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Abstract

Background. Individuals with bipolar disorder are commonly correctly diagnosed a decade
after symptom onset. Machine learning techniques may aid in early recognition and reduce
the disease burden. As both individuals at risk and those with a manifest disease display struc-
tural brain markers, structural magnetic resonance imaging may provide relevant classification
features.
Methods. Following a pre-registered protocol, we trained linear support vector machine
(SVM) to classify individuals according to their estimated risk for bipolar disorder using
regional cortical thickness of help-seeking individuals from seven study sites (N = 276). We
estimated the risk using three state-of-the-art assessment instruments (BPSS-P, BARS,
EPIbipolar).
Results. For BPSS-P, SVM achieved a fair performance of Cohen’s κ of 0.235 (95% CI 0.11–
0.361) and a balanced accuracy of 63.1% (95% CI 55.9–70.3) in the 10-fold cross-validation. In
the leave-one-site-out cross-validation, the model performed with a Cohen’s κ of 0.128 (95%
CI −0.069 to 0.325) and a balanced accuracy of 56.2% (95% CI 44.6–67.8). BARS and
EPIbipolar could not be predicted. In post hoc analyses, regional surface area, subcortical
volumes as well as hyperparameter optimization did not improve the performance.
Conclusions. Individuals at risk for bipolar disorder, as assessed by BPSS-P, display brain
structural alterations that can be detected using machine learning. The achieved performance
is comparable to previous studies which attempted to classify patients with manifest disease
and healthy controls. Unlike previous studies of bipolar risk, our multicenter design permitted
a leave-one-site-out cross-validation. Whole-brain cortical thickness seems to be superior to
other structural brain features.

Introduction

Early detection of mental disorders has become a growing field with remarkable progress.
Validated techniques for the individualized prediction of transition to diagnosed disorder
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are becoming increasingly available (Fusar-Poli et al., 2017,
2019; Koutsouleris et al., 2021). In the case of bipolar disorder,
early detection plays a special role, since the correct diagnosis
using current diagnostic approaches occurs in average 8.7–12.4
years after the appearance of first symptoms (Kessler et al.,
2005; Lambert et al., 2013; Merikangas et al., 2011; Pfennig
et al., 2011). This goes along with risks of incorrect treatment,
such as antidepressant-induced (or unrecognized) mania
(Lambert et al., 2013; Pfennig, Bschor, Falkai, & Bauer, 2013).

Aggregation of big data from multiple centers and machine
learning has enabled individualized predictions for diagnostics,
prognosis, and therapy response (Dwyer, Falkai, & Koutsouleris,
2018). In the field of early recognition, psychosis risk has received
the largest attention (Kambeitz-Ilankovic et al., 2015; Koutsouleris
et al., 2015, 2016, 2018). Prediction of transition to psychosis in
high-risk subjects can be substantially improved using machine
learning, achieving up to 85.5% accuracy when combined with
clinicians’ judgments (Koutsouleris et al., 2021).
Disproportionately fewer machine learning studies have focused
on the early recognition of bipolar disorder (Claude, Houenou,
Duchesnay, & Favre, 2020).

Among neuroimaging data, structural magnetic resonance
imaging (MRI) is especially suitable for diagnostic and prognostic
analyses using machine learning techniques. Most psychiatric dis-
orders have been associated with brain structural markers or
alterations. Recent large-scale multicentric studies of major psy-
chiatric disorders within the ENIGMA consortium showed that
along with schizophrenia, bipolar disorder ranks highest in cor-
tical thinning among major conditions beginning in early- to
mid-adulthood (Abé et al., 2020; Ching et al., 2020). Unlike
major depression, attention-deficit hyperactivity disorder
(ADHD), obsessive-compulsive disorder, or autism, both disor-
ders seem to be associated with similar patterns of large-scale cor-
tical thinning in frontal, temporal, and parietal regions with
relatively high effect sizes. From a practical point of view, struc-
tural MRI (sMRI) requires relatively short scanning sequences,
modest compliance, and displays high test–retest reliability
(Hedges et al., 2022). Unlike genetic predisposition, which is a
major risk for bipolar disorder with transition rates of 4.2–
22.4% by first-degree relatives (Hafeman et al., 2017; Kerner,
2014; Post et al., 2018), using sMRI in assessment of risk for bipo-
lar disorder has been rarely investigated.

Individuals at risk for bipolar disorders have been studied
using two major approaches – family cohorts, i.e. first-degree rela-
tives (Hajek et al., 2013), and help-seeking populations (Pfennig
et al., 2020). The latter approach enables for studying a broader
range of risk factors including specific subsyndromal manic or
depressive symptoms, mood swings, changes in sleep and circa-
dian rhythm, anxiety, ADHD, specific character traits, stressful
life events, or substance use (Faedda et al., 2019; Leopold et al.,
2012). For this purpose, and in order to facilitate the risk recog-
nition in help-seeking cohorts, several risk assessment tools
have been developed, including (extended) bipolar-at-risk criteria
[BAR(S)] (Bechdolf et al., 2014; Fusar-Poli et al., 2018), Bipolar
Prodrome Symptom Interview and Scale (BPSS-P) (Correll
et al., 2014), and the EPIbipolar interview (Leopold et al.,
2012). It is a strength of our study that all of these three scores
are available for our cohort and were investigated as the depend-
ent variable.

Several studies have explored the use of machine learning in
classifying diagnosed bipolar disorder (Hajek et al., 2015; Nunes
et al., 2020) and individuals with high genetic risk for bipolar

disorder (i.e. first-degree relatives). A review by Claude et al.
(2020) identified five studies that aimed to classify persons with
genetic risk using different modalities, achieving accuracies from
59.7% up to 83.21%. Among those, two studies used regional cor-
tical volumes (Hajek et al., 2015; Lin et al., 2018) and two used
functional MRI (Frangou, 2019; Mourão-Miranda et al., 2012;
Roberts et al., 2017). To the best of our knowledge, no multicenter
machine learning study has yet been conducted to classify risk
scores for bipolar disorder while including, but not being limited
to the genetic risk. Based on the data from the Early-BipoLife
study (Pfennig et al., 2020), we aimed to train a machine learning
classifier using 10-fold cross-validation to stratify help-seeking
subjects by estimated risk using sMRI. In contrast to single-center
studies, we also used the multicenter design to validate it on test
data from an ‘unseen’ study site through a leave-one-site-out
cross-validation. Our results may provide a proof-of-concept for
the utility of sMRI data for individualized risk prediction in sub-
jects seeking help.

Methods

Pre-registration

We pre-registered our analyses at the Open Science Framework
(https://osf.io/c4hfn).

Sample

The data were collected within the multicenter Early-BipoLife
study (Pfennig et al., 2020; Ritter et al., 2016). Early-BipoLife
is a multicenter, naturalistic, prospective-longitudinal observa-
tional cohort study of adolescents and young adults (age 15–
35) at risk for bipolar disorder. From 10 participating
German university and teaching hospitals with early detection
centers/facilities for bipolar disorder, seven centers (Berlin,
Bochum, Frankfurt, Hamburg, Dresden, Marburg, Tübingen)
acquired MRI data. For this study, we accessed the baseline clin-
ical and MRI data. For a detailed description of data collection
procedures, see Pfennig et al. (2020). Briefly, of the total N =
1229 recruited adolescents and young adults at risk, N = 313
opted to receive MRI. In order to include all proposed risk fac-
tors for bipolar disorder, we recruited the participants in three
recruitment pathways: N = 123 were consulting early detection
centers/facilities and were screened positive for ⩾1 proposed
risk factor for bipolar disorder (see online Supplementary
note 1), N = 146 were young in- and outpatients with a depres-
sive syndrome, and N = 44 had an established diagnosis of
ADHD. In order to include older individuals who might have
an unrecognized bipolar disorder (e.g. due to presence of exclu-
sively depressive episodes, but no full-blown mania or hypo-
mania yet), we extended the age inclusion criterion beyond
the typical age of onset based on available studies on time to
diagnosis. For more details on inclusion/exclusion criteria, see
online Supplementary note 1. The study was approved by the
Ethics Committee of the Medical Faculty of the Technische
Universität Dresden (No: EK290082014), as well as local ethics
committees at each study site. We obtained a written informed
consent after comprehensive information about study aims and
procedures. Additionally, parents of adolescents gave their
informed consent about their children’s participation.
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MRI acquisition, preprocessing and quality assessment

We acquired high-resolution structural T1-weighted images using
Siemens Magnetom MR scanners at 6 sites (Trio, Skyra, Prisma)
and a Philips Achieva scanner at 1 site. We standardized the pulse
sequence parameters across all sites to the extent permitted by
each platform. For a detailed description of the scanning protocol
including the detail of MRI scanners, specific hardware configura-
tions, and pulse sequence parameters, see Vogelbacher et al.
(2021).

Prior to preprocessing, we performed the data acquisition and
quality assessment according to the BipoLife study protocol
(Vogelbacher et al., 2021). Briefly, we analyzed the MRI images
using the MRIQC tool (Esteban et al., 2017). Two authors visually
inspected the obtained reports of several metrics including
a movement plot and a plot of the background noise. In this
way, 23 subjects were excluded from further analysis due to
strong movement (N = 18), ghosting (N = 1), or fold-over artifacts
(N = 4).

We preprocessed the T1-weighted sMRI using Freesurfer
6.0 software integrated in our processing pipeline NICePype
(Müller, Küttner, & Hannig, 2015). We obtained regional cortical
thicknesses and surface area values for 68 cortical brain areas
(34 left/34 right) defined by the Desikan–Killiany atlas (Desikan
et al., 2006) and 14 subcortical volumes (7 left/7 right) (Fischl
et al., 2004).

We performed a standardized quality control of the cortical
and subcortical segmentations and parcellations according to the
established protocols of the ENIGMA working group (http://
enigma.ini.usc.edu/protocols/imaging-protocols). This included
a visual inspection of the segmented regions using the internal
and external surface methods, as well as statistical outlier detec-
tion. The outliers were subjected for further visual inspection.
Three subjects did not pass the quality control or displayed
major segmentation errors and were discarded.

Risk assessment instruments

We assessed the risk for the development of bipolar disorder
using three state-of-the-art assessment instruments – the
Bipolar At-Risk (BAR) criteria (Bechdolf et al., 2014) and the
extended BAR criteria (BARS; Fusar-Poli et al., 2018), the
Bipolar Prodrome Symptom Scale (BPSS-P; Correll et al., 2014),
and the Early Phase Inventory for bipolar disorders (EPIbipolar;
Leopold et al., 2012).

BAR(S) criteria comprise a set of subthreshold clinical and
behavioral symptoms as well as genetic risk. A person is assessed
as having high risk if one or more risk syndromes are fulfilled:
sub-threshold mania, sub-threshold depression, sub-threshold
depression with genetic risk, mixed symptoms, or mood swings.
BARS criteria showed an adequate prognostic accuracy of conver-
sion to bipolar disorder (conversion rate 18.5% in N = 27 partici-
pants) in a longitudinal cohort (Fusar-Poli et al., 2018). BPSS-P
and EPIbipolar are semi-structured interviews. BPSS-P was devel-
oped based on the DSM-IV criteria for bipolar disorder and
major depression and established rating scales for these condi-
tions. BPSS-P combines all these criteria to a mania symptom
index, depression symptom index, and general symptom index.
It implies two at-risk states: attenuated mania symptom syndrome
(AMSS) and genetic mania risk and deterioration syndrome
(GMRDS). BPSS-P has good internal consistency, convergent val-
idity, and inter-rater reliability (Correll et al., 2014). EPIbipolar

contains elements from BPSS-P and additionally captures risk fac-
tors that have been identified through a systematic literature
review, such as subsyndromal manic or depressive symptoms,
mood swings, changes in sleep and circadian rhythm, anxiety,
ADHD, specific character traits, stressful life events, or changing
patterns of substance use (Leopold et al., 2012). It defines three
risk categories: no-risk, low-risk, and high-risk. For the purpose
of this analysis, we pooled subjects from the low-risk and high-
risk groups assessed by EPIbipolar, as these participants, unlike
those from the no-risk group, displayed several clinically relevant
risk factors or symptoms and are intended for targeted interven-
tions in early recognition services. The term ‘no-risk’ group in
EPIbipolar was originally established to describe the lack of
need for a specialized clinical intervention in the participants
with only minor risk factors (Leopold et al., 2012). Of note, all
recruited participants, even those who did not fulfill the criteria
of any risk syndrome/group on any of the three risk instruments,
displayed at least one known risk factor for bipolar disorder (see
online Supplementary note 1). In research settings, this label
might be misleading, as participants in the no-risk group might
also display minor risk factors and are not to be confused with
healthy controls. The final binary outcomes were as follows: any
symptom syndrome/no symptom syndrome for BPSS-P; any
risk group/no risk group for BARS; high-risk + low-risk groups/
no-risk group for EPIbipolar (see also Table 1 for demographics).
As we discarded subjects with missing data on corresponding
assessment tools, the sample sizes for each of the three risk assess-
ment tools varied (NBARS = 264, NBPSS−P = 276, NEPIbipolar = 273).
For details on the risk assessment tools, see online
Supplementary Table S1 and Pfennig et al. (2020). All three
instruments/criteria sets were obtained from the respective
authors and can be administered after appropriate training. The
administration of the complete risk assessment battery takes 2–3h.

Machine learning classification

In accordance with a previous study of subjects with diagnosed
bipolar disorder by the ENIGMA consortium (Nunes et al.,
2020) and to increase reproducibility, we used a linear support
vector machine (SVM) classifier with the hyperparameter C = 1
for the primary analysis. We performed independent binary clas-
sifications for each risk instrument (BPSS-P, BARS, and
EPIbipolar). Using Scikit-learn 1.0 package for Python 3.8.3
(Pedregosa et al., 2011), we utilized two cross-validation methods:
10-fold and leave-one-site-out (i.e. data from one study center
was taken to be the test-data, while the training dataset included
the data from all other centers). In each fold, we standardized fea-
tures in the training and testing sets separately by removing the
mean and scaling to unit variance using standard scaler
(Scikit-learn 1.0 package, see above). We took the following mea-
sures to manage the imbalanced class distribution within the data:
(A) we used a stratified cross-validation to ensure, that the class
ratio in all folds stays approximately the same, (B) we used ran-
dom oversampling of the minority class (Chawla, Bowyer, Hall,
& Kegelmeyer, 2002) in the training set, so that the class ratios
in each fold was balanced. For the primary analysis, we used
the 68 regional cortical thickness values as features and we per-
formed both cross-validation methods (10-fold and
leave-one-site-out), i.e. we trained six models altogether. As the
class ratios for all three risk instruments were imbalanced, we
used following two performance measures which are commonly
used for imbalanced classification problems: Cohen’s κ (i.e. the
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Table 1. Socio-demographic characteristics

Risk assessment instrument
BPSS-P (N = 276) BARS (N = 264) EPIbipolar (N = 273)

Risk criterion fulfilled No Yes Test No Yes Test No Yes Test

N (%) 220 (79.7) 56 (20.3) n/a 77 (29.2) 187 (70.8) n/a 32 (11.7) 241 (88.3) n/a

Female (%) 97 (44.1) 34 (60.7) χ2 = 4.947, p = 0.026* 35 (45.5) 92 (49.2) χ2 = 0.306, p = 0.58 10 (31.3) 120 (49.8) χ2 = 3.894, p = 0.048*

Age (S.D.) 24.91 (4.2) 24.57 (4.98) t = 0.523, df = 274, p = 0.62 24.35 (3.7) 25.1 (4.6) t = 1.242, df = 262, p = 0.215 24.13 (3.08) 24.95 (4.52) t =−1.001, df = 271, p = 0.318

Education high school (%) 177 (80.5) 39 (69.6) χ2 = 9.516, p = 0.147 65 (84.4) 141 (75.4) χ2 = 13.789, p = 0.032* 26 (81.3) 188 (78.0) χ2 = 2.437, p = 0.875

Recruitment pathway

Early recognition (%) 97 (44.1) 19 (33.9) χ2 = 1.915, p = 0.384 36 (46.8) 77 (41.2) χ2 = 23.149, p≤ 0.001*** 15 (46.9) 101 (41.9) χ2 = 23.149, p≤ 0.001***

Depression (%) 95 (43.2) 29 (51.8) 24 (31.2) 91 (48.7) 5 (15.7) 116 (48.1)

ADHD (%) 28 (12.7) 8 (14.3) 17 (22.1) 19 (10.2) 12 (37.5) 24 (9.9)

Psychiatric medication

Yes (%) 118 (53.6) 36 (64.3) χ2 = 2.053, p = 0.152 35 (45.5) 112 (59.9) χ2 = 4.608, p = .032* 11 (34.4) 142 (58.9) χ2 = 6.909, p = 0.009**

Substance use

Smoking status

Never smoked (%) 102 (46.4) 21 (37.5) χ2 = 2.376, p = 0.305 44 (57.1) 76 (40.6) χ2 = 6.008, p = 0.05* 18 (56.3) 104 (43.2) χ2 = 6.036, p = 0.049*

Current smoker (%) 102 (46.4) 28 (0.5) 28 (36.4) 93 (49.7) 9 (28.1) 119 (49.4)

Past smoker (%) 16 (7.3) 7 (12.5) 5 (6.5) 18 (9.6) 5 (15.6) 18 (7.5)

Cannabis present

No use (%) 155 (70.5) 44 (78.6) p = 0.078a 62 (80.5) 129 (67.0) p = 0.506a 26 (81.3) 172 (71.4) p = 0.545a

<1x/month (%) 21 (9.5) 3 (5.4) 5 (6.5) 16 (8.6) 1 (3.1) 22 (9.1)

∼1x/month (%) 12 (5.5) 2 (3.6) 3 (3.9) 11 (5.9) 0 (0) 14 (5.8)

2–9x/month (%) 17 (7.7) 0 (0) 3 (3.9) 13 (7.0) 2 (6.3) 14 (5.8)

⩾10x/month (%) 15 (6.8) 7 (12.5) 4 (5.2) 18 (9.6) 3 (9.4) 19 (7.9)

Cannabis lifetime

No use (%) 86 (39.1) 23 (41.7) p = 0.980a 39 (50.6) 67 (35.8) p = 0.253a 15 (46.9) 94 (39.0) p = 0.762a

<1x/month (%) 48 (21.8) 10 (17.9) 16 (20.8) 39 (20.9) 8 (25.0) 49 (20.3)

∼1x/month (%) 9 (4.1) 2 (3.6) 2 (2.6) 9 (4.8) 0 (0) 11 (4.6)

2–9x/month (%) 25 (11.4) 6 (10.7) 7 (9.1) 24 (12.8) 3 (9.4) 28 (11.6)

⩾10x/month (%) 50 (22.7) 14 (25.0) 13 (16.9) 46 (24.6) 6 (18.8) 56 (23.2)

Genetic risk

FDR (%) 17 (7.7) 4 (7.1) χ2 = 0.022, p = 0.883 9 (11.7) 11 (5.9) χ2 = 2.626, p = 0.105 0 (0) 21 (8.7) p = 0.148a

*p⩽ 0.05; **p⩽ 0.01; ***p⩽ 0.001. FDR, first-degree relatives of BD patients.
aFisher–Freeman–Halton’s exact test was used for variables with ⩾1 expected cell counts <5.

Psychological
M
edicine

281

https://doi.org/10.1017/S0033291723001319 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0033291723001319


measure of agreement between the classifier and a random classi-
fier relative to the frequency of classes, <0 no agreement, 0–0.20
slight, 0.21–0.40 fair, 0.41–0.60 moderate, 0.61–0.80 substantial,
and 0.81–1 almost perfect agreement) (Landis & Koch, 1977),
and balanced accuracy [balanced accuracy = (sensitivity + specifi-
city)/2]. Additionally, we report sensitivity and specificity. We
do not report other common measures such as accuracy and
area under receiver operating characteristic curve, as these are
not suitable for imbalanced data (He & Ma, 2013). As this was
a population-based, observational study, the samples in each
site were not balanced regarding participants at risk, some were
even smaller than the recommended size N > 20 for a test set
(Flint et al., 2021; as well as see online Supplementary
Table S2). For this reason, we report the performance in both
10-fold as well as leave-one-site-out cross-validations.

For risk assessment instruments achieving an above chance
prediction (i.e. Cohen’s κ > 0 and lower confidence interval > 0),
we assessed the possible effects of confounds using post-hoc stat-
istical tests comparing the correctly and incorrectly classified sub-
jects. This is a more valid approach to account for possible
confounders than regressing out covariates prior to analysis,
which would disrupt the train/test separation (Pereira, Mitchell,
& Botvinick, 2009). We also report the post-hoc tests for the
leave-one-site-out cross-validation by BPSS-P, where the lower
confidence interval slightly crossed the zero boundary. Given
the above-mentioned limitations of the leave-one-site-out cross-
validation (low sample size of some sites, imbalanced classes),
we consider both measures relevant. We accounted for following
confounds: age, sex, medication (yes/no), recruitment pathway
(early recognition services/depression/ADHD), smoking status
(never smoked/current smoker/past smoker), present cannabis
use (no use/<1 per month/∼1 per month/2–9 per month/⩾10
per month), lifetime cannabis use (no use/<1x month/∼1x
month/2–9x month/⩾10x month), site and scanner type (for
the list of sites and scanner types see above).

We estimated the magnitude of contribution of brain regions
to the SVM classification using SVM coefficients. Coefficients
of a linear classifier can be interpreted as relative measure of fea-
ture importance (Pereira et al., 2009) for the classification process.
Note that this is not to say that a highly weighted feature contains
necessarily a lot of information about the target class (Haufe et al.,
2014). We used the freesurfer_statsurf_display library (https://
chrisadamsonmcri.github.io/freesurfer_statsurf_ display) to visu-
alize the results.

Secondary analyses

To investigate whether a lower feature/sample size ratio might
improve classification performance, we selected 20 features
based on the available literature from other relevant large-scale
multicenter studies and included these in our pre-registration.
We chose 20 features in order to approach the similar ratio of fea-
tures as the prior study on bipolar disorder using SVM by Nunes
et al. (2020), which reported having 20 times more participants,
than features. We selected those features from another large-scale
ENIGMA study of bipolar disorder and healthy controls by Hibar
et al. (2018) which identified a pattern of significant reductions of
cortical thickness in frontal, temporal, and parietal regions in a
sample of 6503 participants and bipolar patients. We selected
the 20 features displaying the highest effect sizes in that study
(see online Supplementary note 2 for the list of features).

In order to better compare the performance of the SVM on
our sample of help-seeking individuals at risk and patients with
established disease published by Nunes et al. (2020), we also per-
formed the classification using the same feature set of 150 features
including 68 regional cortical thickness and 68 surface area values
as well as volumes of 14 subcortical features plus the estimated
total intracranial volume.

Lastly, we investigated whether hyperparameter optimization
using a nested cross-validation would improve the results. In
each fold, we divided the train set into train and test subsets
once more and ran multiple nested SVM classifications with dif-
ferent SVM regularization parameters C (1 × 10−5, 1 × 10−4, 1 ×
10−3, 1 × 10−2, 1 × 10−1, 1, 10, and 100) (grid search method).
We selected the best possible model according to the achieved
balanced accuracy. Finally, we tested the selected model on the
unseen test data from the primary loop.

Results

Demographics

For detailed demographics, see Table 1. The participants who ful-
filled any risk syndrome according to BPSS-P did not differ from
those not fulfilling any risk syndrome in any of the measured
variables. The participants who fulfilled any risk syndrome
according to BARS were more likely to take medication (χ2 =
4.608, p = 0.032), to smoke (χ2 = 6.008, p = 0.05), and suffer
from diagnosed depression, but less likely to suffer from ADHD
(χ2 = 23.149, p≤ 0.001) and were more likely to have attended
high-school (χ2 = 13.789, p = 0.032) than those not fulfilling any
risk syndrome. The participants who fulfilled any risk syndrome
according to EPIbipolar were more likely to be female (χ2 =
3.894, p = 0.048), to take medication (χ2 = 6.909, p = 0.009), to
smoke (χ2 = 6.036, p = 0.049), and suffer from diagnosed depres-
sion, but less likely to suffer from ADHD (χ2 = 23.149, p≤ 0.001),
than those not fulfilling any risk syndrome. The participants
removed due to movement during the scan and quality control
did not differ from those in the final dataset in the proportion
of any of the risk syndromes: BPSS-P (df = 1, χ2 = 0.004, p =
0.949), BARS (df = 1, χ2 = 0.412, p = 0.521), and EPIbipolar (df
= 2, χ2 = 1.092, p = 0.579).

Primary analysis

Performance measures of the classification for all three risk
instruments (BPSS-P, BARS, and EPIbipolar) using all regional
cortical thickness values as features are given in Table 2. Only
for BPSS-P, both performance measures reached levels above
chance for the 10-fold CV approach with following performance:
Cohen’s κ 0.235 (95% CI 0.11–0.361), balanced accuracy 63.1%
(95% CI 55.9–70.3), sensitivity 48% (95% CI 36–60), and specifi-
city 78.2% (95% CI 72.5–83.9). The correctly and incorrectly clas-
sified subjects did not differ in age (df = 274, t = 0.987, p = 0.114),
sex (df = 1, χ2 = 0.152, p = 0.698), medication (df = 1, χ2 = 0.068, p
= 0.795), recruitment pathway (df = 2, χ2 = 0.673, p = 0.714), first-
degree relatives (df = 1, χ2 = 0.334, p = 0.563), smoking status (df
= 2, χ2 = 2.254, p = 0.324), cannabis use lifetime (Fisher–
Freeman–Halton’s exact test p = 0.28), site (Fisher–Freeman–
Halton’s exact test p = 0.119), and scanner type (Fisher–
Freeman–Halton’s exact test p = 0.225). There was a significant
difference in the present cannabis use (Fisher–Freeman–
Halton’s exact test p = 0.043), however, using residuals of cortical
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features after regressing out present cannabis use resulted in a
comparable performance Cohen’s κ 0.240 (95% CI 0.102–
0.379), balanced accuracy 62.6% (95% CI 55.3–69.8).

In the leave-one-site-out cross-validation, the classifier based
on BPSS-P achieved Cohen’s κ 0.128 (95% CI −0.069 to 0.325),
balanced accuracy 56.2% (95% CI 44.6–67.8), sensitivity 33%
(95% CI 12.4–53.7), and specificity 79.4% (95% CI 72.3–86.4).
The correctly and incorrectly classified subjects did not differ in
age (df = 274, t = 0.523, p = 0.601), sex (df = 1, χ2 < 0.001, p =
0.994), medication (df = 1, χ2 = 2.268, p = 0.132), recruitment
pathway (df = 2, χ2 = 2.951, p = 0.229), first-degree relatives (df
= 1, χ2 = 2.125, p = 0.145), smoking status (df = 2, χ2 = 3.595, p
= 0.166), cannabis use present (Fisher–Freeman–Halton’s exact
test p = 0.281), cannabis use lifetime (Fisher–Freeman–Halton’s
exact test p = 0.518), site (Fisher–Freeman–Halton’s exact test p
= 0.905), and scanner type (Fisher–Freeman–Halton’s exact test
p = 0.694).

See Table 2 for the summary of performance measures.

Secondary analyses

Both literature-derived feature selection of 20 regional cortical
thickness features, as well as an extended feature set including
whole-brain regional surface area and volumes of subcortical
regions did not yield significantly higher accuracies, as the confi-
dence intervals overlapped with those from the primary analysis
(see Table 3 for the summary of classification metrics). The
lower difference in performance measures between the 10-fold
and the leave-one-site-out cross-validation using the 20 regional
cortical features rather than all regional cortical values by
BPSS-P suggests a non-significant trend toward better model val-
idity when using the 20 cortical features.

Hyperparameter optimization

Using hyperparameter optimization, we achieved Cohen’s κ 0.212
(95% CI 0.123–0.302), balanced accuracy 62.3% (95% CI 56.7–
68.0), sensitivity 48% (95% CI 37.7–59.0), and specificity 76.4%
(95% CI 72.4–80.3) in a 10-fold cross-validation and Cohen’s κ
0.136 (95% CI −0.075 to 0.346), balanced accuracy 57.1% (95%
CI 43.6–70.6), sensitivity 33.7% (95% CI 10.2–57.3), and specifi-
city 80.4% (95% CI 72.4–88.4) in the leave-one-site-out cross-
validation. The mostly selected C parameter was 100 (7 out of
10 and 4 out of 7) for 10-fold and leave-one-site-out, respectively.

SVM coefficients

The mean over folds of the absolute values of the SVM coeffi-
cients by feature (brain region) for the BPSS-P, 10-fold cross-
validation, and whole-brain regional cortical thickness features
are depicted in Fig. 1. For the values of all coefficients, see online
Supplementary Table S3.

Discussion

The linear SVM classifier detected individuals with increased esti-
mated risk for bipolar disorder as defined by the BPSS-P interview
with a Cohen’s κ of 0.227/0.141 and balanced accuracy of 63.1/
56.2% (based on pooled sample and leave-one-site-out cross-
validations, respectively). Precuneus, inferior frontal gyrus, and
posterior cingulate cortex ranked among the highest contributing
features according to SVM coefficients. SVM could not detectTa
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participants with increased risk for bipolar disorder based on
EPIbipolar or BARS criteria. Whole-brain cortical thickness
yielded the highest accuracy, whereas reducing the features
based on literature, or expanding the features by surface area or
subcortical volumes did not change the performance significantly
given the large confidence intervals. However, there might be a
trend toward better model validity using fewer cortical thickness
features.

Our results suggest that young participants at risk of bipolar
disorder according to the BPSS-P display distinct structural
brain features that permit better-than-chance classification.
Importantly, using both the pooled sample (10-fold cross-
validation), as well as leave-one-site out cross-validation, we
achieved accuracies comparable to the previous multicenter
study by Nunes et al. (2020) that differentiated patients with
manifest bipolar disorder from healthy controls with balanced
accuracies of 65.23% (95% CI 63.47–67.00) and 58.67% (95%
CI 56.70–60.63), respectively (Nunes et al., 2020). Compared to
their study, the 95% confidence intervals in our study were con-
siderably wider, which was to be expected given that our sample
was more than 10 times smaller (276 v. 3020 participants). Larger
sample sizes tend to yield more stable performance (Nieuwenhuis
et al., 2012). Post-hoc tests suggested an effect of present cannabis
use on the classification using 10-fold cross-validation; however,
regressing out present cannabis use did not impair the perform-
ance. Moreover, there was no such effect in the leave-one-site-out
validation. Other demographic variables did not show an effect on
the classification (see also online Supplementary note 3). As such,
this would be consistent with the notion that differences in brain
structure in bipolar disorder are not a result of the disorder but
are a pre-morbid risk factor potentially related to genetics. On
the other hand, as the age of participants in our sample was
higher than the typical age of onset of bipolar disorder, we
might have included older participants with a yet undiagnosed
bipolar disorder. Those participants would have possibly dis-
played more structural differences than participants before the
age of onset, which might in turn have led to higher classification
accuracies.

Unlike previous attempts to detect participants with genetic
risk within family cohorts (Hajek et al., 2015), we estimated the
individual risk state using state-of-the-art screening instruments,
which better address the clinical realities of early recognition cen-
ters. Given the variable estimated transition rates of 4.2–22.4% by
known genetic risk (Hafeman et al., 2017; Kerner, 2014; Post
et al., 2018), there is a need for more differentiated risk assess-
ment including state markers in order to provide targeted inter-
ventions. Moreover, most people seeking for early recognition
services do not have genetic risk (12.9% or 15 out of 116 recruited
via the early recognition pathway). BPSS-P provides a conserva-
tive risk assessment, selecting persons displaying an AMSS or a
GMRDS. In total, 20.3% of the participants screened positive
on one of these syndromes.

Surprisingly, SVM could not detect participants at risk esti-
mated using EPIbipolar, although we detected significant differ-
ences in cortical thickness between the high-risk and no-risk
individuals in our previous study (Mikolas et al., 2021). Given simi-
lar sample size (previous study N = 263), we pooled the individuals
in the high-risk and low-risk groups in order to allow for a binary
classification. As a result, the no-risk group had only 32 partici-
pants, which might have had a negative influence on the learning
phase. In a post hoc analysis (see online Supplementary note 4),
a three-category classification using all three risk groups did notTa
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yield an above chance classification. However, after removing the
low-risk group, we obtained a balanced accuracy of 60.9/55.5%
(10-fold/leave-one-site-out). This suggests that whereas in a
hypothesis-driven region-of-interest analysis, EPIbipolar selected
participants displaying significantly thinner cortex in the left pars
opercularis (Mikolas et al., 2021), BPSS-P selected participants dis-
playing widespread structural alterations enabling for more accur-
ate, single subject classification using machine learning.
Interestingly, in our above-mentioned previous study (Mikolas
et al., 2021), the pars opercularis was not significantly thinner in
participants scoring positive in BPSS-P; however, the low p value
might have suggested a non-significant trend. Additionally,
among the participants scoring positive on any risk criterion in
both EPIbipolar and BARS, those with depression were more repre-
sented comparing to BPSS-P. As a result, more participants with
unipolar depression might have been selected by EPIbipolar and
BARS, which might have impeded the classification. Indeed, the
cortical thickness differences in major depression seem to be less
prominent than in bipolar disorder (Ching et al., 2020; Schmaal
et al., 2017). Finally, unlike in BPSS-P, the participants who fulfilled
any risk syndrome according to BARS or EPIbipolar differed from
those not fulfilling any risk syndrome in several other demographic
variables which might have confounding effects on cortical thick-
ness, such as medication or smoking.

The regions with highest contribution toward the classification
(i.e. with the highest values of SVM coefficients) partially over-
lapped with those contributing to classification of patients with
manifest bipolar disorder and healthy controls obtained by
Nunes et al. (2020) in their study. Of 33 cortical thickness weights
reported by Nunes et al., 69.7% hat the same sign as in our study.
Notably, the inferior frontal gyrus is a region structurally and
functionally associated with the genetic risk for bipolar disorder

(Hajek et al., 2013; Roberts et al., 2013, 2017). This suggests a con-
sistent structural pattern of individuals at risk estimated by
BPSS-P and patients with manifest disease or genetic risk. A direct
comparison, however, of feature weights between Nunes et al. and
our study is to be viewed with caution because of the complex
covariance structure within the feature set (Haufe et al., 2014),
the difference in the number and type of features, and the limited
number of training samples in our study. While multivariate
machine learning techniques have the potential to optimize pre-
diction accuracies, univariate, between-group comparisons are
more straight forward to interpret in terms of relative feature
importance, as we have done in our previous work (Mikolas
et al., 2021).

The achieved accuracy is not sufficient to suggest sMRI as a
single risk assessment method. Even using the best performing
model, among the subjects, who did not fulfill any risk criterion,
21.8% were classified as positive (type I error). Among the sub-
jects at risk, 51.8% were classified as negative (type II error).
Even feature selection approaches or hyperparameter optimiza-
tion did not achieve a more accurate classification. Earlier
machine learning neuroimaging studies reported accuracies well
beyond the 80% boundary that roughly demarks the clinical util-
ity (Nunes et al., 2020; Radua & Carvalho, 2021). However, many
earlier studies did not comply with recently established criteria
(Dwyer et al., 2018), for example, by using insufficiently small
samples [i.e. N < 130 (Nieuwenhuis et al., 2012)] or omitting val-
idation samples (Radua & Carvalho, 2021). Studies that used val-
idation samples generally reported lower accuracies.

Differentiating between healthy, non-help-seeking persons and
help-seeking persons with higher risk for bipolar disorder might
lead to higher accuracies. For a potential clinical application, how-
ever, this might be misleading, as clinicians are required to make

Figure 1. Magnitude of contribution of brain regions to SVM classification. The coefficients of a linear classifier can be interpreted as relative measure of feature
importance. The color represents the mean over folds of the absolute value of the SVM coefficients for each region. The classification was based on BPSS-P risk
instrument using regional cortical thickness values as features in a 10-fold cross-validation.
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predictions by persons who already display symptoms and there-
fore seek for help. Thus, our population-based sample of help-
seeking individuals reflects the real clinical setting better than
using a healthy-control group. The very fact that we chose a con-
servative approach by comparing only help-seeking individuals
and yet are able to obtain a clear above-chance prediction of
the score in an established risk instrument with mere structural
neuroimaging data demonstrates the potential of sMRI in risk
stratification. A major advantage over functional MRI is that
structural T1 images are part of any standard clinical exam and
would not invoke additional costs for specialized scanning
protocols.

Overall, our results suggest that in order to achieve clinically
meaningful predictions, future approaches using brain imaging
should aim at integrating multimodal data such as clinical data,
such as body mass index (McWhinney et al., 2021) or genetics,
rather than focusing on brain structure only. An ‘augmentation’
of clinical judgments of trained professional by a machine
learning-based algorithm might be a realistic scenario.
Koutsouleris et al. (2021) showed in individuals with psychosis
risk, that in a multimodal application, sMRI might contribute
to the overall prediction by several percent. As our study suggests,
sMRI, especially cortical thickness, might contribute to the diag-
nostic performance of such algorithms aimed at estimating the
risk for bipolar disorder.

An important limitation that needs to be addressed in future
studies was the use of the estimated risk as outcome. The concept
of high risk for bipolar disorder is still in development
(Keramatian, Chakrabarty, Saraf, & Yatham, 2021). Participants
scoring positive on those risk criteria might benefit from a
more intensive diagnostic and prevention process. However, in
order to further individualize the risk prediction, larger, longitu-
dinal studies with sufficient number of participants who develop a
first manic episode should be performed in the future.

Lower occurrence of ADHD in the high-risk group was due to
the distribution of risk factors within the three different recruit-
ment pathways. Although ADHD as a risk factor enabled the par-
ticipants to enter the study through all three recruitment
pathways, the risk factor ADHD was ‘enriched’ in the overall sam-
ple due to in- and outpatients entering the study through the
‘ADHD’ recruitment pathway. However, these participants dis-
played fewer additional risk factors, so that most did not fulfill
the criteria for the higher risk groups.

An interesting research objective for future studies would be to
include participants with borderline personality disorder, as these
might be hard to clinically distinguish from bipolar disorder in its
initial or at-risk state. Especially the question whether people that
transition to different disorders also differ in brain structure
would be highly relevant.

In summary, we show that machine learning techniques can
detect brain structural alterations in young individuals at risk for
bipolar disorder with a performance comparable to previous
studies of patients with manifest disease and healthy controls.
Whole-brain cortical thickness might be superior to other struc-
tural brain features in predicting the risk to develop bipolar dis-
order. Future studies should aim to improve the performance of
predictive models for individuals at risk by using larger cohorts
and multimodal data. Even more sophisticated machine learning
methods or methods of feature extraction may contribute to
clinically meaningful predictions. Our own study may contribute
to this effort in the future (Böhle, Eitel, Weygandt, & Ritter,
2019).

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291723001319
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