and hence of The-
orem B are optimal in general. Again it is sufficient to consider the case Λ = Zd.

First we look at the coefficient of λd−1. Here we have optimality for all M.

Example 6.1 The term SΛ(M)λd−1 is optimal in Corollary C for any M ∈ Kd.

As the statement is trivial if SZd (M) = 0, we assume SZd (M) > 0. Let ε > 0, and we
prove the existence of arbitrary large λ so that

G(λM) > V (M)λd +
1

2
SZd (M)λd−1 − ελd−1.(14)

Note that the optimality of the lower bound can be similarly proved, choosing λ = q− 1
q1/m

in (c) below.
As in the proof of Theorem B, set W (z) = z + [− 1

2 ,
1
2 ) and assume S(M) = 1 and

o ∈ int M. The proof of Theorem B shows that we may choose finitely many lattice facets
with outer unit normals u1, . . . , um such that

(a)
1

2

∑ Hd−1
(
FM(ui)

)
det(u⊥i ∩ Zd)

>
1

2
SZd (M)−

ε

4
,

(b) for large λ and Ωλ = {z |W (z) ∩ λ
(
∂M\

⋃
FM(ui)

)
6= ∅},

∣∣∣∣ ∑
z∈Ω∩λM

V
(
W (z)\M

)
−
∑

z∈Ω\λM

V
(
W (z) ∩M

)∣∣∣∣ < ε

4
λd−1.

Now observe that τ−1
i FM(ui) is contained in some lattice hyperplane for τi =

HM(ui) det(u⊥i ∩ Zd). Applying simultaneous Diophantine approximation to τ1, . . . , τm

(compare the proof of Lemma 4.3) results in an arbitrarily large integer q and correspond-
ing p1, . . . , pm ∈ Z satisfying |pi − qτi| <

1
q1/m , and hence

∣∣∣∣ pi

det(u⊥i ∩ Zd)
− qHM(ui)

∣∣∣∣ < 1

q1/m
.

In particular, Lemma 5.1 yields for large q and i = 1, . . . ,m that

(c) for λ = q + 1
q1/m and Ωi

λ = {z |W (z) ∩ λFM(ui) 6= ∅},

∑
z∈Ωi

λ∩M

V
(
W (z)\M

)
−
∑

z∈Ωi
λ\M

V
(
W (z) ∩M

)
>

1

2

Hd−1
(
FM(ui)

)
det(u⊥i ∩ Zd)

λd−1 −
ε

4m
λd−1.

Since the number of fundamental cells intersecting the relative boundary of any of the
FM(ui) is O(λd−2) (see the proof of Theorem A), combining (a), (b) and (c) yields (14) by
the formula (8).

Next we look at the term o(λd−1). Here we have
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Example 6.2 The error term o(λd−1) in Corollary C is optimal.

For sake of simplicity, we provide an example only for d = 2 and SZ2 (M) = 0.
For our example we need the following well-known statement from the theory of num-

bers:

Lemma 6.3 Let {δq} be a sequence of positive numbers. Then there exists a τ with 0 < τ <
1 such that for infinitely many pairs (p, q) of relatively prime natural numbers we have

0 < p · τ − q < δq.

Proof The lemma is proved in a constructive way, completely analogously to the construc-
tion of “Liouville-type” transcendental numbers (see [Sc]).

Our examples are given explicitly in the next lemma:

Lemma 6.4 Let ε : R+ → R+ be a function satisfying limλ→∞ ε(λ) = 0. Then there exists
an o-symmetric parallelogram M with SZd (M) = 0 such that for any natural number N there
exists a λ > N satisfying

|G(λM)−V (λM)| > ε(λ) · S(λM).(15)

Proof By replacing ε(λ) by

sup{ε(t) | t ≥ λ},

we may assume that ε(λ) is decreasing.
For M ∈ K2 we define for λ > 0 and 0 < l < 1 the function fM(λ, l) by

fM(λ, l) =
G
(
(λ + l)M

)
− G(λM)−V

(
(λ + l)M

)
+ V (λM)

S(λM)
.

Now we assume that M is given so that for any large λ > 0,

|G(λM)−V (λM)| ≤ ε(λ) · S(λM).(16)

For such an M (16) and ε(λ + l) ≤ ε(λ) yield that for λ > 1,

fM(λ, l) < 4 · ε(λ).(17)

We prove the lemma by constructing a parallelogram M which does not satisfy (17) for
certain pairs (λ, l) where λ can be arbitrarily large. For every positive integer q we choose a
positive integer m = m(q), so that

4 · ε(m · q) <
1

q2
,
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and a δq > 0 satisfying

δq <
1

m · q2
.(18)

Let τ be the number provided by Lemma 6.3. We observe that τ is irrational.
Now we set u = e1 + τ · e2, v = τ · e1 − e2. Then the parallelogram M is given by

M = conv{±u± v}.

We observe that the length of an edge of M is between 2 and 2
√

2. We denote by L the
line through o and u. Now let

0 < p · τ − q < δq

for relatively prime natural numbers p, q. We set m = m(q) and w = qe1 + pe2. For any
integer t with |t| ≤ 2m, the distance of tw from L is at most 2mδq. Thus for large q, we may
choose λ with

m · q < λ < m · q + 1,

so that each edge of λM contains one lattice point, and there exist 2m lattice points along
each side of λM which are not in that square but the distance of these points from λM is at
most 2mδq. Let l be minimal so that all of these 4× 2m points are contained in (λ + l)M.

It is easy to see that

G
(

(λ + l)M
)
− G(λM) > c1 ·m,

V
(
(λ + l)M

)
−V (λM) < c2 ·m

2 · q · δq,

and finally,

S(λM) < c3 ·m · q

for fixed positive ci , i = 1, 2, 3. Now ε(λ) ≤ ε(mq), and the definition of m(q) and δq yield
that if q is chosen large enough then

fM(λ, l) >
c1

2c3
·

1

q
> 4 · ε(λ).

Therefore the lemma follows by (17).

For a higher dimensional example, one can use a parallelotope such that all but two
coordinates of each facet normal are zero, and the two non-zero coordinates are 1 and
the τ above. In order to ensure SZd (M) > 0, one just cuts the parallelotope by a lattice
hyperplane.

Finally we remark that even under the additional assumption of differentiability, we can
not hope to improve our estimates very much as Theorem 1 in [MN] shows that in the
planar case o(λ) cannot be replaced by o(λ1−ε) even if the boundary of M is assumed to be
analytical.
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7 Number of Lattice Points in Large Bodies

We deduce by (5) that

d ·V (M,K; 1) ≥
∑

u∈Λ∗prim.

HK (u)

‖u‖
·Hd−1

(
FM(u)

)
.

It follows that if HK(u) ≥ 1/2 for any primitive u ∈ Λ∗ then

detΛ

2
· SΛ(M) ≤ d ·V (M,K; 1).

Since V ( ·,K; 1) is continuous, Theorem B yields

Lemma 7.1 Let Λ be a lattice in Ed and assume that for some K ∈ Kd, HK (u) ≥ 1/2 for
any primitive u ∈ Λ∗. If M ∈ Kd and {Pλ} is a family of convex bodies such that Pλ/λ tends
to M then

| detΛ · GΛ(Pλ)−V (Pλ)| ≤ dV (Pλ,K; 1) + o
(
S(Pλ)

)
.

Theorem D generalizes this statement to the case where the only condition is that the
inradius of the Pλ tends to infinity. As we frequently need the volume of lower dimensional
convex bodies we write |K| rather than Hdim K(K).

Proof of Theorem D As for Theorem B we observe that the inequality in Theorem D is
invariant with respect to simultaneous nondegenerate linear transformations of Λ, K and
the Pλ. Thus we may assume that Λ = Zd. Further approximating Pλ by polytopes with the
same number of lattice points shows that it is sufficient to consider the case where all Pλ
are polytopes. We do this by induction on d where the case d = 1 is trivial. So we assume
that the theorem holds for all dimensions less than d, d ≥ 2. In addition, we assume that
contradicting our statement, there exist an ε > 0 and a sequence {Pλ} of polytopes with
rd(Pλ)→∞ for λ→∞ and

|G(Pλ)−V (Pλ)| ≥ dV (Pλ,K; 1) + ε · S(Pλ).(19)

If R(Pλ)/rd(Pλ) is bounded then by possibly taking a suitable subsequence, we may assume
that Pλ/rd(Pλ) tends to some convex body M. Then S(Pλ) ∼ S

(
rd(Pλ)M

)
, and hence we

easily obtain a family based on {Pλ} contradicting Lemma 7.1. So we may assume that for
some 1 ≤ k ≤ d − 1 and c > 0, we have rk+1(Pλ) < c · rd(Pλ) but rk(Pλ)/rk+1(Pλ) tends to
infinity.

Let Lλ a best approximating affine k-plane for Pλ (cf. Section 2). By taking a suitable
subsequence, we may assume that the linear k-planes Lλ − Lλ tend to a linear k-plane L̃.

In the following z always denotes a point of Zd. The main idea of the inductive step is as
follows: We choose a lattice k-plane L close to L̃, and a semi-open fundamental cell T for
L ∩ Zd. We define a tiling W (z), z ∈ Zd, where each W (z) is congruent to T + T0 and T0 is
a semi-open fundamental cell for πL⊥(Zd). We have in analogy to formula (8)

G(Pλ)−V (Pλ) =
∑

z∈Zd∩Pλ
W (z)∩Pλ 6=∅

V
(
W (z)\Pλ

)
−

∑
z∈Zd\Pλ

W (z)∩Pλ 6=∅

V
(
W (z) ∩ P

)
.(20)
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Thus it is sufficient to consider tiles around the boundary of Pλ. We split up Pλ into pieces
(z+T +L⊥)∩Pλ. For large λmost of the pieces are almost orthogonal prisms with a basis of
the form (z+L⊥)∩Pλ. Splitting up the summation with respect to the pieces and projecting
on L⊥ will give a counterexample in L⊥ which contradicts the inductive hypothesis.

For every k-plane L we have for D = πL⊥(K) that HK (u) = HD(u) for all u satisfying
‖πL(u)‖ = 0. Thus by Lemma 4.3 for every δ > 0 there is a lattice k-plane L with the
following properties.

(a) There exists a Minkowski reduced basis w1, . . . ,wk of L ∩ Zd such that the distance of
any point of

T =
{ k∑

i=1

αiwi

∣∣∣ 0 ≤ αi < 1
}

from L̃ is at most δ.
(b) There exists an ε0 > 0 such that for λ sufficiently large and ‖πLλ(u)‖ < ε0

|HK(u)−HD(u)| < δ(21)

holds.

Next let wk+1, . . . ,wd be a basis of πL⊥(Zd), and define

W =
{ d∑

i=1

αiwi

∣∣∣ 0 ≤ αi < 1
}
.

For a z ∈ Zd, consider the y ∈ Zd ∩ L satisfying πL(z) ∈ y + T, and set

W (z) = πL⊥(z) + y + W.

Then {W (z)}, z ∈ Zd is a tiling of Ed.
In the next step we split up the summation in (20). First we identify the “bad” part and

show that it is not too large. To do this we define

ωλ = max

{
1

√
rd(P)

,

√
rk+1(Pλ)

rk(Pλ)

}

and M(ω) = πLλ

(
(1− ω)Pλ

)
+ ωc
(
πLλ(Pλ)

)
(cf. Section 2). The union of all W (z), which

intersect ∂Pλ and are not contained in M(ωλ) + L⊥, is denoted by Nλ. We have for suitable
t > 0 that

Nλ ⊂ N

(
∂P ∩

((
πLλ(Pλ) \M(ωλ)

)
+ L⊥

)
, t

)
.

We deduce by the definition of ωλ and Lemma 2.8 (a) that

lim
λ→∞

rk+1(Pλ)

ωλ · rk

(
πLλ(Pλ)

) = 0,(22)
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which in turn yields by Lemma 2.9 that

lim
λ→∞

V (Nλ)

S(Pλ)
= 0.(23)

We set Ωλ = Zd ∩ L ∩
(
M(ωλ) + L⊥

)
. Now (20) and (23) yield that

G(Pλ)−V (Pλ) =
∑
z∈Ωλ

G
(

(z + T + L⊥) ∩ Pλ
)

−
∑
z∈Ωλ

V
(
(z + T + L⊥) ∩ Pλ

)
+ o
(

S(Pλ)
)
.

(24)

For large λ, we have

πLλ(Pλ) \M

(
1

2
ωλ

)
⊂ πLλ(Nλ)(25)

by (22). Let x ∈ ∂Pλ ⊂ Lλ + (k + 1)rk+1(Pλ)Bd such that πLλ(x) = y ∈ M( 1
2ωλ). The k-ball

in Lλ centered at y with radius 1
2ωλrk(Pλ) is contained in πLλ(Pλ), and hence if ux is an unit

outer normal at x then

‖πLλ(ux)‖ < c ·
rk+1(Pλ)

ωλ · rk(Pλ)
.(26)

On the other hand, Lemma 2.9 implies that if nx is some unit outer normal at x ∈ ∂Pλ
then

dV (Pλ,K; 1) =

∫
⋃

z∈Ωλ
(z+T+L0)∩∂Pλ

HK(nx) dx + o
(
S(Pλ)

)
.(27)

Now we make use of the estimates, how well L approximates Lλ for large λ. For z ∈ Ωλ,
let Aλ(z) ⊂ L⊥ be the maximal and Cλ(z) ⊂ L⊥ be the minimal convex, compact set such
that

z + T + Aλ(z) ⊂ (z + T + L⊥) ∩ Pλ ⊂ z + T + Cλ(z).

Denote by v(·) the volumes or mixed volumes in L⊥, and by s(·) the surface area in L⊥.
We observe that by the construction of T for sufficiently small δ and sufficiently large λ

|T|v
(

Aλ(z)
)
≤ V
(
(z + T + L⊥) ∩ Pλ

)
≤ |T|v

(
Cλ(z)

)
≤ |T|

(
v
(
Aλ(z)

)
+
ε

4

)
.

Writing Pλ(y) = (y + L⊥) ∩ Pλ for y ∈ L we have further for Bλ(z) = Aλ(z) or Bλ(z) =
Cλ(z),∣∣∣∣
∫

(z+T+L⊥)∩∂Pλ

HK (ux) dx − |T|(d − k)v
(

Bλ(z),D; 1
)∣∣∣∣

≤

∣∣∣∣
∫

T

∫
(z+y+L⊥)∩∂Pλ

HD(ux) dx dy − |T|(d − k)v
(

Bλ(z),D; 1
)∣∣∣∣ +

ε

8
|T|s
(
Bλ(z)

)

=

∣∣∣∣(d − k)

∫
T

v
(
Pλ(z + y),D; 1

)
dy − |T|v

(
Bλ(z),D; 1

)∣∣∣∣ +
ε

8
|T|s
(

Bλ(z)
)

≤
ε

4
|T|s
(
Bλ(z)

)
.
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Therefore (19) yields for large λ by (21), (24) and (27) that either

∑
z∈Ωλ

G
(
T + Aλ(z)

)

≤ |T| ·
∑
x∈Ωλ

v
(

Aλ(z)
)
− |T| ·

∑
x∈Ωλ

[
(d − k) · v

(
Aλ(z),D; 1

)
+
ε

4
· s
(
Aλ(z)

)](28)

or ∑
z∈Ωλ

G
(
T + Cλ(z)

)

≥ |T| ·
∑
x∈Ωλ

v
(
Cλ(z)

)
+ |T| ·

∑
x∈Ωλ

[
(d − k) · v

(
Cλ(z),D; 1

)
+
ε

4
· s
(
Cλ(z)

)]
.

(29)

We denote byΛ ′ the orthogonal projection of Zd onto L⊥ and note that det Zd = detΛ ′ ·
|T| and for any σ ⊂ L⊥, we have G(σ + T) = GΛ ′(σ). We deduce by (28) and (29) that for
any large λ there exists an z ∈ Ωλ such that for Aλ = Aλ(z) and Cλ = Cλ(z), either

detΛ ′ · GΛ ′(Aλ) ≤ v(Aλ)− (d − k) · v(Aλ,D; 1)−
ε

4
· s(Aλ)

or

detΛ ′ · GΛ ′(Cλ) ≥ v(Cλ) + (d − k) · v(Cλ,D; 1) +
ε

4
· s(Cλ).

Finally, ωλ · rd(Pλ)→∞ yields that rd−k(Aλ)→∞. On the other hand, for any primitive
u from the dual of Λ ′ in L⊥, the relation HD(u) ≥ 1/2 readily holds. This contradiction
with the induction hypothesis implies the theorem.

Remark 1 Assume that K ∈ Kd is minimal with the property that HK(v) ≥ 1/2 for any
primitive v ∈ Λ∗. Then there exists some lattice d-polytope P such that for the primitive
outer facet normals v1, . . . , vk ∈ Λ∗ the formula HK (vi) = 1/2 holds. Set Pλ = λP for
λ ∈ N. We deduce by Ehrhart’s formula that

detΛ · GΛ(Pλ) = V (Pλ) + dV (Pλ,K; 1) + O(λd−2),

and hence Theorem D can not be improved in general.

Remark 2 Assume that Λ = Zd and K = [− 1
2 ,

1
2 ]d. Choosing Pλ = [0, µλ]d−1 × [0, λ]

where µλ tends arbitrarily slowly to infinity shows that the error term is optimal also in
Theorem D.
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