A SHARPENING OF THE BERKSON-GLICKFELD THEOREM

by ZOLTAN MAGYAR

(Received 8th January 1982)

Introduction

It is known that if in a Banach*-algebra with unit the following holds:

 $\|\exp(ih)\| = 1 \qquad \text{if } h = h^*$

then it is a C^* -algebra (see [3]).

We shall show that the above theorem can be sharpened in the following way: we replace the submultiplicativity of the norm by the weaker assumption

$$||a^*a|| \le ||a^*|| \cdot ||a|| \qquad \text{for all } a.$$

Observe that under this assumption even the existence of exp(ih) is not at all obvious, but it will be proved to be true below. Our main result is Theorem 2 which depends on Theorem 1. Our last remark is the equivalent-norm-version of the statement.

Theorem 1. Let \mathcal{A} be a *-algebra with unit. Let p be a complete norm on it such that the following hold for a suitable positive constant D:

- (i) $p(a^*a) \leq D \cdot p(a^*) \cdot p(a)$ for all $a \in \mathcal{A}$,
- (ii) $p(\exp(ih)) \leq D$ if $h = h^* \in \mathcal{A}$ and $\exp(ih)$ exists.

Then there is a norm $\|.\|_{c}$ on \mathcal{A} , equivalent to p and such that $(\mathcal{A},\|.\|_{c})$ is a C*-algebra.

Proof. The following identity holds in each *-algebra:

$$4xy = (y + x^{*})^{*}(y + x^{*}) - (y - x^{*})^{*}(y - x^{*})$$
$$+ i(y + ix^{*})^{*}(y + ix^{*}) - i(y - ix^{*})^{*}(y - ix^{*}).$$
(1)

Applying (i) we get from this

$$4p(xy) \le 4D \cdot (p(y^*) + p(x)) \cdot (p(y) + p(x^*)).$$
⁽²⁾

Writing $x = p(v^*)^{1/2} \cdot p(v)^{1/2} \cdot u$, $y = p(u^*)^{1/2} \cdot p(u)^{1/2} \cdot v$ in (2), we infer

$$p(uv) \leq D \cdot (p(u^*)^{1/2} \cdot p(v^*)^{1/2} + p(u)^{1/2} \cdot p(v)^{1/2})^2.$$
(3)

275

Define a new norm by setting

$$||a|| = 4D \cdot \max(p(a^*), p(a)).$$
(4)

Then we have, by (3),

$$||ab|| \le ||a|| \cdot ||b||; ||a^*|| = ||a||; p(a) \le \frac{1}{4D} \cdot ||a||$$
 for all $a, b \in \mathscr{A}$. (5)

Let \mathscr{B} be the completion of $(\mathscr{A}, ||.||)$. Then by (5) the algebra operations and p have unique continuous extensions to \mathscr{B} . Thus $(\mathscr{B}, ||.||)$ is a star-normed algebra, p is a continuous seminorm on it, and (i), (4) and (5) are valid in \mathscr{B} , too.

Since $(\mathscr{B}, \|.\|)$ is a Banach-algebra with unit, for any $a \in \mathscr{B}$ we can define $\exp_B a = \sum_{n=0}^{\infty} a^n/n!$, with respect to $\|.\|$. Let $a \in \mathscr{A}$, then $\sum_{n=0}^{\infty} a^n/n!$ is convergent in $(\mathscr{A}, \|.\|)$ and thus, by (5), in (\mathscr{A}, p) , too. But p is a complete norm on \mathscr{A} , and therefore there is a unique $\exp_A a = \sum_{n=0}^{\infty} a^n/n!$ in \mathscr{A} , with respect to p. We note that $p(\exp_A a - \exp_B a) = 0$ for all a because p is continuous with respect to $\|.\|$.

Thus we see from (ii) that

$$p(\exp_B(ih)) \leq D$$
 if $h = h^* \in \mathscr{A}$. (6)

Since the * is continuous with respect to $\|\cdot\|$ thus $(\exp_B a)^* = \exp_B(a^*)$ for all $a \in \mathscr{B}$; in particular $(\exp_B(ih))^* = \exp_B(-ih)$, if $h = h^*$. Therefore by (6) and (4) we infer

$$\|\exp_{B}(ih)\| \leq 4D^{2} \quad \text{if } h = h^{*} \in \mathscr{A}.$$

$$\tag{7}$$

Since the self-adjoint part of \mathscr{A} is dense in that of \mathscr{B} , thus (7) is true even if $h=h^* \in \mathscr{B}$. But this implies that $||a||_c = r(a^*a)^{1/2}$ defines a C*-norm on \mathscr{B} , equivalent to ||.|| (see [2]). Thus there are positive constants E, F such that

$$E \cdot ||a||_{\mathcal{C}} \leq ||a|| \leq F \cdot ||a||_{\mathcal{C}} \quad \text{for all } a \in \mathscr{B}.$$

Writing $K = E(4D)^{-1}$, $L = F(4D)^{-1}$ we have by (4) that

$$p(a) \leq L \cdot ||a||_{c} \quad \text{for all } a \in \mathscr{B} \quad \text{and}$$

$$p(h) \geq K \cdot ||h||_{c} \quad \text{if } h = h^{*} \in \mathscr{B}. \quad (8)$$

Thus by (i) we have

$$K \cdot ||a||_C^2 = K \cdot ||a^*a||_C \leq p(a^*a) \leq D \cdot p(a^*) \cdot p(a).$$

This and (8) imply

$$p(a) \ge K \cdot (DL)^{-1} \cdot ||a||_C$$
 for all $a \in \mathscr{B}$.

Thus we have seen that p and $\|.\|_{c}$ are equivalent.

Note. The condition (i) in Theorem 1 implies that $\exp a$ exists in \mathscr{A} for all $a \in \mathscr{A}$. We have seen it in the first part of the above proof.

Theorem 2. If the assumptions of Theorem 1 hold with D=1 then $p=||.||_c$, that is (\mathcal{A}, p) is a C*-algebra.

Proof. Since $r(a) = \lim ||a^n||_C^{1/n}$, we infer from Theorem 1 that

$$r(a) = \lim p(a^n)^{1/n} \quad \text{for all } a \in \mathscr{A}.$$
(1)

Applying (i) to $a = h^{2^n}$, where h is self-adjoint, we infer by induction that $p(h^{2^n}) \le p(h)^{2^n}$ and thus by (1) we get

$$r(h) \le p(h) \quad \text{if } h = h^* \in \mathscr{A}. \tag{2}$$

But $r(a^*a) = ||a||_C^2$ for all a and thus

$$\|a\|_{\mathcal{C}}^2 \leq p(a^*a) \quad \text{for all } a \in \mathscr{A}. \tag{3}$$

It is known that the unit ball of a C^* -algebra with unit is the closed convex hull of elements of the form $\exp(ih)$ where h is self-adjoint (see [1], p. 210).

On the other hand, from (ii) we see that $p(a) \leq 1$ if a is convex combination of elements of the form $\exp(ih)$; further p is continuous with respect to $\|.\|_c$ and thus we get

$$p(a) \leq ||a||_c$$
 for all $a \in \mathscr{A}$. (4)

Comparing (3), (4) and (i) we see that

$$||a||_{c}^{2} \leq p(a^{*}a) \leq p(a^{*}) \cdot p(a) \leq ||a^{*}||_{c} \cdot ||a||_{c} = ||a||_{c}^{2}$$

that is $||a||_c^2 = p(a^*) \cdot p(a)$ for all $a \in \mathcal{A}$. This and (4) imply $p = ||\cdot||_c$. Thus Theorem 2 is proved.

Remark. The completeness of the norm is not essential. Drop it and replace (ii) by this:

(iii)
$$\lim_{k \to \infty} p\left(\sum_{n=0}^{k} \frac{(ih)^{n}}{n!}\right) \leq D$$
 if $h = h^{*} \in \mathscr{A}$ and the limit exists.

Then the conclusion has to be modified so that the completion of (\mathcal{A}, p) is an equivalent C^* -algebra (resp. a C^* -algebra if D = 1). The proof is the same.

REFERENCES

1. F. F. BONSALL and J. DUNCAN, Complete Normed Algebras (Erg. Math. Bd. 80, Springer, 1973).

Z. MAGYAR

2. V. PTÁK, Banach algebras with involution, Manuscripta Math. 6 (1972), 245-290.

3. B. W. GLICKFELD, A metric characterization of C(X) and its generalization to C*-algebras, Illinois J. Math. 10 (1966), 547-566.

BUDAPEST, XXI KISS J.A.U. 57. VIII/25 1211 HUNGARY

278