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Asymptotic Formulae for the Lattice Point
Enumerator

U. Betke and K. Bordczky, Jr.

Abstract. Let M be a convex body such that the boundary has positive curvature. Then by a well developed
theory dating back to Landau and Hlawka for large A the number of lattice points in AM is given by G(AM) =
V (AM) + O(\9—1—<®) for some positive e(d). Here we give for general convex bodies the weaker estimate

[GOM) — VM) < 2570 #0000

where S,q(M) denotes the lattice surface area of M. The term S,4(M) is optimal for all convex bodies and
o(A9—1) cannot be improved in general. We prove that the same estimate even holds if we allow small defor-
mations of M.

Further we deal with families {P, } of convex bodies where the only condition is that the inradius tends to
infinity. Here we have

IG(Py) =V (Py)| < dV(Py,K;1) +0(S(P)))

where the convex body K satisfies some simple condition, V (P, K; 1) is some mixed volume and S(P,) is the
surface area of P.

1 Introduction

As we work with concepts from convex geometry and the geometry of numbers, our no-
tation is taken from the standard books [S], [GL]. More specifically we denote by E¢ the
d-dimensional Euclidean space with norm || - || and by K¢ the family of all convex bodies
with non-empty interior in E9. We write A for a lattice in E¢, A* for its dual lattice, i.e.,

A" ={v|({vu) € Zforu € A}.

We note that the primitive vectors of A* are normals to the lattice hyperplanes of A. We
denote the determinant of A by det A and the lattice point enumerator of aset M c E® by
Gy, i.e., GA(M) = #(A N M). In the special case A = Z9 we frequently write G(M) rather
than G,s(M). For aset M  EY we write M for its boundary, ¢l M for its closure, int M
for its interior, relint M for its relative interior (interior with respect to its affine hull), and
dim M for its affine dimension.

We are interested in the so called “circle problem”; namely, to determine G, (AM) for
M € K9 and large real ). For the unit ball BY this is a well known problem in the theory of
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numbers which goes back to Gauss. For the more general case that M has positive curva-
ture, G(AM) is estimated by the following formula which goes back to Landau and Hlawka
(see [GL]), and was recently improved by Kratzel and Nowak ([KN]):

1) GA(AM) = \% AT+ O (A2 @D (1og \)?/9).

Clearly (1) does not hold anymore if M contains a facet parallel to some lattice (d — 1)-
plane as then the error term can be no better than O(\4~1). Some more insight in the
nature of the error term is given by Ehrhart’s formula for the number of lattice points in
lattice polytopes (see again [GL]). To state Ehrhart’s result we need some more notation.

For a non-zero vector uand M € K¢ we write u™ for the linear (d — 1)-space orthogonal
to u and Fy (u) for the face of M with outer normal vector u. In addition, F¥ denotes the
k-dimensional Hausdorff-measure normalized so that it coincides with the k-dimensional
Lebesgue-measure along hyperplanes. In particular, the surface-area H94~1(dM) of M is
denoted by S(M).

For M € X the “lattice surface area” Sy (M) with respect to A is defined by

SsM = >

veA*primitive

HIL(Fu(v))
det(v: NA)

Now Ehrhart’s formulae (see [GL]) for G (AP) for a lattice polytope P and natural A
make the role of S, (P) more transparent:

d
@) GA(AP) = > Gi(P)N,

i=0
d

©) Ga(Int(AP)) = Y (-1)*'Gi(P)

i=0

where G4(P) = V(P)/det A, Gy4_1(P) = %SA(P) and Go(P) = 1, while the remaining G;
have a less obvious meaning (see [DR]).

Ehrhart’s formula can easily be turned into an estimate of G, for all A > 0 for a slightly
more general class than lattice polytopes. For the sake of a better name we say that a poly-
tope P is a lattice-facet polytope if for every facet some normal of the facet is in A*, or in
other words the hyperplanes spanned by the facets of P are parallel to lattice-hyperplanes
of A.

Theorem A Let A be a lattice in EY and P be a lattice-facet polytope. Then

V ()\P)

1 d—1 d—2
- <z + .
Jet A Ga(AP)| < 2SA(P))\ O\ ™)

Ehrhart’s formulae (2), (3) show that the estimate in Theorem A including the error
term is optimal.
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In fact the main result of our paper is a generalization of this result to general convex
bodies which additionally allows some deformation of the shape of M.

Theorem B Let A be a lattice in E¢ and M € X9. If a family {Q,} of convex bodies tends to
M as A — oo then

V(AQ»)
det A

—GA(AQY)| < %SA(M))\d‘l +o(\4Y).

At this point it seems worth while to mention that there is an application of Theorem B
(and Theorem D below) to calculate the densities of large finite lattice packings (see [ABB],
[BB]). If d = 2 then Theorem B is a trivial consequence of Pick’s formula (this celebrated
formula can be found in e.g. [GL]).

We note that for M = Q,, Theorem B becomes

Corollary C For M € X¢,

V (AM)
detA

—Gy(WM)| < %SA(M)/\d‘l +o(\4Y).

We remark that the same estimate holds if we consider arbitrary translates of AM.
If M is strictly convex then S, (M) = 0, and hence

det A - GA(AM) = V (AM) + 0(S(AM)).

In view of the formula of Landau and Hlawka and Theorem A, the error term in Theo-
rem B and particularly in Corollary C appears to be very weak, but in fact it is best possible
as a series of examples in Section 6 will show.

For the next theorem we consider a more general family P, € K9, A € N, such that for
the inradius r we have r(P,) — oo. We prove a bound for the lattice point enumerator with
the help of a suitable mixed volume.

Again we need some more notation. Let M, K € K¢ and let Hy (-) denote the support
function of K. ThenV (AM + K) is a polynomial in A; namely,

d

VOM+K) =>" (?)V(M, K:i)ad—!

i=0
(see [S]). We are interested in the term V (M, K; 1). It is well known that

@ VLKD) = 5+ [ Hemoareio,

where n, is an exterior unit normal at x € OM. We note that n, is unique almost J(4-1-
everywhere on OM. For a polytope M, (4) becomes simply

© VML KD = 5 3 He(w) - 90 (Fuw)),

uesd—1
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where =1 (Fy(u)) # 0only if u is the exterior normal to a facet of M. The normalization
reflects the definition of mixed volumes (see [S]).
After these preparations, we state our next

Theorem D Let A be a lattice in E¢ and assume that for some K € K9, Hy (v) > 1/2 for any
primitivev € A*. If {P,} is a family of convex bodies with rq(P,) — oo as A — oo then

|V (P)\) — detA - GA(P)\)l < dV(P)\7 K; 1) + O(S(P/\))

The condition on Hy (v) makes sure that K is sufficiently large with respect to A: For
v € A* primitive and u € A with (u,v) = 1 we have that Hg (v) > 1 is equivalent to saying
that K intersects u + lin(v- N A), which is the closest non-linear affine lattice hyperplane
to the origin normal to v.

While our work deals with large bodies we should remark that for the special case of
Z9 there are estimates for G(M) — V (M) for all bodies. A survey on these results can be
found in [BW]. Especially a somewhat related lower bound was given in [BHW]; namely,
Gz(M) > V(M) — 15(M).

We proceed as follows: Sections 2, 3 and 4 provide the auxiliary statements which we
need for the proofs of Theorem B and Theorem D. In Section 5 we start with a proof of
Theorem A. While the statement of this theorem is folklore, we are not aware of a written
proof. Furthermore the ideas of the proof are the same as in the rather more complicated
Theorem B. Thus we use the proof of Theorem A as an outline of the proof of Theorem B
and it might be useful to start to read the paper at that point. In Section 6, we discuss
the exactness of the estimates in Theorem B. Finally Section 7 is devoted to the proof of
Theorem D.

2 Approximation of Convex Bodies

In Sections 2 and 3, we discuss some elementary metrical properties of convex surfaces.
The standard reference book for this and the next section is [S]. For the basic properties of
Hausdorff measure, consult any monograph on geometric measure theory, for example the
classical book [F].

The Euclidean distance function is denoted by §(-, -) and AH (., -) stands for the Haus-
dorff distance of compact sets. We denote by Z(u, v) the angle of the vectors u and v. For
o C E%and w > 0, N(o,w) is the set of points with distance less than w from o.

Let M be some convex body containing o in its interior. Then for x = o, the radial
projection mwap (X) of x into OM is well defined.

For the rest of the section we consider an M e X such that for some positive r and R,
rBY C intM and M C intRBY.

Lemmas 2.1, 2.2 and 2.3 are easy consequences of the fact that for a convergent se-
quence of convex bodies, supporting hyperplanes can converge only to some supporting
hyperplane of the limit.

Lemma2.1l Let II C OM have the property that for x,y & clII and all n, and ny,

Z(ny, ny) < o holds. Then there exists a positive w with the following property: Let Q x4
with AH(Q, M) < w and u,v € myo(II). Then Z(ny,n,) < 2a holds.
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For any set ¢ C S9! and convex body P we denote by v (o) the subset of OP whose
points have an outer normal contained in o.

Lemma2.2 Letu e S%! For positive @ there exist positive o and w such that if
A" (M,Q) < w then tg(S~1 N N(u,)) is a subset of the radial projection of M N

N (¢m(u), 6) onto HQ.

For F € X9 we denote by r(F) the relative inradius of F, i.e., the radius of the largest
ball with the same dimension as F that is contained in F. Then for 0 < 6 < r(F) we write
F_y for the subset of F whose points are at least distance 6 from each point of the relative
boundary OF of F (“inner parallel body”).

Lemma2.3 LetF = Fy(u)suchthatdimF = d —1forsomeu € S%tand 0 < 6 < r(F).
Then for any a > 0 there exists an w > 0 with the following property: If Q € K such that
AR(Q,M) < wand x € mao(F—g) then Z(ny, u) < « for any normal vector ny at x to Q.

In order to compute G,«(M) — V(M) we introduce some more notation. For z =
(za,...,2q4) € Z¢ we denote by W (z) the unit cube W (z) = {(X1, . . ., Xq) | —% <zi—X% <
%,i =1,...,d}. Foraclosed convexsetQletz, = (z1,...,Zi—1,Z + @, Zi+1, ..., Z4) € 0Q
withz € Z,i = 1,...,dand —} < a < } such that (n,,ej) > 0 (g is the i-th co-
ordinate unit vector). Then the i-tower Z of Q at z, is the union of all cubes W (z) with
Z=1(z,---,Zi-1,%,Z+1,---,2q) such that there is an x € W (z) N 9Q with (ny, &) > 0.
For (n,,,&) < 0the i-tower Z is defined correspondingly. If for all lattice points z € Z the
points x € W (z) N 9Q are in a common facet of Q then we obviously have

—1-—a fora<o.

Y VW@\Q) - > V(W(@)NQ) =

{%—a fora >0
2€Z,2€Q 2€Z2,2¢Q

Thus for an i-tower Z at z,, we define the deviation dev Z of Z by

dvZ=| > VW@\Q) - > V(W(z)mQ)—%+a
2€Z,2€Q 2€Z2,2¢Q
for o > 0 and
dvzZ=| > VW@\Q) - > v(W(z)mQ)+%+a

72€2,2€Q z€Z2,2¢Q
fora < 0.

Lemma24 Letz, = (21,2,...,2zi ta,...,2q) € 0Qwithz; € Zfori =1,...,dand
—1 <a < i andn e s with (g,n) > B for 3 > 0. Let H denote the plane through z,,
with normal n. Then for every ¢ > 0 there exists ay > 0 depending only on 3 and e with the
following property: Let Z be the i-tower at z,,. If Z(n,ny) < -~ holds for every x € Z N 0Q
then
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(a) devZ < e.
() |HIHNZ) - HIOQNZ)| < e.

The next lemma gives bounds for the angles between sections of certain planes:

Lemma?2.5 Let H be a hyperplane with normal n and E be a two-dimensional plane
spanned by the vectors uy, up such that Z(n,u;) < v < «/2. Then for every & > 0 ex-
ists an n > 0 depending only on ~, £ such that for any hyperplane H; with normal n; and
Z(ny,n) < nwehave Z((ENH),(ENHy)) <&

In the last section we have to deal with convex bodies, whose extension in some direc-
tions is much larger than their extension in other directions. This situation is conveniently
described by means of different inradii and best approximating planes: For K € K¢ we
denote the k-th inradius, that is the radius of the largest k-dimensional ball contained in
K by r. For every k-plane L exists an w(L) for which K c L + w(L)BY. Now the best
approximating k-plane L¥(K) is the plane L for which w(L) becomes minimal. There is a
well-known connection between radii and best approximating planes (see [P]):

(6) K ¢ L*(K) + (k + 2)re1(K)BC.

As we frequently need to consider orthogonal projections of sets onto planes we write
mL(M) for the orthogonal projection of the set M onto the plane L. Further we write L+ for
the complementary orthogonal linear plane of L.

For some estimates we use a different notion of k-inradius, which was discussed in [BH]:
The k-th inradius r7 (K) with respect to projection is the radius of the largest k-ball, which
is contained in a projection of K onto a k-dimensional plane. Of course the two notions of
k-inradius are not independent:

Lemma2.6 LetK € X% Then

(K) < ri(K) < kre(K).
Proof To prove the right inequality let L be a k-plane, for which 7 (K) contains a k-ball B
with radius r7 (K). Let S be a regular k-dimensional simplex with vertices on the relative
boundary of B. Sis the projection of a simplex S’ contained in K. As the ratio of the circum-
radius and the inradius of a regular k-simplex is k (see [BF]), S’ contains a k-dimensional
inball with radius r7 (K)/k. The other inequality is trivial. ]

The previous lemma and a result in [BH] immediately give a convenient tool to estimate
volume and surface area of convex bodies:

Lemma2.7 LetK € X9 Then there exist positive constants ¢y, ¢y, c3, ¢4 depending only on
d such that

cari(K) - -+ - rg(K) <V (K) < cori(K) - -+ - ra(K),
Car(K) - -+ - rg—1(K) < S(K) < cary(K) - - -+ - rg—1(K).
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Finally we need a sufficiently interior point of a convex set K. This is provided by the
center ¢(K) of a (relative) inball.
Now we can state the facts needed in the proof of Theorem D:

Lemma 2.8 LetK, be afamily of convex bodies, such that rg(K,) and rc(K,) /ri+1(K) tend
to infinity, but r.1(K,)/ra(K,) is bounded. Let w, be a sequence of positive numbers with
wy — 0. Thenfor Ly = Lk(K/\) and M, = (1 — UJ,\)ﬂ'LA(K)\) + w/\C(’]TLA(K/\)),We have

(a) foreverye > Othereisa \gsuchthatforallA > Mpand j=1,...,k
ri(m, (Ky) > (1= 9)ri(Ky),

(b) d 1( € )
GEL((My L) N K
Jm, S(Ky) =1

Proof Let By be a j-ball of radius r;(K,) contained in Ky, H, be the affine plane spanned
by By and uy, ..., u} be an orthonormal basis of the linear plane parallel to H*. We may
write u} = v} +w fori = 1,..., j where v{* is in the linear plane parallel to L, and w;*
isin Lf. Now Ky C Ly + (k + 2)r+1(K,)B? and n+1(Ky)/rj(Ky) — 0 immediately show
w* — 0 foralli. (a) is a straightforward consequence.

We may assume that ¢ (., (K,)) is the origin. Then we have (1 —w))Ky C (M) +L3)N
K,. From this we conclude

lim S((M)\ + Lj‘) N K)\)

oo S(Ky) =1

So it is sufficient to prove

lim Ho (Ureom, X+ L) NKy) o
A—00 S(K/\)

Among the sections (x + L;-) N K, let A be the one with largest (d — k)-measure. We have

HIK(A) < clr,‘jjlk for some constant ¢; by (6). The result follows by (a) from the estimates
given in Lemma 2.7. ]

Finally we need that the volume of certain neighbourhoods of a piece of the boundary
of a convex set cannot be too large.

Lemma?2.9 Let Ky, Ly, w) and M, be as in Lemma 2.8, and denote by o, the closure of
K\ N ((LA\M,) +Li-). Then forany t > 0,

. V(N(O'Avt)) -
TS
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Proof Approximating by polytopes, we may assume that K, is actually a polytope. Set
M)\ = (1 — 2&))\)7T|_)\ (K/\) + 2w)C (7'l'|_A (K)\))

and
5y =cl (aKA N ((La\My) + Lf)).

Denote by N the set of points in N(o,,t) such that a closest point of 9K, is in the
relative interior of some k-face. Observe that for any point in Ngy_ the closest point is in
o for A sufficiently large, and hence

V (Ng_1) < 2t - HI71(5)).
We deduce by Lemma 2.8 (b) that

. V(Ng—1)
m sk

Now we assume k < d — 1. Then no point of N is contained in the interior of K, and
hence the definition of the mixed volumes yields

V(N < (i)vm, B d k) -tk
Since by the monotonicity of the mixed volumes, the inequalities

V(Ky,B%d — k) -V(Ky,B% 1) = -S(Ky)

<= s
= rg(Ky)dkt d-r(Ky)d-k-1

hold, we conclude the lemma. [ |

3 Lipschitz Maps

We still keep M, r and R as in the previous section.
We need some very basic properties of a Lipschitz map. If f has Lipschitz constant ~,
ie, [f) — f(y)|| <v-[lx—y| forallx,y, then

Q) HIT(f(0)) <41 HOH(o).

Lemma3.l LetIIbea (d— 1)-dimensional convex, compact set andt > 0 be smaller than
the relative inradius of IL. If f : IT — EY has Lipschitz constant -y then

V (BY)

g 1(ge-1) +7) (1) - t.

Vv (N (f(H),t)) < 22@-1)
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Proof We may assume that the origin is the center of the largest (d — 1)-ball contained
in II and B9~ is the unit ball in linII. Let X C II have maximal cardinality with the
condition that any two elements of X are at least distance t apart. Thus for x,y € X we
have int((x+ 5BY=1) N (y + 5B971)) = &, (X +tB?~1) C 2ITand X +tB9~* covers II. Thus
X has at most 91 (2IT) /H9(3tBY~1) elements.

We deduce that

N(f(I),t) C f(X)+(L+)tBY,
which in turn yields the lemma. [ ]

Now let Q € K9 suchthat rBY ¢ Q c RBY. Then there exists some positive ¢; depending
onrand R such that if y,z € 9Q then

1
o 0y, z) < Z(y,2) < c1-6(y,2).

Similarly, there exists some positive ¢, depending on r and R such that if H is some hyper-
plane supporting M at x € OM and y,z € N(X, %r) N H then

1
o <0(y,2) < £(y,2) < c2-4(Y,2).
We conclude

Lemma3.2 There exists a ¢ depending on r, R and d and an w > 0 depending on M with
the following property:

Let H be a hyperplane supporting atx € M and Q be a convex body with AH(Q, M) < w.
Thenfory,z € N(x, 3r) N H,

ol

-0(maq(y), maq(2)) < 8(y,2) < ¢ d(maq(y), maq(2))-

We say that T is a tangent polytope of M if every facet F of T touches M and F C
N(FN M, %r). We deduce by Lemma 3.2 that for A"(Q, M) < w (where w comes from
Lemma 3.2) myq is Lipschitz on 9T and myr is Lipschitz on 0Q.

For positive k and a (d — 1)-polytope F we construct k-patches on F in the following
way: We choose a tiling of aff F by (d — 1)-cubes with edge length 1/k, and call a (d —
1)-dimensional intersection of some tile and F a k-patch. We obtain a dissection of the
boundary of a polytope T by taking all the k-patches of its facets. In general for P € K¢ with
0 € intP and a polytope T with 0 € intT the k-patches on 0P are the radial projections of
the k-patches on OT.

Lemma3.3 Letn > 0. There exists some compact o, C OM with fHd—l(gn) =0andac

depending only on r, R such that if 6(x, y) < 6 and Z(ny, ny) > » hold for outer normals ny
atx e OM andny aty € OM thenx,y € N(g,, ¢ - 6).
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Proof Choose k so that any k patch on 2RSY~1 has diameter at most R sin %TI and denote
by oo the union of the (relative) boundaries of these patches on 2RS?—1. Writing pwm (x) for
the closest point of x to M, we have that ¢ = pm(0o) has zero H9—1 measure since py is
Lipschitz (see [S]) and H91(g) = 0.

Assume that suitable x and y are given. There exists a continuous curve £ on OM
connecting x and y with length less then ¢ - & where ¢ depends on r, R. We claim that
& = p,\‘,ll(g) N 2RSY1 is connected: Else there exist disjoint compact sets &;, & with
&o = &1 U &. Now there exists an x € pm (&) N pm(€2), as pm(&1) and pwy (&) are compact
and ¢ is connected. Thus py,'(x) N 2RS4~ is disconnected. But this is a contradiction as
clearly p,\‘,ll(z) N 2RS1 is connected for all z € &.

Let Xo (Yo) be the inverse image of x (y) generated by ny (ny), and let y; be the intersec-
tion of 2RS?~! and the ray starting from x parallel to ny. Thus §(Xo, y5) > 2Rsin %n, and
for small 6, we have 6(Xo, Yo) > Rsin %77- Thus Xy, Yo are contained in different patches of
2R S9~1. We conclude, that & N gy # @ as otherwise there would be a dissection of & in
two non-empty open sets. Consequently & N g is non-empty too. ]

In view of the previous lemma it is of interest to look at the neighbourhood of compact
sets with zero measure. Here we have

Lemma3.4 LetT be apolytope, o C OT compact and 39~1(p) = 0. Forevery k € N let K
denote the set of k-patches IT on 9T such that for every IT € K we have IIN' N (o, 1/k) # .
Then for every e > 0 there exists ak € N such that ) HI-I() < e.

Proof By considering the facets separately, it is sufficient to prove for compact o c E4~1
with H%~(p) = 0 that there isa 7 > 0 such that H*~(N(p, 7)) < e.

As (d —1)-dimensional Hausdorff-measure and Lesbesgue-measure coincide we have by
definition of the measure an open set G containing o with H%~1(G) < . For each x € p,
let 7(x) > 0 be the maximal radius such that N (x, T(X)) C G. Clearly 7(x) is continuous,
and hence 7 can be chosen as the positive minimum of 7(x). ]

4 Some Properties of Bounded Lattice Vectors

We establish some simple properties for lattice vectors. The first lemma shows that a family
of lattice vectors with bounded length is not too sparse, but it is also not too “dense” ac-
cording to the second lemma. We close with an observation concerning the approximation
of arbitrary planes by lattice planes in a way that the approximating plane contains short
lattice vectors.

Lemma4.1l Forevery x > 0 there exists an ny with the following property: Let0 < < 1.
Then thereisan (n,m) € Z? with n < ng such that Z((1,¢), (n,m)) < xand [n-¢ —m| <
1/n.

Proof We observe that for given x there exists a & > 0 such that 4((1, ), (1, n)) < x for
all n with [¢p — n| < §. Letng = [1/4]. By a fundamental theorem from Diophantine
Approximation there exists an n < ngand m € Zsuch that [¢) — 7| < n—lno (see [C], [GLD).

Apparently (n, m) has the required properties. ]
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Letes, ..., eq denote the canonical basis of Z4, and set Pij = lin{ej, ej}.

Lemma4.2 For (large) ¢, letuy, ..., uy € S be the normals of the sub (d — 1)-lattices of
Z% such that (ui,e1) > 1/(2\/6) andeach Pqj,i = 2,...,d, contains a non-zero lattice vector
of length at most  of the sublattice. Then for any (small) positive « there exists a positive 3
with the following property:

Forany v € S%%, with Z(v,u;) > afor j = 1,...,m, and (v,e;) > 1/(2V/d), there
exists an i > 2 such that if v; € S%=! N Py; is perpendicular to v and Z(w,v;) < 3 for a
primitive w € Z9 N Py; then the length of w is greater than ¢.

Proof We denote the set of unit vectors v satisfying (v,e;) > 1/(2v/d) by Q. For any
i =2,...,dthemap v — v/ on  is continuous where the unit vector v/ € Si-1npy
is parallel to the orthogonal projection of v onto Py;. We may choose v; € S4=1 N Py
orthogonal to v{ (and hence also to v) so that the map v — v; is still continuous. We set

f(v) = _rgaxdmin{z(vi,w) |we Pynziand |w|| < ¢}.
i=2,...,

Clearly we have f(v) # 0forv & {us,...,uUn}. Now for o > 0, let
Qu={ve | Zv,u)) >aVj=1...,m}

Since Q,, is compact and f (v) is continuous, 3 can be chosen as the minimum of f on Q,
(assuming that 2, # ©). ]

A Minkowski reduced basiswy, . . ., wqy of a lattice A is defined as follows: wy is a shortest
vector, and wy is a shortest vector of A not contained in lin{ws, ..., wx_1}. Then there ex-
ists a positive constant ¢ depending only on d (see [GL, p. 150]) such that c||wg||B? contains
no d independent lattice points.

Lemma4.3  For every linear k-plane L  R% and every e > 0 there exist a lattice k-plane L
of % such that for a Minkowski reduced basis wi, . . . , Wy of L N Z9,

(a) the distance of any point of

k

T:{ZaiWi|0§ai<1}

i=1

from Cisat most ¢, and
(b) for any unit normal u to L there exists an unit normal v to L such that Z(u,v) < e.

Proof We choose an orthonormal basis (uys, ..., Uig), - - -, (Uki, - - . , Ukg) Of L. Now we
use simultaneous Diophantine approximation for the kd numbers u;;. By a well known
theorem (see [GL, p. 44] or [C]) there are infinitely many g € N such that there exist
pij€Z,1<i<k 1< j<dwith

pi| .t
Uij—f < T
gt
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From this it follows that there are constants ¢; and ¢, depending only on d such that for
infinitely many q € N there are vy, . .., vk € Z9 such that ||v;|| < ¢; - gand

C2
Z(Vi, Ui) < qlT%

LetL b? the plane spanned by vy, . . . , vk which satisfies (b) for large g, even replacing  with

Cg/q1+kd , where ¢ is a constant. If wy, . .., wy is a Minkowski reduced bases of L N Z9 then
diam T < c4q, where ¢4 is a constant, which in turn yields (a) for large q. ]

5 The Proof of Theorem B

We observe that all our statements are invariant under simultaneous linear transformations
of the lattice and the convex bodies. Thus we may assume that A = Z9. In this section z
11

always is a lattice pointand W (z) = z + [—3, E)d.

For Q € K% we have the trivial identity

® IG(Q)—V(Q)=’ Y VW@ - Y vweno)l

2€Q, 2¢Q,
W (2)NIQ#2 W (2)NIQ#D

The basic idea of Theorem B is that we can rather easily estimate G — V for the union of

certain towers. To this end we introduce the notion of an i-box on the boundary of Q for
i=1,...,d Wesaythatforz = (zy,...,29) thatU isani-box at z, if

1 1 .
U :{x:(xl,...,xd)|xe8Q,—§gzp—xp<z,p#|,<nx,ei)>0}.

Analogously there are i-boxes for —e;. We say that a box U is simple, if ZNU = ZNoQ for
the i-tower Z with ZNU # @. For the union of certain simple boxes we can easily estimate
G-V.

Lemma5.1 Let{Uo,...,Uq_1} beasetof simple 1-boxesatzj, i =0,...,q — 1such that
Zi + (é+ai)e168Q

with —1/q < aj < 1/qfori =0,...,q— 1. Finally let devZ; < e for every one tower Z; at
Zi + (é + aj)e;. Then

q—1 q-1
Z( Y vVw@\Q) - . V(W(z)mQ))i%+ ail < Qe
i=0 z€Z;,2€Q 2€Z;,2¢Q i=0

Here we have “+” if g < 0 and “—" otherwise.
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Proof By the definition of the deviation in Section 2 and writing {a} for the fractional part

of a we have
1 i
YVW@\Q) -> VW@)NQ) - g tgtailse
1€7Z; 2€Z;
2€Q 14°49)
foré +q; € [0,1/2] and
1 i
YVW@\Q) -> VW@)NQ)+ stgroilse
z€Z; z€Z;
2€Q 7¢#Q
for é + i € (1/2,1). The lemma is an immediate consequence. ]

We shall see that Theorem B is a consequence of the fact, that for large A most of OAQ
can be covered appropriate unions of sufficiently flat simple boxes. As a first application we
give a proof of Theorem A:

Proof of Theorem A Let F be a facet of the lattice-facet polytope Q with primitive exterior
normalu € Z9. SetL = z%Nlin(F—F) and q = det L. We may assume thatu = (us, .. ., Ug)

withu; > 0.

Let P be a fundamental cell of L. There are exactly q points zy, ...,zq-1 € Z% such that
Wi =1z + éel € P. We have aff F = lin(F — F) +te; forsomet € R. There is a renumbering
Wo, . . ., Wgq—1 0f Wy, ..., Wq_1 such that

Wi + A\tey =7 + (%+a)e1
for suitable 7, € Z and
9 -1/(29) < o < 1/(29).
Now let v > 0 be fixed and
L) ={leLl|wi+Me+lcAF_,,i=0,...,q—-1}.
Thenevery | € Lo(X) definesaset of simple 1-boxesUq, ..., Uq_y jatZg+l, ..., Z5_1 +I

such that

M, C U Uy U---UUq 1))
|€L0
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Thus Lemma 5.1 yields withe = 0

> qi( VW@ - > V(W(z)ﬁAQ))’

IELo(N) =0 2EAQ, 287,
W(@)NUi#2 W(@)NUi#2
= > (5 dla
2
leLo(N)
1 HI-INF
=|z- +0(v - \472).
(5~ dlal) T +00- 2

Since at most O(v - A\%~2) cubes W (z) and at most O(v - A\%~2) of the surface area were
not taken into account, the theorem follows. ]

The proof of Theorem B is quite analoguous to that of Theorem A. We approximate
the boundary of M by k-patches (cf. the definition in Section 3). We distinguish between
flat patches which can be considered as a substitute for facets and bended patches. Among
the flat patches we distinguish further between facets parallel to lattice hyperplanes, “good”
patches, for which the normals are not to close to the normals of lattice hyperplanes with
small determinant and some remaining “bad” patches. For the lattice facets and the good
patches we can apply Lemma 5.1 and for the bended and bad patches we show that there
are not too many of them. We prove Theorem B in the apparently equivalent form:

Theorem 5.2 Let M € X9. For any ¢ > 0 there exist positive Ao and w such that for all
Q € X% with AH(M,Q) < wandall A > X\g

IG(AQ) —V(AQ)| < 35 (M) - A~ +&- XL,

As the proof of Theorem 5.2 is somewhat longish, we shall split it into several lemmas.
First we observe that we may assume that S(M) = 1, and as the surface area is continuous,
also that S(Q) = 1. Further there are positive r, R such that for somet € E9 rBd+t C intM
and M C intRBY +t. Now let some & > 0 be given.

We start with the construction of a suitable tangent polytope and associated patches
(for the definitions see Section 3). First we identify the lattice hyperplanes such that the
facets in the hyperplanes could make significant contributionsto G — V. Let H be a lattice
hyperplane, such that &; ¢ H. Now let us assume that for j = 1,...,d, j # i, thereisa
lattice vector of length at most ¢ in H N P (the definition of P;; is in Section 4). Then the
lattice Z¢ N H has determinant less than ¢9—1. Thus for ¢ = 5/« there exists an mg € N
such that uy, ..., up, € S~ are the normals of the sub (d — 1)-lattices such that for some
i we have (ej,ux) # 0 and each Pjj, j # i, contains a non-zero lattice vector of length
at most ¢ of the sublattice. We enumerate the ug such that for k = 1,...,m; we have
HI=L(Fm(u)) > 0and fork =my +1,..., mwe have %~ (Fy(u)) = 0.

Now let T be a fixed tangent polytope of M that has uy, . . . , Uy, in its set of normal vec-
tors. We note Fy(u) € 0T fork = 1,...,mg. By Lemma 3.2, there exist ¢, wg depending
only on M such that for AH(Q, M) < wp the maps maq: 0T — 9Q and mor: 0Q — IT
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have Lipschitz constant c. By possibly taking ¢ larger we may further assume by (7) that for
measurable o C 9T the formula

(10) 39 (moq(0)) < ¢ - HI(0)

holds. From now on we assume without further mentioning that AH(Q, M) < wp.

In the next step we construct a k such that the k-patches have the right properties. We
write g; for the boundary of 7yt (FM (ui)) with respect to 0T and o; (k) for the union of k
patches on OT which intersect 9T N N(gj, 1/k). By Lemma 3.1 there exists a ky and a g
such that forall A > \g

m
. ; €yd-1
(11) ;V (N (A 70 (01(ke)), fd)) <A
Further we observe that by Lemma 2.2 there exist positive oz and w; < wyp such that for
allw < wy
(12) ¥ (Nga-1(Ui, @) C maq (oi(ke) U Fm(ui)).

Consequently we assume from now that AH(Q, M) < w; and k is a suitable multiple of
Ki.

In the next step we assure that most patches become sufficiently flat. Let 3; be the angle
given by Lemma 4.2 for the « above, ny the smallest integer which satisfies ng > 5/¢ and
1/n§ < tan By, and 3, = Z£((1,1), (1,1 —1/nf)). Now let ; = n/2 for the angle 7 given

by Lemma 2.5 for v = arccos \/lz_d and £ = min{3y, 5>}, n, be half of the angle v provided

by Lemma 2.4 for 8 = 1/(2+/d), n = min{n1, 7, } and for £/10 in place of .

For this n we construct the set o, from Lemma 3.3. We write o(k) for the union of k
patches which intersect N (WaT(gn), 1/k). By Lemma 3.4 and Lemma 3.1 we can find a
multiple k, of k; such that

(13) Vv (N <)\ : ﬂ'aQ(g(kz)),\/a>> < gA‘H.

Now we can further subdivide the patches, such that most of them become very flat on
M: By Lemma 3.3 there is a multiple k3 of k, such that all ks-patches IT on M satisfying
I1 ¢ mom (g(kg)) have the property that for x, y € 1I the normals ny, ny satisfy Z(ny, ny) <
7. We subsume our discussion in the following

Lemma5.3 Thereisak € N such that there are k-patches on M which can be partitioned
into three classes:

(a) Patches, which are contained in the facets Fy(ui), i = 1,...,m; of M.

(b) m; patches IIg, such that for the numbers «, n given above all x, y € I, satisfy
Z(ny,ny) < mand Z(ny, u;) > afori =1,...,mq.

(c) Patches, which are not enumerated in (a) and (b). Their union g satisfies

V(N (@), vd) ) < 520
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We do the summation in (8) separately for the patches listed in (a), (b) and (c) above.

Let us start with the facets Fy(ur), r = 1,...,m;. For a fixed facet F = Fy(u;) and
u = uy, define L, q, zo, ...,Zg—1 and v as in the the proof of Theorem A. By Lemma 2.3
we may further assume that if Z is a 1-tower at w € mpxq ((/\F)_V/z) thendevZ < 1—165.
Then we can proceed exactly as in the proof of Theorem A. We only have to observe, that
the parameters t, « now depend on | and i, we have to replace (9) by

—1/(2q) — €/16 < o < 1/(29) + ¢/16,

and have to apply Lemma 5.1 with ¢/16 instead of 0. Altogether we obtain (a) below and
Lemma 3.1 yields (b):

Lemma5.4 Let F be a facet of M with normal u,, r € {1,...,m;}. Then there exist
v,w, Ao > 0such that for AH(Q,M) < wand X > )\

(@)
‘ > V(W (@)\\Q) — > V(W () N AQ)
2ENQ, 2¢NQ,
W (2)Nmarq ((A\F) ) #@ W (2)Nmarq (AF) -, ) #2
d-1
< 1 K (AF) . E:del(/\F)’

2 det(ut Nnzd) 4
(b) Vv (N()\WOQ(F \F_,), ﬁ)) < 8imlx‘—1.

Next, consider the patches in Lemma 5.3 (b). Forz = (z1,...,24) € Z% we call an
U C AdQan (i, j)-strip of length q at z, if

1
U :{x:(xl,...,xd)‘xeaQ,|zp—xpgz,

. 1 1
p#l,1,<nx,ei>>0,—§<xj—zj<q—§}.

Analogously there are (i, j)-strips for —e;. We say that U is simple if it is the union of g
simple i-boxes.

Lemmab5.5 LetII be a patch from Lemma 5.3 (b).

(a) Thereexist v > 0and Ao > Osuch that forall A > \g
_€ yd-1
V(N ()\W@Q(H\H_y),\/a)) < 8m2)\ .

(b) Letx € ITand (g, ny) > 1/(2v/d) forsomei € {1,...,d} and q € N. Then there are
positive w,, Ag with the following property: Forall j € {1,...,d}, j # i,all X > Ao,
and all Q € X9 with A"(M,Q) < w; there are simple (i, j)-strips U, of length q,
I =1,...,m(}\), such that U = (JU, covers Ampo(II_,) and each U, is contained in
maQ(I_,)2).
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Proof The first statement is an immediate consequence of Lemma 3.1. Next observe that
W (2) NAIQ = W (2) N Amao(II_, 2) holds for every z € Z¢ withW (z) N Amaq(I1-,) # 2.
[ |

For each IT we choose fixed i, j, q in Lemma 5.5 (b). For this choice we write X(II) =
{z €z | W@ NU # @}. We observe by our previous lemma that the sets $(IT) are
mutually disjoint.

In the sequel we must take into account the difference between Q and M and that we
have only approximate normals of patches. Thus for given Pij, v € Pijj, x € Q,and § > 0
we say that v §-approximates Q at x if for 0 < p < 1 there exists a 7(u) with |7(u)| < 0
and x + pv + 7(u)e; € 0Q.

Let IT be a fixed patch from Lemma 5.3 (b) and v the number from Lemma 5.5. Let
X € mag(II_,) and ny a normal at x. We may assume that |(e1, ny)| = max{|{ei, nx)|} >
1/+/d and Py, is the plane given by Lemma 4.2 for n,. Letu = (ug, 1,0, ..., 0) be asupport
vector at x to Q N Py,. Let ny be the number given in Lemma 4.1 for x = n, where n is
the angle used in the construction of the patches. We may assume that the conditions of
Lemma 5.5 (b) are satisfied for ¢ = ng. Thus we have a lattice vector (m, n) with n < ng
such that /(u, (m,n)) < n. By the choice of  we have on the other hand by Lemma 4.2
that [|(m, n)| > ¢.

We now ascertain that nearly all strips on msq(1I) behave nicely: We may assume that
AR (Q, M) is sufficiently small and X sufficiently large, that by Lemma 2.1 Z(ny, ny) < 2
forally € maq(Il_,2) and by Lemma 5.5 Amaq(I1_,) is covered by simple (1, 2)-strips U
of length n such that each U is contained in maq(F_, 2).

Let now U; be such a simple (1,2)-strip at z = (23 + «,2,,...,2q) Of length n. Let
Z=(n+a,22+(n—1)/2,235,...,23) such that Z € Uj. Now for —n/2 <y < n/2 let
z(w) be defined by the condition, that z(u) = (21 +a(u), 2o + p, 23, . .. ,zd) € Uj. Then
we have by our construction that |z(x) —Z — pu| < p/nand |p(u— (T, 1))| < p/n. Thus
(m,n) 1/n-approximates Q at (z; + «,z, — 1/2,23,...,2q).

Therefore Lemma 5.1 and Lemma 2.4 yield

ni( SN vw@\ Q) - > V(W(z)ﬂ)\Q))‘g

i=0 z€7Zi,7eXQ 1€7Z; 21¢2Q

+n€
5

N =

Since n > ¢ = 5/¢, we deduce by adding up:

Lemmab5.6 Let IT be a patch given by Lemma 5.3 (b). Then there exist v, w, Ay > 0 such
that for AH(Q,M) < wand A > )\

Yo VW@WQ) - Y. v(w@n )\Q)‘ < % - HI-L(AID).
zeXQ,zeX(IN) 2¢AQ,zex(Il)

Finally, we need some book keeping in order to prove Theorem B. We deduce by
Lemma 5.4 (a) and Lemma 5.6 that the facets from Lemma 5.3 (a) and the patches from
Lemma 5.3 (b) cause all together an error of at most %s)&“l (remember that S(M) = 1).
Now the error caused by the cubes which intersect the rest of AQ is at most %5)\‘“1 by
Lemma 5.3 (c), Lemma5.4 (b) and Lemma 5.5 (a). Summing up these estimates completes
the proof of Theorem B.
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6 The Optimality of the Estimates of Theorem B and Corollary C

We present series of examples to show that the estimates of Corollary C and hence of The-
orem B are optimal in general. Again it is sufficient to consider the case A = Z¢.
First we look at the coefficient of \4~1. Here we have optimality for all M.

Example 6.1 The term S, (M)A~ is optimal in Corollary C for any M € X¢.

As the statement is trivial if S;«(M) = 0, we assume S;«(M) > 0. Lete > 0, and we
prove the existence of arbitrary large A so that

1

(14) G(AM) >V (M)XY + Eszd(lvl)xi—1 S
Note that the optimality of the lower bound can be similarly proved, choosing A = q — qﬁ
in (c) below.

As in the proof of Theorem B, set W(z) = z + [—5, z) and assume S(M) = 1 and
0 € int M. The proof of Theorem B shows that we may choose finitely many lattice facets
with outer unit normals uy, . . ., Uy, such that

HO (P (ui FHO (Fum (ui))

@ 3 Z det(u- N Zd) _SZ M3
(b) forlarge Aand Q) = {z |[W ()N A(@M\ UFm(w)) # 2},

> VW@\M) = > v( W(z)mM)‘< — 291

zeQNIM zeQ\\M

Now observe that TleM (uj) is contained in some lattice hyperplane for =
Hw (u;) det(ui- N Z9). Applying simultaneous Diophantine approximation to 7, . . ., 7
(compare the proof of Lemma 4.3) results in an arbitrarily large integer g and correspond-
ing pi, ..., Pm € Z satisfying |pi — qri| < &, and hence

Pi

det(ui- N z9) Gt ()] <

1
In particular, Lemma 5.1 yields for largegand i = 1,...,mthat

(c) fora=q+ 1,m and Q) = {z | W (2) N AFm(ui) # 2},

d— .
Y vw@ M) - ST vw@ M) > LI EnW)) yas € ya

2 det(ui- N z9) 4m
2€Q\NM Z€Q\M

Since the number of fundamental cells intersecting the relative boundary of any of the
Fam(Ui) is O(M9~2) (see the proof of Theorem A), combining (a), (b) and (c) yields (14) by
the formula (8).

Next we look at the term o(\%~1). Here we have
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Example 6.2 The error term o(A9~1) in Corollary C is optimal.

For sake of simplicity, we provide an example only for d = 2 and Szz(M) = 0.
For our example we need the following well-known statement from the theory of num-
bers:

Lemma6.3 Let {dq} be asequence of positive numbers. Then there exists a 7 with 0 < 7 <
1 such that for infinitely many pairs (p, q) of relatively prime natural numbers we have

O<p-7—0<idq

Proof The lemma is proved in a constructive way, completely analogously to the construc-
tion of “Liouville-type” transcendental numbers (see [Sc]). [ |

Our examples are given explicitly in the next lemma:
Lemma6.4 Lete: Ry — R4 be afunction satisfying limy_, ., €(A) = 0. Then there exists
an o-symmetric parallelogram M with S,4(M) = 0 such that for any natural number N there
existsa A > N satisfying
(15) [G(AM) =V (AM)| > €(A) - S(AM).
Proof By replacing e(\) by
sup{e(t) [t > A},

we may assume that e(\) is decreasing.
For M € X? we define for A > 0and 0 < | < 1 the function fy (), 1) by

G((A+1)M) = G(AM) =V ((A + )M) +V (AM)

(1) = SO\M)

Now we assume that M is given so that for any large A > 0,
(16) IG(AM) =V (AM)| < e(N) - S(AM).
For such an M (16) and e(\ + 1) < e()) yield that for A > 1,
@an (A 1) < 4-e(N).
We prove the lemma by constructing a parallelogram M which does not satisfy (17) for

certain pairs (A, 1) where X can be arbitrarily large. For every positive integer g we choose a
positive integer m = m(q), so that

4~a(m~q)<q—12,
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and a § > 0 satisfying

1

(18) b0 <

Let 7 be the number provided by Lemma 6.3. We observe that 7 is irrational.
Now we setu =e; + 7 -8,V = 7 - &1 — €. Then the parallelogram M is given by
M = conv{=£u =+ v}.

We observe that the length of an edge of M is between 2 and 2v/2. We denote by L the
line through o and u. Now let

O<p-7—0<dq

for relatively prime natural numbers p, . We set m = m(q) and w = ge; + pe,. For any
integer t with [t| < 2m, the distance of tw from L is at most 2mdg. Thus for large g, we may
choose A with

m-g<A<m-gq+1,

so that each edge of AM contains one lattice point, and there exist 2m lattice points along

each side of AM which are not in that square but the distance of these points from AM is at

most 2mdg. Let | be minimal so that all of these 4 x 2m points are contained in (A + [)M.
It is easy to see that

G((A+ M) — G(AM) > ¢1 - m,
V((A+1DM) =V (AM) < ¢z - m? - q - &g,
and finally,
S(AM) <¢3-m-q
for fixed positive ¢;, i = 1,2, 3. Now e(\) < e(mq), and the definition of m(q) and 4, yield
that if g is chosen large enough then
O\ 1) > 2C_Cl3 : % S 4. 5(N).
Therefore the lemma follows by (17). [ |

For a higher dimensional example, one can use a parallelotope such that all but two
coordinates of each facet normal are zero, and the two non-zero coordinates are 1 and
the 7 above. In order to ensure S;«(M) > 0, one just cuts the parallelotope by a lattice
hyperplane.

Finally we remark that even under the additional assumption of differentiability, we can
not hope to improve our estimates very much as Theorem 1 in [MN] shows that in the
planar case o()\) cannot be replaced by o(A\!~%) even if the boundary of M is assumed to be
analytical.
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7 Number of Lattice Points in Large Bodies
We deduce by (5) that

Hic (u)
[ull

d-VM,K; 1) > -

ueA*prim.

FEL (P (u)).

It follows that if Hx (u) > 1/2 for any primitive u € A* then

de%A.sA(M)gd-V(M,K;l).

Since V (-, K; 1) is continuous, Theorem B yields

Lemma7.1l Let A be a lattice in EY and assume that for some K € X9, Hy (u) > 1/2 for
any primitive u € A*. If M € X9 and {P,} is a family of convex bodies such that P /\ tends
to M then

[detA - Go(P)) — V(P))] < dV (P, K; 1) +0(S(Py)).

Theorem D generalizes this statement to the case where the only condition is that the
inradius of the P, tends to infinity. As we frequently need the volume of lower dimensional
convex bodies we write [K | rather than J(4MK(K).

Proof of Theorem D As for Theorem B we observe that the inequality in Theorem D is
invariant with respect to simultaneous nondegenerate linear transformations of A, K and
the Py. Thus we may assume that A = Z9. Further approximating P by polytopes with the
same number of lattice points shows that it is sufficient to consider the case where all Py,
are polytopes. We do this by induction on d where the case d = 1 is trivial. So we assume
that the theorem holds for all dimensions less than d, d > 2. In addition, we assume that
contradicting our statement, there exist an ¢ > 0 and a sequence {P,} of polytopes with
r¢(P,) — oo for A — oo and

(19) IG(Py) =V (P))| > dV (Py,K;1) +£-S(P)).

IfR(P,)/rq(P,) is bounded then by possibly taking a suitable subsequence, we may assume
that P, /rq(P,) tends to some convex body M. Then S(P,) ~ S(rd(PA)M), and hence we
easily obtain a family based on {P,} contradicting Lemma 7.1. So we may assume that for
somel <k <d-1landc > 0, wehave rii1(Py) <c-rg(Py) but re(P,)/re+1(P,) tends to
infinity.

Let L, a best approximating affine k-plane for P, (cf. Section 2). By taking a suitable
subsequence, we may assume that the linear k-planes L, — L, tend to a linear k-plane L.

In the following z always denotes a point of Z¢. The main idea of the inductive step is as
follows: We choose a lattice k-plane L close to L, and a semi-open fundamental cell T for
L N Z9. We define a tiling W (z), z € Z9, where each W (z) is congruent to T + Ty and Ty is
a semi-open fundamental cell for 7 . (Z%). We have in analogy to formula (8)

(20) GP)-VPY= >  VW@\WP)- > VW@nP).

z2€2°nP, 2e7%\P,
W (2)NPy#£2 W (@)NP\£&
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Thus it is sufficient to consider tiles around the boundary of P,. We split up P, into pieces
(z+T+LY)NP,. For large A most of the pieces are almost orthogonal prisms with a basis of
the form (z+L1)NP,. Splitting up the summation with respect to the pieces and projecting
on Lt will give a counterexample in L+ which contradicts the inductive hypothesis.

For every k-plane L we have for D = = 1 (K) that Hx (u) = Hp(u) for all u satisfying
|l (u)|| = 0. Thus by Lemma 4.3 for every 6 > 0 there is a lattice k-plane L with the
following properties.

(a) There exists a Minkowski reduced basis w1, . . . ,w, of L N Z9 such that the distance of
any point of

T:{zk:aiwi‘Ogoq<l}

i=1

from L is at most 4.
(b) There exists an eg > 0 such that for A sufficiently large and |7, (U)|| < €o

(21) [Hk(u) — Ho(u)| <6

holds.
Next let W1, . . ., Wg be a basis of 7 1 (2%), and define
d
w = {3 aw ‘ 0<a <1},
i=1
Foraz € Z9, consider the y € Z9 N L satisfying 7. (z) € y + T, and set
W(@Z)=m.(2)+y+W.
Then {W (2)}, z € Z%is a tiling of EY.

In the next step we split up the summation in (20). First we identify the “bad” part and
show that it is not too large. To do this we define

oy = max{ 1 rk+1(P)\)}

ViaP) | (Py)

and M(w) = m, (1 — w)P,) +we(m, (P,)) (cf. Section 2). The union of all W (z), which
intersect 9P, and are not contained in M(w,) + L+, is denoted by N,. We have for suitable
t > O that

N, ¢ N (6P N ((TFLA(P)\) \ M(wy)) + Li),t>.

We deduce by the definition of wy and Lemma 2.8 (a) that

(22) lim "k (P)

S AN
Ao wy - (L, (Py))
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which in turn yields by Lemma 2.9 that

- V(N,)
(23) JmosEy

Weset 2, = Z9N LN (M(wy) +L%). Now (20) and (23) yield that
G(Py) —V(Py) = > _ G(@+T+L")NP,)

FASION

=D V(@+T+LY) NP +0(S(Py)).

FASION

0.

(24)

For large A, we have
1
(25) WLA(P)\) \ M (Eu}/\> C 7T|_A(N)\)
by (22). Letx € 9P, C Ly + (k+ 1)ris1(P»)B% such that m, (X) = y € M(5w,). The k-ball

in L, centered at y with radius %wxrk(PA) is contained in 7, (P,), and hence if uy is an unit
outer normal at x then

Mer1(P)
26 L kA
(26) I @l < e TS
On the other hand, Lemma 2.9 implies that if ny is some unit outer normal at x € 9P,
then
27) av (P,,K;1) :/ Hk (nx) dx +0(S(P,)).

UzeXZA (z+T+Lo)NAP,,

Now we make use of the estimates, how well L approximates L, for large \. For z € Q,,
let Ay(z) C L+ be the maximal and C,(z) C L+ be the minimal convex, compact set such
that

2+T+A@ C@+T+LY) NPy Cz+T+Cy(2).

Denote by v(-) the volumes or mixed volumes in L, and by s(-) the surface area in L.
We observe that by the construction of T for sufficiently small ¢ and sufficiently large A

T(A@) SV (@+T+L)NP) < [TVE@) < ITI(v(A@) +5).

Writing P, (y) = (y + L) NPy for y € L we have further for By(z) = A\(z) or BA(z) =
C\(@),

o Pt T~ 0v(B@).D:)|
Z+T+ MOP

: €
= /T ~/(Z+y+LJ-)r78PA Ho(u) dxdy = [TI(@ — lv(BA(@), i) | + 8 TIs(BA@)
=|(d - k)/TV(PA(Z +y),D;1)dy — [T|v(BA(2),D; 1) | + %|T|s(B,\(z))
< %|T|S(BA(Z)).
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Therefore (19) yields for large A by (21), (24) and (27) that either

Y G(T+A®)

AN

(28)
<7 vAa@) - T3 [(d —K) - v(Av@), D; 1) + % ~s(AA(z))}
XEQ) XEN,

or

Y G(T+Ci@)

AN
(29)

> (T > V@) + [T Y [(d —K)-v(Cx(2),D; 1) + % .s(cA(z>)]

XENQ) XEQ

We denote by A’ the orthogonal projection of Z¢ onto L and note that det ¢ = det A’-
|T| and for any o C L*, we have G(o + T) = G, (o). We deduce by (28) and (29) that for
any large A there exists an z € 2, such that for Ay = A,(z) and C) = C(2), either

detA- Gy (A) < V(A — (@ =) - V(AL D) — < - 5(A)
or
detA’- Gy (C2) = V(Cy) + (@ —K) - ¥(C», Di 1) + = - (C).

Finally, w) - rq(P,) — oo yields that rq_x(A,) — oo. On the other hand, for any primitive
u from the dual of A’ in L*, the relation Hp(u) > 1/2 readily holds. This contradiction
with the induction hypothesis implies the theorem. ]

Remark 1 Assume that K € K¢ is minimal with the property that Hy (v) > 1/2 for any
primitive v.€ A*. Then there exists some lattice d-polytope P such that for the primitive
outer facet normals vy, ...,vx € A* the formula Hc (v;) = 1/2 holds. Set P, = AP for
A € N. We deduce by Ehrhart’s formula that

detA - Ga(Py) =V (Pa) +dV (Py,K; 1) + O(A*~?),
and hence Theorem D can not be improved in general.

Remark 2 Assume that A = Z% and K = [—3, 1]%. Choosing P = [0, 1,]°* x [0, ]
where u, tends arbitrarily slowly to infinity shows that the error term is optimal also in

Theorem D.
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