THE NON-BIPLANAR CHARACTER OF
THE COMPLETE 9-GRAPH

W. T. Tutte
(received October 22, 1962)

1. Introduction. Let us define a planar partition of a
graph G as a pair {Hi' HZ} of subgraphs of G with the

following properties
(i) Each of H’1 and HZ. includes all the vertices of G.
(ii) Each edge of G belongs to just one of H1 and HZ.

(iii) H1 and H2 are planar graphs.

It is not required that H1 and H2 are connected. Moreover
either of these graphs may have isolated vertices, incident with
none of its edges. -

We describe a graph having a planar partition as biplanar.

The problem of characterizing biplanar graphs has been
found of interest in connection with the design of computing
machinery. The simplest graph for which the problem has
proved difficult is the complete 9-graph. This graph has 9

vertices and 36 edges, each pair of vertices being joined by
a single edge.

The complete 9-graph has been proved non-biplanar in [2].
The object of this note is to present another proof which, so
Professor Harary assures me, has its own points of interest.

This research was sponsored by the Institute for Defense
Analyses of the U.S. A.
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2. Triangulations of the sphere. Assume that the
complete 9-graph G has a planar partition {Hi’ HZ} . Then

H1 can be realized as a topological graph K1 in the 2-sphere.

If two vertices of the realization lie in the boundary of the same
residual region, and are not joined by an edge of Ki’ they can

be joined by an arc L in the residual region. Then we can
transfer an edge from HZ to Hi so that the new edge of H1

is represented by L. Both Hl1 and H_ remain planar in

2
this operation. Repeating the process sufficiently often we can
arrange that Ki defines a map on the sphere whose faces are

all triangular. We call such a map a triangulation (of the sphere).

The complementary graph G!' of a graph G is defined
as a graph with the same vertices as G, and in which two

distinct vertices are joined by an edge if and only if they are
not so joined in G. The graph G' has no 'loops'', that is
edges with coincident ends. We deduce from the foregoing
considerations the following theorem

(2.1) The assertion that the complete 9-graph is not biplanar

is equivalent to the assertion that if the graph of a triangulation

has 9 vertices then its complementary graph is not planar,

I.et M be a triangulation of the s'phere, defined by a

aph K. A separating triangle of M is a triangle, made up
three edges of K, which does not bound a face of M., That
is, the triangle has vertices of K in both its residual domains.
A triangulation with no separating triangles will be called simple.

e

A triangulation having a separating triangle T can be
derived from a triangulation of fewer vertices, in which T
bolnds a face F, by subdividing F into smaller triangular

regions. By repeated application of this observation we obtain

{2.2) I a triangulation is not simple it can be derived from some

simple triangulation of 4 or more vertices by subdividing one or
more faces into smaller triangular regions.

A subdivision of a face will be said to be of order n if it
introduces just n new vertices.
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We shall use (2.2) to reduce our problem to a study of

simple triangulations of from 4 to 9 vertices. Fortunately

there are so few of these triangulations that they can be studied
Figures I, II, III, IV, and V show those of 4, 6,

individually.
There is no simple triangula-

7, 8 and 9 vertices respectively.
tion of 5 vertices.

Y s
2y e, Ci%&,
74 t ¢,
Figure II

Figure I

Figure III
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. In Figure II the four outer edges are supposed to radiate to
a sixth vertex a1 at infinity (in a sterographic projection of the

sphere). The point at infinity is also a vertex in Figure III,
in the first diagram of Figure IV and in the first and second
diagrams of Figure V.

Before going any further we must show that our list of
simple triangulations of from 4 to 9 vertices is complete.

Let M be a simple triangulation defined by a grai)h K.
Let it have n vertices, where 4 <n< 9.

We observe that no two faces of M have the same three
vertices. Otherwise they would have the same boundary, their
union with it would be the whole sphere, and n would be 3.
Hence no two faces have two sides in common, and therefore
the valency of each vertex is at least 3.

Let v be a vertex of valency k. Its k incident faces,
with their incident edges and vertices, constitute a closed
simply connected region Rv bounded by a polygon P made

v

up of k vertices and k edges of K. If we count v as being
"inside'' P the other n - k- 1 vertices of M noton P

v \4
will be outside P . We note that P has no diagonal in K,

v v
that is no edge of K joins two non-consecutive vertices of P .
v

For such a diagonal, together with the edges of K joining its
two ends to v, would constitute a separating triangle.

Let a be a vertex of M of maximum valency m.
Suppose first that there is no vertex outside Pa. Then m =3
and n =4 for otherwise the outside of P would be subdivided

a
into two or more faces and P would have a diagonal in K.
a
This is the case illustrated in Figure L

In the remaining case m > 4 and n > 6, since otherwise

P would be a separating triangle.
a

Suppose there is just one vertex, b say, outside P .
a

Each edge of P is incident with a face not having a as a
a
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vertex. Since Pa has no diagonal in K this face must be
incident with b. Hence each vertex of Pa is joined to b by
an edge of M. This is the case illustrated by Figures II and
III and the first diagrams of Figures IV and V.

In the remaining case there are at least two vertices
outside Pa. If b is any one of these it is joined by an edge

of K to another. For suppose not. Let ¢ be any vertex,
other than b, outside P . The edges incident with b join it
a ;

only to vertices of Pa’ and any two consecutive ones are sides
of a face having b as a vertex. Since Pa has no diagonal in
K it follows that b is joined to each vertex of Pa. The edges
incident with b thus subdivide the exterior of Pa into faces.
One of these has c¢ in its interior and a 1in its exterior,
contrary to the hypothesis that M 1is simple.

We have shown that K has edges with both ends outside
Pa. At least one such edge must be incident with a face whose
third vertex, x say, is on Pa. But then x 1is at least penta-

valent. So in the case still outstanding m > 5 and n > 8.

Suppose two vertices b and c¢ outside P are joined
a

by an edge bc of K, and that the two faces incident with bc
have their third vertices, x and y say, on P . The points
a

x and y partition P 1into two arcs L and L'. We may
a

suppose that the arcs xby and xcy subdivide the exterior of

Pa into three regions, S1 bounded by L and xby, SZ

bounded by xby and =xcy, and S3 bounded by xcy and L.

We observe that I, must have at least one internal vertex,
that is a vertex distinct from x and vy, for otherwise L and
xcy would define a separating triangle. Similarly L' has at
least one internal vertex.

If m=5 we may suppose L to have one internal vertex
u and L' to have two, v and w say, w being adjacent to
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y on Pa (Figure VI).

J

Figure VI

Now x is already joined to a, b, c, u and v. Since its
valency is at most 5 we have to complete the triangles xbu and
xcv. Similarly, replacing x by y, we must complete the
triangle cwy. We cannot insert a third vertex outside Pa

without introducing a separating triangle. We have now con-
structed the second diagram of Figure IV.

If m =6 there are two possibilities. Either L has one
internal vertex and L' has three, or L and L' have two
each. In each case we can complete the triangulation only by
joining b to all the internal vertices of L and c to all those
of L'. The two resulting triangulations correspond to the
second and third diagrams of Figure V.

In the remaining case m =5, there are just three
vertices b, ¢ and d outside P , and these are the vertices
a

of a face of M. The second faces incident with bc, db and cd
have vertices x, y and 2z respectively on Pa. The vertices

%, y and z must be distinct. If for example x =y then the
edges db, dx and bx define a separating triangle. The vertices

and L ,
x

x, y and z separate P  into threearcs L , L
a xy z

yz
where the suffices indicate the ends of the corresponding arc
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(Figure VII),

Lar.z h4

Figure VII

We can only complete the triangulation by joining b to

the internal vertices of 1. , ¢ to those of L and d to
X'Y Xz
those of L. . Hence, since m =5, we may suppose L
YZ
and L to have one internal vertex each, while L has none.
yz Xz

We are then forced to construct the fourth diagram of Figure IV.

Another way to establish the completeness of our list of
simple triangulations would be to make use of the enumerative
results of [4].

3. Tests for non-planarity. The theorem of Kuratowski

on non-planar graphs is well known [1, 3]. It states that a
graph is non-planar if and only if one of its subgraphs is a sub-
division of the Thomsen graph or the complete 5-graph. The

Thomsen graph has 6 vertices ai, aZ, a3, bi’ bZ’ b3, and

9 edges, each 2, being joined to each b, by a single edge.
J

The complete 5-graph has 5 vertices ays az, a3, a4, aS, and

10 edges, each pair of vertices being joined by a single edge.
Subdivision is effected by breaking some edges into arcs of two
or more new edges by inserting internal vertices.

From this theorem we may derive the following corollary.
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(3.1) A graph G is non-planar if one of the following proposi-
tions is true

(i) G has six disjoint connected subgraphs A, , A_, A_,

1’ 72 3
B_, B_. such that for each A. and each B. we can find an
1 J

Bi’ 2 3

edge with one end in A, and the other in B..
1 J

(ii) G has five disjoint connected subgraphs A , A_, A_,

17 727 73
A4 and A5 such that whenever 1<i<j<5 we can find an

edge with one end in A  and the other in A .
i

The proof is straightforward and may legitimately be left
to the reader.

We shall use (3.1) to test the complementary graphs of
triangulations for non-planarity. It will be convenient to have
the following auxiliary theorems.

(3.2) Let N, defined by a graph J, be a triangulation of the
sphere. Let it have a separating triangle T with three vertices

ai, a.2 and a3 on one side and three vertices bi’ ’b‘2 and b3

on the other. Then the complementary graph J!' of J is non-

planar.

Proof. J!' contains a Thomsen graph with vertices ai,

b, b, b_.

a_,; a 2 3

2 737 1

(3.3) Let N, defined by a graph J, be a triangulation of the
sphere. Let Q =abcd be a quadrilateral in J with two vertices

u and v in one residual domain and three vertices x, v and z

in the other. Suppose further that no edge of J joins a and c,
or b and d. Then either J' 1is non-planar or cne of the
vertices x, y and z is joined to all four of a, b, ¢ and d

by edges of J.

Proof. Suppose neither x, y nor z is joined to both 2
and ¢ in J. Let B1 be the connected subgraph of J' defined
by the vertices a and c and the edge joining them. Let A1,
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AZ’ A3, B2 and B3 be subgraphs of J' consisting of the

single vertices x, y, z, u and v respectively. Then condition
(i) of (3.1) holds for J', and therefore J' is non-planar.

Similarly J' is non-planar if neither x, y nor =z is
joined to both b and d in J.

In the remaining case we may suppose X joined to a
and ¢ in J, and some w ¢ {x, y, z} joinedto b and d
in J. But the arcs axc and bwd, which lie in the same
residual domain of Q, must cross. Hence w =x.

4. The triangulations of 9 vertices. Let N, defined by a
graph J, be any triangulation of the sphere with 9 vertices.
By (2.2) it is either simple or derived from a simple triang ‘lation
M, defined by a graph K with at least 4 vertices, by subdividing
one or more of its faces. In case of ambiguity M 1is to be chosen
to have as many vertices as possible.

Suppose first that N is one of the triangulations of
Figure V. For the first three J' is non-planar by (3. 3).
The required quadrilateral Q =abcd is marked in each diagram.

For the fourth diagram let A , (i=1, 2, 3), be the
i
connected subgraph of J' defined by a, and c., with the
i i

edge joining them. Iet B, consist of the single vertex b..
1 1

Then condition (i) of (3. 1) holds for J', whence J! is non-
planar.

Next suppose M 1is one of the triangulations of Figure IV.
Then N is formed from M by subdividing one face, the order
of the subdivision being 1. J! is non-planar by (3.3). The
required quadrilateral abcd is again marked in each diagram.

Next suppose M is the triangulation shown in Figure III.
Two new vertices are introduced by the subdivision. Suppose
first that they are in two different faces of M not incident with
the same edge of the pentagon abcde. Then they can be
separated by a quadrilateral such as dxby, and J' is non-
planar by (3. 3).
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In the remaining alternative with Figure III the two new
vertices may be supposed to be in triangles xab and yab,
possibly in the same one of these triangles. Let the new
vertices be v and w. We may suppose the notation adjusted
so that v and x are not joined in J. It is clear that w is
not joined to both x and y in J. Let A1 be the connected

subgraph of J' defined by the edges ad and bd. Let A2

be the one defined by the edges xy and vx. Let A3, A4 and

A5 consist of the single vertices ¢, e and w respectively.

Then J' satisfies condition (ii)of (3.1) and is thus non-planar.

Next we suppose that M is the triangulation shown in

Figure II. Three new vertices bi’ b‘2

by the subdivision. Let A, (i=1, 2, 3), be the connected
i

and b3 are introduced

subgraph of J' defined by the edge a.c., and let B, be the
11 1
one consisting of the single vertex bi' Then J! satisfies

condition (i) of (3.1) and is thus non-planar.

In the remaining case M is the triangulation of Figure I.
Suppose the face xyz has a subdivision of order s. Then the
orders of the subdivisions of the other three faces sum to 5 - s.
Given a separating triangle T with all its vertices inside or on
the boundary of the face xyz, and which is not xyz itself, we
can consider the operation of fusing all the faces, edges and
vertices inside T so that they become a single face. Repeating
this procedure sufficiently often we obtain a simple triangulation
M1 with at least four vertices, one of its faces being the

exterior of the face xyz of M. Evidently N 1is a subdivision

of M1 and the associated subdivision of the face xyz of M1

is of order 6 - s.

But by the choice of M the triangulation M1 still has

only four vertices. It too can be represented by Figure 1.

If s=5 then 6 - s =1, and no face of M1 has a sub-

division of order higher than 4.

3 2{?
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If s=4 then 6 - s =2, and no face of M1 has a sub-

division of order higher than 3.

We can therefore reduce to the case in which no face of
M has more than three new vertices of N in its interior.

If now some face of M contains three new vertices of N
the graph J' is non-planar by (3.2).

In the remaining case let the 5 new vertices of N be
a, b, c, d and e. I two belong to the same face of M dis-
tinguish one as the leading vertex of that face. If a is the
leading vertex of a face F of M define A as the connected
subgraph of J' given by the edge ax, where x is the vertex
of M not incident with F. Otherwise let A consist of the
single vertex a. Define B, C, D and E similarly. Then
Jt satisfies condition (ii) of (3.1) and is thus non-planar.

This completes the proof that every triangulation of 9

vertices has a non-planar complementary graph. It now follows
from (2. 1) that the complete 9-graph is not biplanar.
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