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Abstract

Human height and related traits are highly complex, and extensively research has shown that
these traits are determined by both genetic and environmental factors. Such factors may
partially affect these traits through epigenetic programing. Epigenetic programing is dynamic
and plays an important role in controlling gene expression and cell differentiation during
(early) development. DNA methylation (DNAm) is the most commonly studied epigenetic
feature. In this study we conducted an epigenome-wide DNAm association analysis on height-
related traits in a Sub-Saharan African population, in order to detect DNAm biomarkers across
four height-related traits. DNAm profiles were acquired in whole blood samples of 704
Ghanaians, sourced from the Research onObesity and Diabetes among AfricanMigrants study,
using the Illumina Infinium HumanMethylation450 BeadChip. Linear models were fitted to
detect differentially methylated positions (DMPs) and regions (DMRs) associated with height,
leg-to-height ratio (LHR), leg length, and sitting height. No epigenome-wide significant DMPs
were recorded. However we did observe among our top DMPs five informative probes
associated with the height-related traits: cg26905768 (leg length), cg13268132 (leg length),
cg19776793 (height), cg23072383 (LHR), and cg24625894 (sitting height). All five DMPs are
annotated to genes whose functions were linked to bone cell regulation and development. DMR
analysis identified overlapping DMRs within the gene body ofHLA-DPB1 gene, and theHOXA
gene cluster. In this first epigenome-wide association studies of these traits, our findings suggest
DNAm associations with height-related heights, and might influence development and
maintenance of these traits. Further studies are needed to replicate our findings, and to elucidate
the molecular mechanism underlying human height-related traits.

Introduction

Human height and height-related traits, such as leg-to-height ratio (LHR), leg length, and sitting
height, are complex traits that are determined by both genetic and environmental factors.
Moreover, these traits have been shown to have low correlations with each other and therefore
are assumed as independent variables when utilized by epidemiologists to measure growth
factors among populations at risk of prolonged malnutrition.1 The longitudinal effects of
environmental and genetic factors on height have been recorded since the first published
Developmental Origin of Disease Hypothesis (DODH) by Baker. Investigating gene–
environment interaction in the form of DNA methylation (DNAm) as part of DODH is of
potential relevance, as only the use of genome-wide association studies (GWAS) loci scores
could only explain 18.5–19.8% of inter-individual variation in height heritability.2 Additionally,
GWAS have identified 3290 loci associated with height and height-related traits, however those
loci only represent 24.6% of the variance in height.3,4 Environmental factors, such as nutritional
shortage, are considered important factors determining height.5–7 It has been shown that during
periods of nutritional shortage populations generally have shorter statures, whereas during
nutritional surplus, average population length goes up.8–10 In the light of low explained variance
of genetic factors and the important effect of environmental factors, studying epigenetic
modifications associated with height and height-related traits is of interest, as they can reflect
gene–environment interaction (Fig. 1).1,11 Epigenetics is the study of heritable, yet reversible
molecular modifications of DNA without altering the DNA sequence12 and comprises histone
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modifications, microRNA, and DNAm of which the latter is the
most commonly studied. Epigenetic processes influence the
phenotypic development, through regulation of gene expression.12

Previous studies have found genes relating to bone cell develop-
ment andmaintenance to be under the influence of DNAm13,14 but
epigenome-wide association studies (EWAS) on height and height-
related traits have not been performed. The aim of this study was to
assess the relation between DNAm and height and height-related
traits (leg length, sitting height, and LHR), in a population of
Ghanaians, in order to increase our physiological understanding of
growth regulation. This of particular relevance to a West African
population, among whom an association between height and
height-related with cardiometabolic conditions later in life was
demonstrated.15

Methods

Study population

This study population of adults was derived from the Research on
Obesity and Diabetes among African Migrants (RODAM) study.
The data collection procedures for the RODAM study have been
published previously.16 The study was conducted from 2012 and
2015 with 6385 Ghanaians resident sampled from across in five
geographical locations. Ghanaian individuals were randomly
sampled from various urban and rural areas within Ghana and
from migrant communities in Amsterdam, Berlin, and London16

with the mean age for participants estimated to 51.2 (± 9.73
standard deviations (SD)). Ethical committees from participating
institutions in Ghana, the Netherlands, Germany, and the UK
approved the study before the start of data collection. Written
informed consent was obtained from each study participant. All
participants for the DNAm profiling were selected from a case–
control design in which ~ 300 individuals were diabetic cases, ~300
were deemed diabetic control cases, and ~ 135 were obese control
cases).17 The EWAS was performed using the DNAm profiles of
736 participants of the RODAM cohort,18 of which 713 samples
passed quality control. Quality control procedures were based on
those described by Meeks et al.18 and Chen et al.19 Individuals
missing one or more height-related traits and those whose
measurements were erroneously recorded were omitted from
inclusion in the final sample for this study (n= 704).

DNA isolation methylation profiling, processing, and quality
control

High molecular DNAm was extracted from whole blood samples.
The blood samples were processed manually, aliquoted, and stored
at −20°C at local research locations. Samples were transported to

central laboratories in each country to be registered and stored
again −80°C.

The DNA extraction methylation profiling, processing, and
quality control protocols of the RODAM samples have been
described in detail previously.20 In brief, bisulfite conversion of
DNA and DNA extraction protocols were conducted in the Source
BioScience laboratories, Nottingham, UK, using the Zymo EZ
DNAm™ kit. Infinium® HumanMethylation450 BeadChip ampli-
fied and hybridized the converted DNA, thereby quantifying
DNAm levels for ~ 485,000 CpG sites. Methylation levels were
determined from the methylated or unmethylated intensities for
each individual CpG site present within the array. Methylation
levels were quantified via Beta values, with zero representing an
unmethylated probe and one representing a fully methylated
probe. M values subsequently were calculated and were applied in
further analyses. Using R statistical software (version 4.2.0), quality
control was performed using the MethylAid package (version
1.30.0). The raw 450k data was normalized using theMinfi package
(version 1.42). Additionally probes annotated to the X and Y
chromosomes were removed as well as cross-hybridised CpGs, and
probes known to contain single nucleotide polymorphisms with a
minor allele frequency of > 0.05.19 These procedures reduced the
data available for analysis to approximately 429,449 CpG sites per
participant. Lastly, relative blood cell type distribution (CD8þ, T
lymphocytes, CD4þ T lymphocytes, natural killer cells, B cell,
monocytes, and granulocytes) was estimated according to the
methods of Houseman et al.21

Physical measurements

All height and height-related measurements were standardized
across all sampling locations.1,22 Height was determined from a
portable stadiometer (SECA 217) to the nearest 0.1 cm without
participants wearing shoes. Sitting height was derived from
measuring participants as they sat upright on a flat seat, and with
their heads level, feet on the floor, and with the thighs unsupported.
Then the sitting height distance (cm) from the floor to the top of
the head was recorded. The leg length (cm) was calculated by
subtracting an individual’s sitting height from their total height. By
dividing the calculated leg length by skeletal height, the LHR was
estimated.1,22

Differentially methylated positions
Differentially methylated positions (DMPs) were derived from
multivariate linear regressions between height-related traits
(independent variable) and DNAm M values (dependent
variable) using the Limma package (version 3.52). Methylation
M values were used to ensure normal distribution for the
statistical analysis, while Beta values were used for interpretation

Figure 1. Conceptual framework diagram. The diagram dem-
onstrates this study’s exploration of DNA methylation profiles
associated with height-related traits due to these traits being
influenced by both genetics and environmental factors.

Journal of Developmental Origins of Health and Disease 659

https://doi.org/10.1017/S204017442300034X Published online by Cambridge University Press

https://doi.org/10.1017/S204017442300034X


and visualization of data.23 Models were adjusted for sex, age,
estimated blood cell type proportions, and technical covariates
(hybridisation batch and array position), because of correlation
with DNAm in the principal components analysis. QQ plots were
used to assess best model fit for each height-related trait (Fig. 2).
False discovery rate (FDR) p-value adjustments were applied to
reduce type I error through multiple testing. An FDR of < 0.05
was assumed epigenome-wide significance, while an FDR within
a range of 0.05–0.5 was eligible for differentially methylated
region (DMR) analysis. Since all traits analyzed in this study are
to a greater or lesser extent correlated to each other, we assumed
that traits were not fully independent and multiple test penalty
was only applied per analyzed trait. CpG probes and genes were
annotated using the Human Genome build 37 Illumina platform
via the IlluminaHumanMethylation450kanno.ilmn12.hg19 R
package (Version 0.6, UCSC build). Lastly, in order to detect
and remove undocumented genetic variation we ran a post hoc
analysis on the top 25 DMPs using the Bioconductor package
gaphunter,24 applying the delta difference cluster (>2) threshold
of 0.05.24,25

Differentially methylated regions
DMRs were identified using two different R packages: bumphunter
(version 1.38) and DMRcate (version 3.15). Both procedures
generated results based on the lowest p-values and FDRs using
fitted models similar to the DMP analysis.20 For bumphunter, the
M value cutoff determining the effect size for the DMR analysis was
set at 0.0025, corresponding to an effect size of 0.25% M value
difference per cm for the corresponding height-related trait. Here
we applied 500 bootstrap permutations on the bumphunter
models. DMRs were defined to compromise ≥ 3 CpGs. A family-
wise error rate (FWER) < 0.2 was considered statistically
significant. With the DMRcate analysis, FDR threshold cutoffs
varied for every height-related trait, i.e. this threshold was relaxed
to each traits’ lowest observed FDR value minus 0.01. We assumed
that DMRs with a Stouffer coefficient and a smoothed FDR of
< 0.05 were epigenome-wide significant. A smoothed FDR is a
method of refining the multiple-hypothesis test by implementing a
weighted distribution.DMRcate uses a Gaussian kernel bandwidth
for the smoothed-function estimation.27

Biological relevance
Biological functions of DMPs and DMRs were assessed through
the systematic search of multiple academic sources.28–31 All probes
and gene functions were required to be consistent across at least
three independent sources for the function of the probe, or gene, to
be considered informative and relevant to this study. The sources
used to verify the function of identified DMPs, and DMRs include
EWAS Atlas Database,28 iMethyl,29 and UCSC Genome.30 The
function of identified genes annotated to our top DMPs and DMRs
were verified using UCSC Genome,30 the National Library of
Medicine’s Gene Database,31 as well as peer-reviewed article
sourced from the PubMed database (https://pubmed.ncbi.nlm.nih.
gov/). The purpose of these reviews was to confirm a probe/genes’
citation in publications exploring metabolic conditions, growth
factors, adverse environmental influenced development, or general
probe/gene function.

Pathway analysis
Enrichment pathway analysis identifies molecular and genetic
mechanisms associated with specific DMPs. The MissMethyl32 an
enrichment procedure was conducted with the first 100 significant

probes per anthropometric trait based on p-value and lowest FDR.
Enrichment results were generated usingMissMethyl package in R;
generating results from databases are the Gene Ontology33 (GO)
and Kyoto Encyclopedia of Genes and Genomes34 (KEGG). The
purpose of the enrichment pathway analysis was to confirm if there
existed a correlation connection between the molecular mecha-
nism associated with our top 100 DMPs and embryonic develop-
ment, growth factors, or height-related traits.

Results

Participants characteristics

The subset of the RODAM study presented, included 704
participants after quality control protocols (Table 1). Among this
population, the mean age was 51.2 (± 9.73 SD), while average
height was calculated at 164.04 cm (± 8.33), LHR was 0.50 (± 0.02),
leg length 82.65 cm (± 5.21), and sitting height measuring 81.45
(± 4.72) (Table 1). While the various blood cells were observed to
distribute at similar levels: CD8Tþ lymphocytes, CD4Tþ
lymphocytes, natural killer cells (NK), B cell, monocytes, and
granulocytes. When the subset was stratified between males and
females, we observed that male participants were older and taller.
The subset had an average age of 52 (± 9 SD) among males and 51
(± 10 SD) among females. Demographic analysis did not
demonstrate a correlation between sex and a difference in blood
cell type distributions, or habitual smoking (Table 1).

Differentially methylated positions

We detected no epigenome-wide significant DMPs among the four
height-related traits. Although not statistically significant, we
evaluated the top 25 DMPs per trait. Among the leg length DMPs,
we identified cg26905768 annotated to the body of BMPER and
cg13268132 annotated to the promoter region of TNFRSF11B,
which were both hypomethylated (Table 2). Top DMPs among
height included hypomethylated cg19776793 annotated to the
body of SLC38A10, and for LHR, hypomethylated cg23072383
annotated to the TSS1500 of SLC35E4. For sitting height, we
associated a hypomethylated probe cg24625894 annotated to the
promoter region of SLC39A4. Note that the latter three DMPs are
all members of the SLC30 gene family (Supplementary Table S1,
S2, and S4). The possible informative nature of these probes will be
discussed at length in the Discussion section. Post hoc analyses
applying gaphunter, did not return any additional genetic variation
among the 25 DMPs with the smallest p-values, per trait.
Additionally, sex-stratified analysis did not reveal statistically
significant DMPs associated with any of the traits.

Differentially methylated regions

Next we aimed to detect DMRs by applying DMRcate for all traits.
From the DMRcate analysis, height was associated with 1291
DMRs according to a FDR threshold cutoff of 0.12 of which 110
demonstrated significance (Supplementary Table S5). Sixteen
significant DMRs were detected for sitting height out of a total of
2053 according to an FDR threshold cutoff of 0.27 (Supplementary
Table S7). Leg length generated 1506 DMRs, however none of
the DMRs were epigenome-wide significantly represented
(Supplementary Table S6). Several DMRs were annotated within
the same gene; these repetitive DMRs were observed in one or
more height-related traits. These recurring DMRs were located
within the body of the HOXA gene cluster (covering 23, and 26
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DMPs for height and sitting height, respectively), HLA-DPB1
(covering 23, and 24 DMPs for height and sitting height,
respectively), and HIC1 (covering 50, and 53 DMPs for height
and sitting height, respectively), which were all three hypomethy-
lated (Table 2, Figs. 3–5, Supplementary Table S7). DMR analyses
applying Bumphunter, using an effect size cutoff of 0.0025,
produced one significant DMR. This DMR was detected for both
leg length and sitting height (covering 9, and 9 DMPs, respectively)
and were located in the HLA-DPB1 gene. Neither height nor LHR
generated DMRs. Noteworthy, the DMRs observed within the
HLA-DPB1 gene associated with sitting height, were detected in
both the DMRcate and bumphunter procedures, associated with
sitting height.

Pathway analysis

The pathway analysis produced no results which could be used to
add or subtract credibility from our hypothesis. Several p-value
significant molecular mechanisms relating to bone development

and growth factors were observed, however all mechanisms were
stipulated to have an FDR= 1. Zinc ion homeostasis was identified
with sitting height using both GO (n= 40, DE= 3, p= 0.001,
FDR= 1) and KEGG databases (n= 8, DE= 2, p= 0.001,
FDR= 1). Leg length yielded pathways as well, however the most
noteworthy was osteoclast differentiation (n= 120, DE= 4,
p= 0.004, FDR = 1) which was gleaned from the KEGG database.

Discussion

Key findings

We conducted an exploratory association study to investigate
associations between DNAm profiles and height-related traits
using data of the RODAM study. Even though not epigenome-
wide significant, we did identify potentially informative DMPs and
DMRs, located in genes previously linked to the growth regulation.
To our knowledge, none of the observed DMPs or DMRs have ever
been associated with these height-related traits before. The relevant

Figure 2. QQ plots visualizing the fit of
the linear regression models used in
DMP analysis for height (A), LHR (B), leg
length (C), and sitting height (D).
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DMPs include multiple probes annotated to the SLCA gene family,
across both height and sitting height. Leg length identified two
CpGs within genes associated with bone cell regulation:
cg26905768 annotated to BMPER and cg13268132 annotated to
TNFRSF11B. BMPER specifically encodes a secreted protein that
limits bone morphogenetic protein (BMP) function, inhibits
BMP2- and BMP4-dependent osteoblast differentiation35, and
modulates BMP-dependent differentiation among endothelial
cells.32 The observed DMP was annotated to the body of the
BMPER gene, and hypomethylated in this gene region generally
associated with lower expression of the gene. In the context of
regulation of leg length, this would be in line with our expectation
that expression of bone cell genes should decrease upon aging.
TNFRSF11B, encodes osteoprotegerin, a protein that regulates
osteoclastogenesis inhibitory factors.36,37 TNFRSF11B’s role in
bone cell resorption has been hypothesized as contributing to
osteoporosis as well as other conditions caused by decreased bone
density.36,37 As hypomethylation of promoter regions generally is
associated with more expression of the gene, it thus seems that
TNFRSF11B is more expressed. As osteoclasts play a role in
age-related decrease in bone mineral density, activity of this gene
might be relevant given the average age of the study population.36,37

The alignment of multiple SLCA genes has potential importance as
this gene family assists in transport of protein, zinc, and iron
throughout the body during development.38 Specifically SLC39A4
gene (annotated to sitting height) is correlated with bone cell

maintenance.39 Unfortunately, pathway analysis returned no
significant results. In summary, our observed DMPs associated
with height-related traits have previously been associated with
growth factors or bone cell regulation, and the observed
methylation levels, in the respective locations, are mostly in
accordance with what we would expect in height-related traits.

We identified several DMRs that were annotated to a
hypomethylated HLA-DPB1 gene, as well as hypomethylation
among the HOXA genes cluster for at least two height-related
traits. In both DMRs we observed hypomethylation in the body of
each gene, which asserts less gene expression. TheHLA gene family
is mostly associated with chronic autoimmune diseases31,40 and
inflammatory conditions. HLA-DPB1 is a class II HLA gene
associated with the body’s defense against infection.31,40 This gene,
however, has never been studied in the context of growth
regulation. We therefore cannot assert a physiological rationale for
multiple DMRs being detected amongst only two of our height-
related traits. For both sitting height and LHR, we found DMRs
annotated to the HOXA cluster. The homeobox, or HOX, gene
family is highly influential during embryonic development in most
species.30,40 Researchers have demonstrated HOXA genes are
associated with various forms of development, including skeletal
regulation.40 Therefore, hypomethylation of the body of theHOXA
genes, the implication of less expression, is in line with our
expected findings as HOXA gene misregulation or mutations
leading to changes in skeletal development are correlated with

Table 1. Characteristics of RODAM study including participants demographic information, lifestyle factors, height-related traits, and distribution of the cell types
observed

Demographics (standard deviation (SD)) Participant characteristics All participants Male Female P value Missing (%)

n 704 301 403 0

Age, years (SD) 51.2 (9.73) 51.86 (9.08) 50.53 (10.38) 0.077 0

Location % (SD) <0.001

Amsterdam 150 (21.3) 89 (29.6) 61 (15.1) 0

Berlin 81 (11.5) 56 (18.6) 25 (6.2) 0

London 130 (18.46) 52 (17.3) 78 (19.4) 0

Urban Ghana 241 (34.23) 72 (23.9) 169 (41.9) 0

Rural Ghana 102 (14.49) 32 (10.6) 70 (17.4) 0

Lifestyle factors, % (SD)

Habitual smoking 2.07 (0.33) 2.13 2.03 <0.001 2.8

height-related traits, cm, (SD)

Height 164.04 (8.33) 170.38 (6.74) 159 (5.90) <0.001 0

Leg-height ratio (LHR) 0.50 (0.02) 0.50 (0.02) 0.50 (0.02) 0.784 0

Leg length 82.65 (5.21) 85.88 (4.64) 80.24 (4.22) <0.001 0

Sitting height 81.45 (4.72) 85.3 (3.63)) 79.07 (3.98) <0.001 0

Cell types distribution % (SD)

CD8þ T lymphocytes 0.11 (0.05) 0.10 (0.05) 0.12 (0.04) <0.001 0

CD4þT lymphocytes 0.18 (0.06) 0.18 (0.06) 0.18 (0.06) 0.2 0

Natural killer 0.11 (0.06) 0.12 (0.06) 0.10 (0.05) <0.001 0

B cell 0.11 (0.03) 0.00 (0.00) 0.00 (0.00) 0.0 0

Monocytes 0.08 (0.02) 0.08 (0.03) 0.08 (0.02) 0.79 0

Granulocytes 0.46 (0.09) 0.46 (0.10) 0.45 (0.09) 0.78 0
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Table 2. Differentially methylated regions (DMRs) for height, sitting height, and leg length identified using two methods (DMRcate and bumphunter). DMRs with FWER > 0.2 or Stouffer coefficient > 0.05

DMR analysis

DMRcate Trait Chr Start End Width No. CpGs Smoothed FDR Stouffer Direction of affect UCSC Reference Genes

Height

6 33047944 33049505 1562 23 1.86E-11 9.31E-05 −1.85E-03 Body HLA-DPB1, HLA-DPA1

7 27142427 27144302 1876 23 2.75E-21 1.66E-04 −1.23E-03 Body HOXA2

6 126068919 126070802 1884 15 1.21E-07 2.71E-04 1.46E-04 Body HEY2, RP11-624M8.1

8 37962386 37963526 1141 15 4.12E-11 3.02E-04 8.34E-05 1st Intron ASH2L

2 190305524 190306491 968 16 1.62E-09 4.12E-04 1.08E-04 Body WDR75

13 99852409 99853209 801 14 1.82E-08 4.90E-04 9.41E-05 Body UBAC2, UBAC2-AS1

11 94277826 94279068 1243 11 2.15E-13 5.39E-04 −8.72E-04 3'UTR PIWIL4, FUT4

2 33824170 33825072 903 13 1.62E-08 7.10E-04 8.96E-05 FAM98A

20 60639404 60641183 1780 9 1.29E-06 8.07E-04 −1.35E-04 Body hsa-mir-3195, TAF4

14 81999503 82000858 1356 14 6.05E-09 8.41E-04 1.91E-04 SEL1L

12 110841169 110842031 863 16 9.19E-09 9.81E-04 1.53E-04 Promoter ANAPC7, RP11-478C19.2

4 119199352 119200372 1021 13 2.60E-09 1.01E-03 2.40E-04 SNHG8

17 1956668 1959066 2399 50 3.98E-16 1.02E-03 1.07E-04 Body HIC1

6 32811181 32813715 2535 57 2.46E-12 1.08E-03 1.26E-04 3'UTR TAPSAR1, PSMB9, PSMB8, TAP1

18 12947517 12948653 1137 13 2.74E-08 1.17E-03 1.52E-04 Promoter SEH1L

6 33290281 33292029 1749 49 4.53E-13 1.17E-03 1.35E-04 3'UTR DAXX

12 123459152 123460194 1043 15 6.44E-08 1.34E-03 1.17E-04 Body OGFOD2, RP11-197N18.2, ABCB9

15 72766139 72767565 1427 12 3.16E-08 1.50E-03 8.65E-05 Body ARIH1, RP11-1007O24.3

4 56212072 56212685 614 8 2.90E-08 1.60E-03 1.65E-04 Body SRD5A3

3 38035098 38036060 963 8 1.27E-07 1.61E-03 1.76E-04 VILL

10 72141924 72142824 901 11 3.24E-10 1.62E-03 1.03E-04 Body LRRC20

12 51664245 51664655 411 9 3.45E-08 1.70E-03 1.56E-04 Body DAZAP2, SMAGP

16 11349023 11350746 1724 16 5.67E-09 1.74E-03 1.39E-04 Promoter; Body RMI2, SOCS1

15 65822346 65823539 1194 15 2.28E-10 1.84E-03 3.31E-05 PTPLAD1

3 122283003 122283684 682 14 7.49E-08 1.85E-03 8.27E-05 Body DTX3L, PARP9

Sitting height

7 27169208 27171528 2321 26 2.94E-11 4.00E-03 −1.70E-03 Promoter; Body HOXA-AS2, HOXA-AS3, HOXA3

3 45077070 45078075 1006 9 2.13E-08 1.20E-02 −2.02E-03 3'UTR EXOSC7, CLEC3B

16 53406901 53407808 908 8 2.85E-08 2.60E-02 3.95E-03 RP11-44F14.2, RP11-44F14.1

(Continued)
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Table 2. (Continued )

DMR analysis

DMRcate Trait Chr Start End Width No. CpGs Smoothed FDR Stouffer Direction of affect UCSC Reference Genes

8 145637525 145639181 1657 8 1.54E-06 3.00E-02 1.44E-03 SLC39A4

13 88328009 88329407 1399 8 3.53E-05 3.30E-02 −2.10E-03 SLITRK5

17 7311030 7312081 1052 9 2.64E-05 3.70E-02 −1.28E-03 Body NLGN2

13 20989142 20990243 1102 6 2.93E-06 3.80E-02 −1.79E-03 Body CRYL1

2 43327937 43328657 721 7 1.10E-05 4.00E-02 −1.93E-03 Body AC093609.1

11 64108241 64110178 1938 10 2.19E-04 4.10E-02 −7.96E-04 Body CCDC88B

3 113160071 113160821 751 10 5.05E-07 4.20E-02 −1.34E-03 Body; 1st Intron WDR52

1 949392 949893 502 5 4.47E-07 4.40E-02 −2.16E-03 Body ISG15

6 33047944 33050124 2181 24 4.24E-08 4.40E-02 −3.03E-03 Body HLA-DPB1, HLA-DPA1

1 164545553 164546143 591 5 6.63E-05 4.50E-02 −8.47E-04 PBX1

19 8590567 8591776 1210 5 2.58E-04 4.60E-02 −1.15E-03 Body MYO1F

1 27675934 27677240 1307 6 4.53E-04 4.70E-02 −1.37E-03 SYTL1

6 26225258 26226256 999 7 4.71E-04 5.00E-02 −1.05E-03 Promoter; Body HIST1H3E

Bumphunter Trait Chr Start End P value No.cpgs Fwer Affect size UCSC reference Gene

Leg length

6 33048529 33048875 3.89E-04 9 0.198 0.0025 Body HLA-DPB1

Sitting height

6 33048529 33048875 3.50E-04 9 0.178 0.0025 Body HLA-DPB1

Are listed in Supplemental Table X. Chr = Chromosome, UCSC Reference: the gene feature based on the UCSC genome browser, Gene: the annotation performed via. Illumina R package version 0.06, UCSC build HG37.
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Figure 3. Manhattan plot of epigenome-wide p-values for height (A), LHR (B), leg length (C), and sitting height (D).
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early development,40,42 not during middle life, which is the average
age of the of our RODAM study subset. Our findings could serve as
a starting point for further research to assess the role of theHOXA
gene in human skeletal development.

Although there is no explicit information about exposure to
malnutrition in early life, the average age of the RODAM cohort
allows for speculation on exposure to food shortage and the impact
on height. In Ghana, two periods of famine occurred in the latter
half of the 20th century. In the era between 1960 and 1974 there
were widespread food shortages in rural areas throughout the
country.43,44 At the time, an estimated 70% of Ghanaian citizens
were estimated to reside in rural regions.41 More widely known is
the 1981–1983 famine leading to a nationwide occurrence of
malnutrition and inaccessibility to cash crops.43 Based on themean
age of RODAM participants, most would have been born or
experienced infancy in Ghana between 1960 and 1974. This early-
life exposure to famine could have impacted DNAm patterns,
thereby affecting height and related traits.

Strengths and limitations

A major benefit of using the RODAM study population is its
relative genetic homogeneity, meaning that all individuals
stemmed from one region in Ghana, the Ashanti region, and
the majority of participants identified as originating from one
ethnic groups, the Akan.16 Additionally, the prevalence of
confounding factors in DNAm studies like smoking and alcohol
consumption were very low and therefore we assume that our
results were not impacted.

Our study has several limitations. The RODAM cohort was
designed to investigate metabolic disease and immigration-related
health concerns among Sub-Saharan African populations. It was
not the primary purpose of the RODAM cohort to explore height-
related traits, or the confounding factors that contribute toward
height development. This difference between our use of the
RODAM cohort and its original epidemiological purpose could
contribute to our overall lack of statistically significant results.

Figure 4. Comet plot of the differentially methylated region identified HLA-DPB1 gene based on the sitting height trait results. Plot show a differentially methylated region in
chromosome 6, 33.646943 and 33.051125 megabases (mb) obtained via DMRcate. The red box highlights the probes annotated to the DMR. Correlations are measured using the
spearman rambling coefficient.
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Note the additional co-factors of RODAM representing amean age
of 50 for its participants and that height-related traits have
an ~ 80% heritability rate. This does pose the possibility that
epigenetic signaling was diminished due to environmental factors
over the course of participants’ lifetimes. We suggest the use of
younger cohorts in future. Additionally due to the relatively small
sample size, as well as the effect size, our study was limited in
statistical power to detect epigenome-wide significant DMPs. The
small number of participants in our study subset meant that a sex-
stratified analysis was not possible, but differences based on sex
were not expected as correlation between sex and height-related
traits were shown to be low. We relaxed significance thresholds for
both DMP and DMR protocols, potentially resulting in false
positive findings. Moreover, we cannot definitively state whether
or not our height-related traits were affected by any nutritional
deprivation during early-life development, as we did not apply a
longitudinal design. This limits our capacities to make statements
on causality. Additionally, we assumed that DNAm patterns of
height-related genes remain stable in adult, however, this

assumption cannot be verified in this study. Differential epigenetic
aberrations might echo in later life without having a current
functional effect, but would be involved in other traits, biological
mechanisms, or co-morbidity such as cardiovascular disease.18

Lastly, this study was conducted utilizing epigenetic profiles based
on whole bloods samples, though we focused on the height-related
traits determined by bone development. As DNAm is tissue-
specific, and DNAm profiles derived from blood might therefore
not be representative of processes occurring in bone tissue.45

Epigenetic profiles derived from bone-related tissues would help to
validate our findings.

Conclusion

In this proof-of-principle study, we found several potential DNAm
markers for height, and height-related traits annotated to genes
involved in skeletal and early development in humans. These
findings can serve as a starting point to further elucidate the role of
DNAm in skeletal development. Future research including a larger

Figure 5. Comet plot of the differentially methylated region identified HOXA cluster gene based on the sitting height trait results. Plot show a differentially methylated region in
chromosome 7, 27.167207 and 27.173529 megabases (mb) obtained via DMRcate. The red box highlights the probes annotated to the DMR. Correlations are measured using the
spearman rambling coefficient.
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sample size, information on early-life factors, DNAm profiles
derived from bone tissue and translational research will all help to
gain better physiological understanding of growth regulation in
human development.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/S204017442300034X.
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