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Abstract

We study the variation of µ-invariants in Hida families with residually reducible Galois
representations. We prove a lower bound for these invariants which is often expressible
in terms of the p-adic zeta function. This lower bound forces these µ-invariants to be
unbounded along the family, and we conjecture that this lower bound is an equality.
When Up − 1 generates the cuspidal Eisenstein ideal, we establish this conjecture and
further prove that the p-adic L-function is simply a power of p up to a unit (i.e. λ = 0).
On the algebraic side, we prove analogous statements for the associated Selmer groups
which, in particular, establishes the main conjecture for such forms.

1. Introduction

1.1 Setting the stage
Let (p, k) be an irregular pair – that is, p is an irregular prime such that p divides the numerator of
Bk, the kth Bernoulli number. In [Rib76], Ribet proved the converse of Herbrand’s theorem which
predicts the non-triviality of a particular eigenspace of the p-part of the class group of Q(µp)
under the action of Gal(Q(µp)/Q). His method exploited a congruence between an Eisenstein
series and a cuspform. Ribet worked in weight 2 at level p, but we describe the idea here in
weight k and level 1; namely, let

Ek = −Bk
2k

+
∑
n>1

σk−1(n)qn

denote the Eisenstein series of weight k > 2 on SL2(Z). Under the assumption that (p, k) is an
irregular pair, the constant term of Ek vanishes mod p, and thus Ek ‘looks like’ a cuspform
modulo p. One can make this idea precise and prove the existence of a cuspidal eigenform
gk of weight k and level 1 which is congruent to the Eisenstein series Ek. The mod p Galois
representation of gk is then reducible, and from this Galois representation one can extract the
desired unramified extension of Q(µp).

Wiles in [Wil90] pushed this argument further by looking at the whole Hida family of the
gk as k varies p-adically. By analyzing the intersection of the Eisenstein and cuspidal branches
of this Hida family (in the Hilbert modular case), Wiles proved the main conjecture over totally
real fields.

In this paper, rather than looking at the Iwasawa theory of class groups, we will instead focus
on the Iwasawa theory of these famous cuspforms gk in their own right. Namely, we will examine
the p-adic L-functions and Selmer groups of the gk as k varies p-adically. In fact, within the
paper, we will study a larger collection of cuspforms with reducible residual representations by
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allowing for congruences with Eisenstein series with characters. However, to keep things simple,
for the remainder of the introduction we will continue to work with tame level N = 1.

To further set the stage, let us recall the Hida theoretic picture of congruences between
Eisenstein series and cuspforms. Namely, to put the Ek in a p-adic family, we must consider
Eord
k := Ek(z)− pk−1Ek(pz), the ordinary p-stabilization to Γ0(p). Explicitly, we have

Eord
k = −(1− pk−1)

Bk
2k

+
∑
n>1

σ
(p)
k−1(n)qn

where σ(p)
k−1(n) is the sum of the (k − 1)th powers of the prime-to-p divisors of n. Since dk is a

p-adically continuous function in k as long as (d, p) = 1, we see that the functions σ(p)
k−1(n) satisfy

nice p-adic properties.
Specifically, letW = Homcont(Z×p ,C×p ) denote weight space which is isomorphic to p−1 copies

of the open unit disc of Cp. Let Wj denote the disc of weights with tame character ωj where ω
is the mod p cyclotomic character. We view Z ↪→W by identifying k with the character z 7→ zk.
Then there exist rigid analytic functions An on W such that An(k) = σ

(p)
k−1(n) for each n > 1.

The constant term of Eord
k also enjoys nice p-adic properties. For k > 2 even, we have

−(1 − pk−1)(Bk/2k) = 1
2ζp(k) where ζp(κ) is the p-adic ζ-function as in [Col00, BD15]. In

particular, the formal q-expansion

Eκ =
1

2
ζp(κ) +

∑
n>1

An(κ)qn

defines the p-adic Eisenstein family in the weight variable κ over all even components of weight
space.

Note further that if κ0 is a zero of ζp(κ) (which necessarily cannot be a classical weight), then
the weight κ0 Eisenstein series Eκ0 ‘looks cuspidal’. In the spirit of Ribet’s proof of the converse
to Herbrand’s theorem, one can show that there is a cuspidal Hida family which specializes at
weight κ0 to an Eisenstein series. That is, the weights of the crossing points of the cuspidal and
Eisenstein branches of the Hida family occur precisely at the zeros of ζp(κ).

We set some notation. Let T denote the universal ordinary Hecke algebra of tame level N = 1

acting on ordinary modular forms of all weights (as in [Hid86]) which is a Λ-module where
Λ = Zp[[1 + pZp]]. Let Tc denote the quotient of T corresponding to the cuspidal Hecke algebra,
and let mc ⊆ Tc denote some maximal ideal containing the cuspidal Eisenstein ideal. Note that
the choice of such an ideal implicitly chooses some disc Wj of weight space over which our Hida
family sits and for which (p, j) is an irregular pair.

For simplicity and concreteness, we begin by imposing the hypothesis

dimΛ Tcmc = 1 (Cuspidal rank one)

so that the geometry of the Hida family is as simple as possible. We note that this condition is
equivalent to there being a unique cuspidal eigenform fk in weight k congruent to Eord

k for one
(equivalently any) k ≡ j (mod p− 1). The condition (Cuspidal rank one) certainly does not hold
for all irregular pairs (p, k). But we checked that it does hold for all irregular pairs (p, k) with
p < 105 with the exception of p = 547 and k = 486. In this case, dimZp Tcmc = 2.
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1.2 p-adic L-functions and mod p multiplicity one
Each of the cuspforms fk have an associated p-adic L-function L+

p (fk), which can equivalently
be viewed as a Zp-valued measure on Z×p or as an element in the completed group algebra
Zp[[Z×p ]]. The + superscript here indicates that this is the p-adic L-function supported only
on even characters. Moreover, these p-adic L-functions vary p-adic analytically in k, yielding a
two-variable p-adic L-function as in [Kit94, GS93].

Under (Cuspidal rank one), we can view the two-variable p-adic L-function L+
p (κ) as an

element in Zp[[Γw,j × Z×p ]] where Γw,j = 1 + pZp. Here, we think of κ as ranging over weights
in Wj . That is, under this assumption, we can conflate a parameter of the Hida family with a
parameter of Wj . At each classical weight in Wj , the two-variable p-adic L-function specializes
to a one-variable p-adic L-function. That is, for k ∈ Z>2 ∩Wj we have

L+
p (κ)|κ=k = L+

p (fk).

One can also naturally attach p-adic L-functions to Eisenstein series (e.g. via overconvergent
modular symbols as in [GS93]), and somewhat surprisingly the result is simply the zero
distribution (see Theorem 2.3).1

The key idea of this paper is to use the vanishing of the p-adic L-functions on the Eisenstein
branch and the intersection points of the Eisenstein and cuspidal branches to make deductions
about the cuspidal p-adic L-functions. Indeed, if there were a two-variable p-adic L-function
defined simultaneously over both the Eisenstein and cuspidal branches, the vanishing of the
p-adic L-function on the Eisenstein branch would imply the vanishing of the p-adic L-functions
at the crossing points of the branches. This in turn would mean that L+

p (fk) becomes more and
more divisible by p as k moves close to one of these crossing points – i.e. to one of the zeros of
ζp(κ). In the language of Iwasawa theory, this means that the µ-invariants in the Hida family
blow up as you approach these zeros!

We now set some further notation and introduce a mod p multiplicity-one condition which
helps explain this phenomenon. Let Tk (respectively, Tck) denote the full Hecke algebra over Zp
which acts faithfully on Mk(Γ0(p))ord (respectively, Sk(Γ0(p))ord). Let mk denote the maximal
ideal of Tk corresponding to Eord

k , and let mc
k denote the image of mk in Tck. Let (p, k) be an

irregular pair, in which case mc
k is a maximal ideal (i.e. it is a proper ideal). We consider the

condition
dimFp(H

1
c (SL2(Z),P∨k−2⊗Fp)+[mk]) = 1 (Mult One)

where Pg is the collection of Qp-polynomials of degree less than or equal to g which preserve
Zp. We will see that (Mult One) holds for one irregular pair (p, k) if and only if it holds for all
irregular pairs (p, k) as k runs over a fixed residue class mod p− 1 (Theorem 3.9).

To see the relevance of condition (Mult One), a weaker version of the argument on µ-invariants
given above would be to simply say that since fk and Eord

k satisfy a congruence modulo p, one
would hope for their p-adic L-functions to also satisfy a congruence. Since the p-adic L-function of
Eord
k is 0, we would then deduce that the µ(fk) > 0. However, the implication that a congruence

of forms leads to a congruence of p-adic L-functions is a subtle one which is typically proven
via a congruence between their associated modular symbols – that is, via (Mult One). Mod p
multiplicity one is now well established in the residually irreducible case (e.g. [Wil95]), but is more
subtle in the residually reducible case, and not always true for tame level greater than 1. But we
do note that (Cuspidal rank one) implies (Mult One) (see Lemma 3.24 and Theorem 3.11).

1 The corresponding minus p-adic L-function on the space of odd characters does not vanish (see Remark 2.4).

865

https://doi.org/10.1112/S0010437X19007127 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007127


J. Bellaïche and R. Pollack

We now state a precise theorem relating the µ-invariants of the fk with the p-adic ζ-function.
For a even, we write µ(f, ωa) for the µ-invariant of the projection of L+

p (f) to the ωa-component
of the semi-local ring Zp[[Z×p ]].

Theorem 1.1. Fix an irregular pair (p, j) and assume that (Cuspidal rank one) holds for this
pair. Then

ζp(κ) divides L+
p (κ)

in Zp[[Γw,j × Z×p ]]. In particular,

µ(fk, ω
a) > ordp(ζp(k)) = ordp(Bk/k)

for each even a with 0 6 a 6 p− 1 and for classical k ≡ j (mod p− 1).

Note that this theorem makes precise the previous claim that the µ-invariants blow up as
one approaches the zeros of the p-adic ζ-function as the above lower bound blows up as one
approaches these zeros.

Our method of proof of this theorem is to build a two-variable p-adic L-function on the full
Hida family (i.e. on both the cuspidal and Eisenstein branches). We follow the construction of
Greenberg and Stevens, but keep careful track over the integrality of all of the objects. Then (Mult
One) implies that some large space of overconvergent modular symbols is free as a Hecke module.
This freeness allows us to build a two-variable p-adic L-function over the full Hida algebra.

With this two-variable p-adic L-function in hand, the vanishing of the p-adic L-functions
of the Eisenstein series implies the divisibility of Theorem 1.1. We note that the last claim of
the theorem follows immediately from this divisibility. Indeed, when one specializes κ to some
classical weight k, one gets that the number ζp(k) divides L+

p (fk) in Zp[[Z×p ]] – which exactly
gives the above lower bound on the µ-invariant.

We now give an upper bound on µ-invariants which holds even without our (Cuspidal rank
one) assumption. In what follows, we write µ(f) for µ(f, ω0).

Theorem 1.2. Fix an irregular pair (p, j) and assume that (Mult One) holds for this pair. Then

µ(fk) 6 ordp(ap(fk)− 1)

for all classical k ≡ j (mod p− 1).

We sketch the simple proof of this theorem. Assuming (Mult One), one shows that L(fk, 1)/Ω+
f

is a p-adic unit (as one knows that the plus modular symbol attached to f is congruent to a
boundary symbol mod p). The interpolation formula for the p-adic L-function thus gives that
Lp(fk,1) has valuation ordp(ap(k)− 1) which in turns gives our upper bound on µ.

Thus under (Cuspidal rank one) (which implies (Mult One)), we get the string of inequalities

ordp(ζp(k)) 6 µ(fk) 6 ordp(ap(fk)− 1). (1)

We note that since ap(Eord
κ ) = 1 for all κ ∈ W, we have that ζp(κ) divides ap(fκ)− 1 in Zp[[Γw]]

which is consistent with the above inequalities.
Given the philosophy that µ-invariants are ‘as small as they can be’, it is tempting to make

the following conjecture. We will also further justify this conjecture after analyzing the algebraic
side of the situation.
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Conjecture 1.3. For an irregular pair (p, j) satisfying (Cuspidal rank one) we have

µ(fk, ω
a) = ordp(ζp(k))

for a even and for any classical k ≡ j (mod p− 1).

Besides giving an elegant formula for µ-invariants in a Hida family, the above conjecture has an
appealing philosophical feel. Namely, the non-trivial µ-invariant is explained away through p-adic
variation. For an isolated form, a non-trivial µ-invariant almost feels like an error in the choice of
the complex period. However, in the family, one sees these µ-invariants explicitly arising from the
special values of some interesting analytic function. Further, by Ferrero and Washington [FW79],
the µ-invariant of ζp(κ) is 0, and so all divisibility by a power of p vanishes in the family. We
further note that Conjecture 1.3 implies the weaker statement that the two-variable µ-invariant
of L+

p (κ) vanishes.
We note that this conjecture holds for a = 0 for all irregular pairs (p, k) with p < 2000.

Unfortunately, this provides scant evidence for the conjecture as in this range, ordp(ap(fk)−1) = 1,
and thus the lower bound equals the upper bound in the inequalities in (1), forcing Conjecture 1.3
to hold.

However, when a > 0, we have no a priori upper bound on the µ-invariant (i.e. Theorem 1.2
does not apply) and thus we must instead compute µ-invariants of p-adic L-functions to verify
that our conjecture holds. In this case, we verified that our conjecture holds for p < 750 (for
all even a). For details, see § 3.9 where we describe the extensive computation we did using the
algorithms in [PS11] on overconvergent modular symbols.

Returning to the case of trivial tame character (i.e. a = 0), when the lower and upper bounds
of (1) meet, the p-adic L-functions of the fk turn out to be very simple. In what follows, L+

p (κ, ωa)
denotes the projection of L+

p (κ) to the ωa-component of Zp[[Γw,j × Z×p ]].

Theorem 1.4. Fix an irregular pair (p, j) satisfying (Cuspidal rank one) and for which

ordp(ζp(j)) = ordp(ap(fj)− 1).

Then
L+
p (κ, ω0) = ζp(κ) · U

where U is a unit in Zp[[Γw,j × (1 + pZp)]]. In particular, for every classical k ≡ j (mod p − 1),
we have that

λ(fk) = 0 and µ(fk) = ordp(ζp(k)) = ordp(Bk/k).

That is, up to a unit, L+
p (fk, ω

0) is simply a power of p.

We sketch the proof here. For our fixed j, our assumption combined with (1) tells us the
value of the µ-invariant exactly:

ordp(ζp(j)) = µ(fj) = ordp(ap(j)− 1).

But, as argued above, we know that the value of L+
p (fj) at the trivial character has p-adic

valuation equal to ordp(ap(j) − 1). Since this valuation equals the µ-invariant, we get that
λ(fj) = 0. Then the divisibility of Theorem 3.26 tells us that the projection of

L+
p (κ)

ζp(κ)

∣∣∣∣
κ=j

=
L+
p (fj)

ζp(j)
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to Zp[[1 + pZp]] has vanishing µ- and λ-invariants since µ(fj) = ordp(ζp(j)), and is thus a unit.
Since L+

p (κ)/ζp(κ) specializes to a unit at one weight, it must itself be a unit, as desired.
We note that it appears reasonable to believe that the case where the upper and lower bounds

of (1) meet is the ‘generic’ case. Indeed, if e = ordp(ζp(k)), then pe necessarily divides ap(fk)− 1,
and one might imagine that (ap(fk) − 1)/pe is a random number modulo p. If this is the case,
then for any given p, the probability is 1/p for these bounds not to meet. One then expects there
to be infinitely many p such that the bounds in (1) fail to meet, but, given how slowly

∑
p (1/p)

diverges, such examples will be extremely rare.

1.3 A more general picture
We now discuss the more general case where (Cuspidal rank one) is no longer assumed to hold, but
for this introduction we retain the tame levelN = 1. In trying to repeat the arguments from earlier
in the introduction without assuming (Cuspidal rank one), several new difficulties emerge. First,
we no longer have that (Mult One) is automatically satisfied, which is key to our construction
of a two-variable p-adic L-function over both the cuspidal and Eisenstein families. Second, the
intersections of the cuspidal branches and the Eisenstein branch are no longer controlled solely
by the p-adic ζ-function. Indeed, if there are multiple branches of the cuspidal family, some of
them may not even intersect the Eisenstein family.

To remedy the first of these problems, we introduce a Gorenstein hypothesis,

Tk,mk is Gorenstein, (Goren)

where (p, k) is some irregular pair. We note that (Goren) holds for one irregular pair (p, k) if and
only if it holds for all (p, k) as k varies over a fixed residue class mod p − 1 if and only if Tm is
Gorenstein where m ⊆ T is the maximal ideal attached to Ek.

The connection between Gorenstein hypotheses and mod p multiplicity one in the residually
irreducible case has been understood for a while now as in [Maz78, Til97, Wil95]. In our residually
reducible case, we have that (Goren) implies (Mult One) which follows from work by Ohta [Oht99,
Oht00] and Sharifi [Sha11] (see Theorem 3.11).

We also note that in this more general setting we cannot consider our cuspidal two-variable
p-adic L-function as an elements in Zp[[Γw,j × Z×p ]] since we are not able to conflate the Hida
family with weight space. Instead, we will consider the two-variable p-adic L-function as an
element L+

p (mc) in Tcmc [[Z×p ]]. The weight variable of L+
p (m) then varies over the spectrum of

Tcmc ; that is, for p a height-one prime of Tcmc of residual characteristic 0, we can ‘evaluate’ L+
p (mc)

at p by looking at its image in (Tcmc/p)[[Z×p ]]. Here Tcmc/p is a finite extension of Zp. Moreover, if
pf ⊆ Tcmc is the prime ideal associated with a classical ordinary eigenform f , then the image of
L+
p (mc) in Tcmc/pf [[Z×p ]] recovers the single variable p-adic L-function L+

p (f).
For the second problem, to find a replacement for the p-adic ζ-function to control the

intersection of the Eisenstein and cuspidal branches, we seek a single element in the cuspidal Hecke
algebra Tcmc which measures congruences between Eisenstein series and cuspforms. Essentially,
by definition, we can simply use a generator, if one exists, of the cuspidal Eisenstein ideal in Tcmc .
That is, assume the Eisenstein ideal of Tcmc is principal, generated by, say, Leis. Fix a weight-k
cuspidal eigenform f congruent to Eord

k and let pf ⊆ Tc denote the corresponding prime ideal.
Then Tcmc/pf is some finite extension of Zp. Write Of for the ring of integers in the field of
fractions of Tcmc/pf , and write Leis(pf ) to denote the image of Leis in Of . We then have that Eord

k

is congruent to f modulo Leis(pf )Of .
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Unfortunately, there is no a priori reason why the Eisenstein ideal is principal. To ensure the
principality of this ideal we introduce another Gorenstein condition,

Tck,mck is Gorenstein, (Cusp Goren)

where (p, k) is some irregular pair. Again, by Hida theory, (Cusp Goren) holds for one irregular
pair (p, k) if and only if it holds for all (p, k) as k varies over a fixed residue class mod p − 1 if
and only if Tcmc is Gorenstein.

Now, by work by Ohta [Oht05], we have that (Goren) and (Cusp Goren) hold if and only
if the Eisenstein ideal is principal (see Theorem 3.5). We also note that Vandiver’s conjecture
implies that both (Goren) and (Cusp Goren) hold (see Proposition 3.7), and so we can offer no
examples where these hypotheses fail when N = 1. However, when N > 1 one does not expect
these hypotheses to hold generally (see [Wak15, Corollary 1.4]).

The following is our generalization of Theorem 1.1. Let $ denote a uniformizer of Of .

Theorem 1.5. Fix an irregular pair (p, j) and assume that (Goren) and (Cusp Goren) hold for
this pair, and let mc denote the corresponding maximal ideal of Tc. Let Leis denote a generator
of the cuspidal Eisenstein ideal of Tcmc . Then

Leis divides L+
p (mc)

in Tcmc [[Z×p ]]. In particular,
µ(f, ωa) > ord$(Leis(pf ))

for all even a with 0 6 a 6 p− 2, and all f in the Hida family corresponding to mc.

We again conjecture that the above inequality is in fact an equality (see Conjecture 3.16).
Further, this lower bound meets the upper bound of Theorem 1.2 if and only if the cuspidal
Eisenstein ideal is generated by Up−1. In this case, our Gorenstein hypotheses are automatically
satisfied and we have the following generalization of Theorem 1.4 which asserts that the Iwasawa
theory in this case is as simple as it can be.

Theorem 1.6. For an irregular pair (p, j) for which Up − 1 generates the cuspidal Eisenstein
ideal of Tcmc , we have

λ(f) = 0 and µ(f) = ordp(ap(f)− 1)

for all f in the corresponding Hida family.

1.4 Selmer groups
We return to the situation where (p, j) is an irregular pair which satisfies (Goren) and (Cusp
Goren) and let Leis denote a generator of the associated cuspidal Eisenstein ideal. Let f denote
some classical form which belongs to the corresponding Hida family.

On the algebraic side, we note that there is not a well-defined Selmer group attached to f .
Indeed, within the Galois representation ρf : GQ → Aut(Vf ), one must choose a Galois stable
lattice T ⊆ Vf . One then attaches a Selmer group to Vf/T ; we denote this Selmer group by
Sel(Q∞, Vf/T ) ⊆ H1(Q∞, Vf/T ), where Q∞ is the cyclotomic Zp-extension. Changing the lattice
T can change the µ-invariant of the corresponding Selmer group.

In this setting we have the following collection of lower bounds on the possible algebraic
µ-invariants that can occur.
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Theorem 1.7. Let (p, j) denote an irregular pair satisfying (Goren) and (Cusp Goren) and let f
denote a classical eigenform in the corresponding Hida family. Then there exists a chain of lattice
T0 ⊆ T1 ⊆ · · · ⊆ Tm in Vf with m = ord$(Leis(pf )) such that

µ(Sel(Q∞, Vf/Tr)∨) > r

for 0 6 r 6 m.

This theorem is proven as follows. For each r in the above range, there is a lattice Tr such
that Tr/prTr is a reducible representation with a cyclic submodule of size pr which is odd and
ramified at p. Using Greenberg’s methods as in [Gre99, Proposition 5.7], the lower bound on µ
follows.

Greenberg, in the case of elliptic curves, would then conjecture that this lower bound on µ
is actually an equality (see [Gre99, Conjecture 1.11 and p. 70]). Combining this conjecture with
Theorem 1.1, we see that if there is any main conjecture defined over Zp for f , we must be using
the lattice Tr with maximal µ-invariant. Set T equal to such a lattice and let Af = Vf/T .

We now state an upper bound for the algebraic µ-invariant. To do so, we need to invoke
Vandiver’s conjecture. For r even, we write the ωr-part of Vandiver’s conjecture as follows:

the ωr-eigenspace of Cl(Q(µp))[p] vanishes. (Vand ωr)

Theorem 1.8. Let (p, j) be an irregular pair for which (Vand ω2−j) holds. For f a classical form
in the corresponding Hida family, we have

µ(Sel(Q∞, Af )∨) 6 ordp(ap(f)− 1).

Our method of proof is analogous to the proof of Theorem 1.2. There we bounded the µ-
invariant of the p-adic L-function by computing the p-adic valuation of its special value at the
trivial character. Here we instead look at Sel(Q∞, Af )Γ and by bounding its size we get a bound
on the µ-invariant (see Lemma 5.7). To bound the size of Sel(Q∞, Af )Γ, we use a control theorem
to compare this group with Sel(Q, Af ) which we in turn control via Vandiver’s conjecture.

We now state the algebraic analogue of Conjecture 1.3 for our chosen lattice, and note that
this is essentially Greenberg’s conjecture on µ-invariants in this special case.

Conjecture 1.9. For an irregular pair (p, j) satisfying (Goren) and (Cusp Goren) and f a
classical form in the corresponding Hida family, we have

µ(Sel(Q∞, Af )∨) = ordp(Leis(pf )).

Finally, we state a theorem in the case where the lower and upper bounds meet.

Theorem 1.10. For an irregular pair (p, j) such that Up−1 generates the corresponding cuspidal
Eisenstein ideal, we have

Sel(Q∞, Af )∨ ∼= Λ/(ap(f)− 1)Λ

for each classical f in the corresponding Hida family. In particular,

µ(Sel(Q∞, Af )∨) = ordp(ap(f)− 1) and λ(Sel(Q∞, Af )∨) = 0.
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We note that we do not need to assume Vandiver’s conjecture for the above theorem as our
assumption that Up − 1 generates the cuspidal Eisenstein ideal implies that the relevant class
group vanishes by the results in [Wak15].

Combining Theorems 1.4 and 1.10 yields the following result.

Corollary 1.11 (The main conjecture). For an irregular pair (p, j) satisfying (Vand ω2−j) and
such that Up − 1 generates the corresponding cuspidal Eisenstein ideal, we have

charΛ(Sel(Q∞, Af )∨) = L+
p (f, ω0)Λ

for each classical f in the corresponding Hida family.

We note that the above main conjecture over Λ[1/p] follows from Kato’s work [Kat04,
Theorem 17.4.2] as the p-adic L-function is a unit up to a power of p. However, neither [Kat04]
nor [SU14] control what happens with the algebraic and analytic µ-invariants in the residually
reducible case.

This paper is organized as follows. In the following section we recall Stevens’ theory of
overconvergent modular symbols and its connection to p-adic L-functions. The heavy lifting of
constructing two-variable p-adic L-functions is relegated to Appendix A. In the third section we
carry out our analysis of analytic µ-invariants sketched in the introduction. In the fourth section
we recall the basic definitions and facts about Selmer groups. In the fifth section we carry out
our analysis of algebraic µ-invariants.

2. Overconvergent modular symbols and p-adic L-functions

In this section we recall Glenn Stevens’ theory of overconvergent modular symbols and its
connection to p-adic L-functions (see [Ste94] as well as [PS11]).

2.1 Modular symbols
Let ∆0 denote the space of degree-zero divisors on P1(Q), and let V be some right Z[Γ]-module
where Γ = Γ1(N). We define the space of V -valued modular symbols of level Γ to be the collection
of additive maps

HomΓ(∆0, V ) := {ϕ : ∆0→ V | ϕ(γD) = ϕ(D)|γ for all γ ∈ Γ and D ∈ ∆0}.

Here Γ acts on ∆0 on the left via linear fractional transformations
(
a b
c d

)
· z = (az + b)/(cz + d).

We will also be interested in a subspace of boundary modular symbols: HomΓ(∆, V ) where
∆ = Div(P1(Q)). Note that these boundary symbols naturally map to V -valued modular symbols
of level Γ by restriction to ∆0.

If V is endowed with an action of a larger collection of matrices, one can define a natural Hecke
action on these spaces of modular symbols. For instance, for a prime p, consider the semi-group

S0(p) :=

{
γ =

(
a b
c d

)
∈M2(Z) such that p - a, p|c, and det(γ) 6= 0

}
.

If V is a Z[S0(p)]-module, then HomΓ(∆0, V ) is naturally a Hecke module.
If the order of every torsion element of Γ acts invertibly on V , then [AS86, Proposition 4.2]

yields a canonical isomorphism

HomΓ(∆0, V ) ∼= H1
c (Γ, V ).
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Further, this map is Hecke equivariant when Hecke operators are defined on these spaces. In
what follows, we will often tacitly identify spaces of modular symbols with compactly supported
cohomology groups.

For F a field and g > 0, let Pg(F ) ⊆ F [z] denote the subset of polynomials with degree less
than or equal to g. Set P∨g (F ) = Hom(Pg(F ), F ). We endow Pg(F ) with a left action of S0(p) by

(γ · P )(z) = (a+ cz)gP

(
b+ dz

a+ cz

)
for P ∈ Pg(F ) and γ ∈ GL2(Q), and equip P∨g (F ) with a right action by

(α | γ)(P ) = α(γ · P )

for α ∈ P∨g (F ).
One can associate to each eigenform f in Sk(Γ,C) a P∨k−2(C)-valued modular symbol ξf of

level Γ defined by

ξf ({r} − {s})(P (z)) = 2πi

∫ r

s
f(z)P (z) dz

where r, s ∈ P1(Q); here we write {r} for the divisor associated to r ∈ Q. The symbol ξf is a
Hecke eigensymbol with the same Hecke eigenvalues as f .

Since the matrix ι :=
(−1 0

0 1

)
normalizes Γ, it acts as an involution on these spaces of modular

symbols. Thus ξf can be uniquely written as ξ+
f + ξ−f , with ξ

±
f in the ±1-eigenspace of ι. By a

theorem of Shimura [Shi76], there exist complex numbers Ω±f and a number field K such that for
each D ∈ ∆0, ξ±f (D) takes values in KΩ±f . We can thus view ϕ±f := ξ±f /Ω

±
f as taking values in

P∨k−2(K), and, for a fixed embedding Q ↪→ Qp, we can view ϕ±f as taking values in P∨k−2(Qp).
As we are interested in µ-invariants in this paper, we must carefully normalize our choice of

periods. To this end, we will choose Ω±f so that for all D ∈ ∆0, all values of ϕ±f (D) ∈ P∨k−2(Qp)

are p-adic integers. Further, we insist that there is at least one divisor D so that ϕ±f (D) takes
on at least one value which is a p-adic unit. Periods Ω±f which achieve this normalization we will
call canonical periods.

Remark 2.1. We note that this definition differs slightly from the one given in [Vat99], where
parabolic cohomology is used rather than compactly supported cohomology.

2.2 Measures and p-adic L-functions
Let G denote a p-adic Lie group which for this paper we will be taking to be Zp, Z×p or Z×p ×Zp.
Let Cont(G) denote the space of continuous maps from G to Zp, and let Meas(G) denote the
continuous Zp-dual of Cont(G) which we regard as the space of Zp-valued measures on G.

For µ ∈ Meas(G) and U a compact open of G, we write µ(U) for µ(1U ) where 1U is the
characteristic function of U . Since the Zp-span of these characteristic functions is dense in
Cont(G), a measure is uniquely determined by its values on the compact opens of G. We further
note that there is a natural isomorphism Meas(G) ∼= Zp[[G]] which sends the Dirac measure δg
supported at g ∈ G to the group-like element [g] in Zp[[G]].

Set Γ0 = Γ0(p) ∩ Γ1(N), and let f be a p-ordinary eigenform in Sk(Γ0,Qp); that is, if ap(f)
is the pth Fourier coefficient of f , then ap(f) is a p-adic unit. Then Lp(f), the p-adic L-function
of f , is an element of Meas(Z×p )⊗O where O := Of is the subring of Qp generated over Zp by
the Hecke eigenvalues of f . Explicitly, we define Lp(f) via the formula

L±p (f)(a+ pnZp) :=
1

ap(f)n
ϕ±f ({∞} − {a/pn})(1),

872

https://doi.org/10.1112/S0010437X19007127 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007127


Congruences with Eisenstein series and µ-invariants

and Lp(f) = L+
p (f) +L−p (f). The fact that this formula for Lp(f) defines a measure follows from

the fact that ϕ±f is a Up-eigensymbol with eigenvalue ap(f).2

If χ denotes a Dirichlet character of conductor pn, then the p-adic L-function satisfies the
interpolation property:

∫
Z×p
χdLp(f) =


1

ap(f)n
· pn

τ(χ−1)
· L(f, χ−1, 1)

Ωε
f

n > 0,(
1− 1

ap(f)

)
L(f, 1)

Ω+
f

n = 0,

(2)

where ε equals the sign of χ(−1).

2.3 Overconvergent modular symbols and p-adic L-functions
We endow the space Meas(Zp) with a weight-g action of S0(p) via the formula

(µ|gγ)(f) = µ

(
(a+ cz)gf

(
b+ dz

a+ cz

))
where γ =

(
a b
c d

)
and f is a continuous function on Zp. When equipped with this action, we denote

this space of measures by Measg(Zp).
Let Pg := Pg(Zp) ⊂ Pg(Qp) denote the continuous Zp-valued functions on Zp which are given

by Qp-polynomials of degree less than or equal to k. This space is generated over Zp by the
binomial coefficients

(
z
j

)
for 0 6 j 6 k (see Theorem A.2). Set P∨g = Hom(Pg,Zp).

As Pg naturally sits inside Cont(Zp), restriction yields an S0(p)-equivariant map

Measg(Zp)→ P∨g ,

and thus a map
H1
c (Γ0,Measg(Zp)) −→ H1

c (Γ0,P∨g ).

We refer to both of these maps as specializations.
If X is a Hecke module with an action of Up, we define Xord to be the intersection of the image

of all powers of Up. The following is Stevens’ control theorem in the ordinary case (see [Ste94,
PS11, PS13]).

Theorem 2.2 (Stevens). For g > 0, specialization induces the isomorphism

H1
c (Γ0,Measg(Zp))ord⊗Qp

∼−→ H1
c (Γ0,P∨g )ord⊗Qp.

Moreover, if Φ± ∈ H1
c (Γ0,Meask−2(Zp))⊗Qp is the unique lift of ϕ±f , then

Φ±({∞} − {0})|Z×p

is the p-adic L-function of f ; that is, it satisfies the interpolation property in (2) for some choice
of canonical periods Ω±f .

2 We note that Lp(f) implicitly depends upon the choice of the periods Ω±f and so it is an abuse of language to
call it the p-adic L-function of f .
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2.4 p-adic L-functions of ordinary Eisenstein series
Fix a primitive character ψ : (Z/NZ)×→ C× and consider the Eisenstein series

Eord
k,ψ = −(1− ψ(p)pk−1)

Bk,ψ
2k

+
∞∑
n=1

( ∑
d|n, p-d

ψ(d)dk−1

)
qn.

The following theorem describes overconvergent modular symbols with the same system of
Hecke eigenvalues as Eord

k,ψ.

Theorem 2.3. Let Φ be any element of H1
c (Γ0,Meask−2(Zp)) satisfying

Φ|Uq = Φ for q | Np

and
Φ|T` = (1 + ψ(`)`k−1)Φ for ` - Np

for ψ a Dirichlet character of conductor N . Then:

(1) Φ is a boundary symbol;
(2) Φ is in the plus subspace (i.e. Φ|ι = Φ);
(3) Φ({∞} − {0}) is a constant multiple of δ0, the Dirac distribution at 0.

Proof. Our proof relies heavily on [BD15]. Let φ denote the specialization of Φ toH1
c (Γ0,P∨k−2)ord.

Since φ is an Eisenstein symbol, standard descriptions of classical spaces of modular symbols (as
in [BD15, Proposition 2.5]) show that φ is a boundary symbol while [BD15, Proposition 2.9] shows
that φ is in the plus subspace. Then [BD15, Proposition 5.7] shows that Φ itself must have been
a boundary symbol in the plus subspace. Finally, [BD15, Lemma 5.1] shows that Φ({∞}) = 0,
while [BD15, Proposition 5.2] shows that Φ({0}) is a constant multiple of δ0. 2

Remark 2.4. (1) One can explicitly write down such Eisenstein symbols. This is done in great
detail in [BD15, § 5.2].

(2) In light of Theorems 2.2 and 2.3, the natural p-adic L-function to attach to E(p)
k,ψ on even

components of weight space is simply 0 as the restriction of δ0 to Z×p vanishes.
(3) On odd components of weight space, the above approach does not suggest what p-adic

L-function to attach to this Eisenstein series as there is no overconvergent modular symbol with
these Eisenstein eigenvalues in the minus subspace. However, in [BD15], a partial overconvergent
modular symbol with the correct eigenvalues was constructed in the minus subspace and its
associated p-adic L-function is (naturally enough) a product of p-adic L-functions of characters.

3. Analytic results

3.1 Basic set-up
Fix a prime p > 5 and a tame level N . We assume for the remainder of the paper that
p - ϕ(N). Let T denote the universal ordinary Hecke algebra of tame level Γ1(N), and let Tc
denote its cuspidal quotient. Both T and Tc are modules over Zp[[Z×p × (Z/NZ)×]] via the
diamond operators. For a ∈ Z×p , we write 〈a〉 to denote the corresponding group-like element
of (a, a) in Zp[[Z×p × (Z/NZ)×]]. Further, let Tk (respectively, Tck) denote the full Hecke algebra
over Zp which acts faithfully on Mk(Γ1(N) ∩ Γ0(p))ord (respectively, Sk(Γ1(N) ∩ Γ0(p))ord).
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Set I equal to the Eisenstein ideal of T; that is, the ideal generated by T` − (1 + 〈`〉`−1) for
` - Np and by Uq−1 for q | Np. Let Ic denote the image of I in Tc which we will call the cuspidal
Eisenstein ideal. We also denote by Ik (respectively, Ick) the image of I in Tk (respectively, Tck).

Let mc ⊆ Tc be a maximal ideal and write m for its pre-image in T. We note that a choice
of a maximal ideal m of T distinguishes an even character of (Z/NpZ)× in the following way.
The components of the semi-local ring Zp[[Z×p × (Z/NZ)×]] are indexed by the characters of
(Z/pNZ)× since p - ϕ(N), and the restriction of m to this ring is a maximal ideal which cuts
out one of these components. Write θ := θm for the corresponding character of (Z/pNZ)× and
write θm = ωj(m)ψm with 0 6 j(m) < p − 1 and ψ := ψm a character on (Z/NZ)×. Note that
(−1)j(m) = ψ(−1) and that θ is an even character.

Write mk and mc
k for the image of m in Tk and Tck, respectively. These images are maximal

as long as k ≡ j(m) (mod p−1). We say that these ideals, m, mc, mk, mc
k, are Eisenstein if m ⊇ I

(equivalently, mc ⊇ Ic). We note that the existence of a maximal ideal m ⊇ I is equivalent to
ordp(Bj(m),ψm

) > 0.
Consider the following conditions:
• ψm is a primitive character of conductor N ;
• j(m) = 1 =⇒ ψm(p) 6= 1.

We say that m satisfies (Good Eisen) if it is Eisenstein and the above two conditions hold. The
main reason for these conditions (along with p - ϕ(N)) is that they ensure that there is a unique
Eisenstein component in the families we are considering. This is verified in the following lemma.

Lemma 3.1. Ifm⊆ T is an maximal ideal satisfying (Good Eisen), then the subspace of Eisenstein
series in Mk(Γ0, ψm)ord

m is one-dimensional for k > 2 and k ≡ j(m) (mod p− 1).

Proof. Clearly Eord
k,ψm

is in this space. Assume there is another Eisenstein series E in this space
which is an eigenform. Then there exist characters χ1 and χ2 with conductors f1 and f2 such
that f1f2 | Np and E has eigenvalues χ1(`) + χ2(`)`k−1 for ` - (Np/f1f2). For each such `, we
then have congruences

χ1(`) + χ2(`)ωk−1(`) ≡ 1 + ψm(`)ωk−1(`) (mod p)

where p is the maximal ideal of Zp[µϕ(N)]. Thus the linear independence of characters and the
fact that p - ϕ(N) yield that either (a) χ1 = 1 and χ2 = ψm, or (b) χ1 = ψmω

k−1 and χ2 = ω1−k.
In case (a), we see that f1 = 1 while f2 = N since ψm is primitive. Thus E and Eord

k,ψm
have

the same eigenvalues at all primes ` except possibly for ` = p. But since E is ordinary, this forces
its Up-eigenvalue to be χ1(p) = 1 and E and Eord

k,ψm
have the same eigenvalues at all primes.

In case (b), since f1f2 | Np, we must have that k ≡ 1 (mod p − 1), in which case j(m) = 1,
f1 = N and f2 = 1. Again since E is ordinary we must have that its Up-eigenvalue is ψm(p) and
that ψm(p) ≡ 1 (mod p). But since p - ϕ(N), this implies that ψm(p) = 1 which contradicts m
satisfying (Good Eisen). 2

To conform to the notation of the introduction, we note that if N = 1 and (p, j) is an irregular
pair, then there is a unique maximal ideal m containing I with j(m) ≡ j (mod p− 1). Moreover,
(Good Eisen) is vacuous in this case.

3.2 Gorenstein conditions and the principality of the Eisenstein ideal
We continue to use the notation of § 3.1. We thank Wake for his help with many of the proofs in
this section.
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Proposition 3.2. Fix a maximal ideal m ⊆ T. The following statements are equivalent:

(1) Tk,mk (respectively, Tck,mck) is Gorenstein for some k ≡ j(m) (mod p− 1), k > 2;

(2) Tk,mk (respectively, Tck,mck) is Gorenstein for all k ≡ j(m) (mod p− 1), k > 2;

(3) Tm (respectively, Tcmc) is Gorenstein.

Proof. Let pk denote the principal ideal of Zp[[Z×p ]] generated by [γ]−γk where γ is a topological
generator of Z×p . By Hida’s control theorem [Hid86, Corollary 3.2], we have Tm/pkTm

∼= Tk,mk .
Thus Tm is Gorenstein if and only if Tk,mk is Gorenstein. The same argument also applies to the
cuspidal Hecke algebras. 2

Definition 3.3. Let m ⊆ T denote a maximal ideal. We say that m (respectively, mc) satisfies
(Goren) (respectively, (Cusp Goren)) if any of the equivalent conditions of Proposition 3.2 hold
for Tm (respectively, Tcmc).

Lemma 3.4. If m ⊆ T satisfies (Good Eisen), we have Im ∼= Icmc as Tm-modules and Ik,m ∼= Ick,mc
as Tk,mk -modules.

Proof. Let K be the kernel of the natural surjection Ik,m � Ick,mc . By definition K annihilates
Sk(Γ0, ψm)mk . Further, by Lemma 3.1, Ik,m annihilates all Eisenstein series in Mk(Γ0, ψm)mk .
Thus K annihilates all cuspforms and Eisenstein series, and hence K = 0. Then Ik,m ∼= Ick,mc for
all classical k immediately implies that the natural map Im � Icm is an isomorphism as well. 2

Theorem 3.5. Let m denote an Eisenstein maximal ideal of T. The following statements are
equivalent:

(1) m ⊆ T satisfies (Goren) and (Cusp Goren);
(2) Tm and Tcmc are complete intersections;
(3) Im is principal;
(4) Icmc is principal;
(5) Ik,mk is principal for some k ≡ j(m) (mod p− 1);
(6) Ick,mck is principal for some k ≡ j(m) (mod p− 1).

Proof. By Lemma 3.4, we have (3) ⇐⇒ (4) and (5) ⇐⇒ (6). Also, (3) =⇒ (5) is clear and (2)
=⇒ (1) is clear. Further, it is a theorem of Ohta [Oht05, Theorem 2] that (1) =⇒ (3).

Thus, it suffices to check that (6) =⇒ (2). To this end, first note that Tm is a complete
intersection if and only if Tk,mk is a complete intersection if and only if Tk,mk/pTk,mk is a complete
intersection. Further, since mk = Ik,mk + pTk,mk and Ik,mk is principal by Lemma 3.4, we have
that the maximal ideal of Tk,mk/pTk,mk is principal. But then Tk,mk/pTk,mk is a finite-dimensional
local Fp-algebra with principal maximal ideal. We must then have that Tk,mk/pTk,mk ∼= Fp[x]/(xr)
for some r > 0, and is thus a complete intersection. An identical argument works for Tck,mck as
well. 2

The conditions (Goren) and (Cusp Goren) do not hold generally. See [Wak15, Corollary 1.4]
for an example where (Goren) fails. However, there are no known counter-examples to (Goren)
or (Cusp Goren) when the tame level N = 1. Indeed, we will verify that these two conditions
follow from Vandiver’s conjecture in this case.
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Definition 3.6. For k even, we say that (p, k) satisfies (Vand ωk) if

Cl(Q(µp))[p]
(ωk) = 0.

Proposition 3.7. Let N = 1 and let (p, k) denote an irregular pair with corresponding maximal
ideal m ⊆ T. Then (Vand ωk) and (Vand ω2−k) imply that m satisfies (Goren) and (Cusp Goren).

Proof. By [Kur93, Theorem 0.4], (Vand ωk) and (Vand ω2−k) together imply that Ick,mck ⊆ Tck is
principal. Then, by Theorem 3.5, we have that Tm and Tcmc are Gorenstein. 2

Remark 3.8. We remind the reader that Vandiver’s conjecture is known to hold for p < 231

[HHO17], and so (Goren) and (Cusp Goren) hold in these cases as well when N = 1.

3.3 Freeness of spaces of modular symbols
Let Λ̃ = Zp[[Z×p ]],M = Meas(Z×p ×Zp) and consider H1

c (Γ0,M). The following theorem is proven
in Appendix A.

Theorem 3.9. Let m ⊆ T be a maximal ideal satisfying (Good Eisen). The following conditions
are equivalent:

(1) for some (equivalently, for all) j > 2 with j ≡ j(m) (mod p− 1), we have

dimFp(H
1
c (Γ,P∨j−2⊗Fp)+[mj ]) = 1;

(2) HomΛ̃(H1
c (Γ0,M)+

m , Λ̃) is free over Tm.

Proof. First note that (Good Eisen) implies the condition (Eisen+) from Appendix A. Indeed,
(Good Eisen) implies by Lemma 3.1 that Ek,ψm spans the Eisenstein subspace of Mk(Γ0, ψm)mk .
Since the boundary symbol associated to Ek,ψm is in the plus subspace (see [BD15, Proposition
2.9]), (Eisen+) follows. Thus, this theorem follows immediately from Theorem A.16 after we note
that it is fine to replace Γ0 with Γ since there are no ordinary p-new forms in weights greater
than 2. 2

If m ⊆ T satisfies either of the above conditions, we say that m satisfies (Mult One). Now let

H̃1(N) := lim
←−
r

H1(Y1(Npr),Zp)ord and H̃1
c (N) := lim

←−
r

H1
c (Y1(Npr),Zp)ord

as in [FK12, 1.5–1.6].

Proposition 3.10. We have

H1
c (Γ0,M)± ∼= H̃1

c (N)± ∼= HomT(H̃1(N)∓,MΛ)

as Hecke modules where MΛ is the space of Λ-adic modular forms of tame level Γ1(N).

Proof. By [Oht03, Remark 3.5.10], we have an identification between H̃1
c (N)± and H1

c (Γ,
Meas(D))± where D = {(x, y) ∈ Z2

p | (x, y) = 1}. Since Meas(D) ∼= IndΓ
Γ0

(M), by Shapiro’s
lemma, we then have H1

c (Γ0,M) ∼= H̃1
c (N). Then the pairing in [FK12, (1.6.7)] yields H̃1

c (N)± ∼=
HomT(H̃1(N)∓,MΛ) as desired. 2

Theorem 3.11. Let m ⊆ T be a maximal ideal satisfying (Good Eisen) and (Goren). Then (Mult
One) holds for m.

Proof. By [FK12, Proposition 6.3.5 and (1.7.13)], H̃1(N)−m is a dualizing module for Tm and is
thus free over Tm, assuming (Goren). As (MΛ)m ∼= Tm when Tm is Gorenstein, by Proposition 3.10,
we have that H1

c (Γ0,M)+
m is free over Tm. Again since Tm is Gorenstein, we have HomΛ̃(H1

c (Γ0,

M)+
m , Λ̃) is free over Tm as desired. 2
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3.4 Lower bounds
Fix a maximal ideal m ⊆ T satisfying (Good Eisen) and (Goren). Then, by Theorem 3.11, (Mult
One) holds for m, and thus the construction in Appendix A.6 yields a two-variable p-adic L-
function L+

p (m) in Tm[[Z×p ]] defined over the full Hecke algebra. We now check that L+
p (m) ∈

Tm[[Z×p ]] vanishes along the Eisenstein component.

Theorem 3.12. If m ⊆ T is an Eisenstein maximal ideal satisfying (Good Eisen) and (Goren),
then

L+
p (m) ∈ Im[[Z×p ]]

where I is the Eisenstein ideal of T.

Proof. To prove this corollary, it suffices to see that the image of L+
p (m) vanishes in Tm/Im[[Z×p ]].

To see this, let peis,k ⊆ m denote the ideal generated by T` − (1 + ψ(`)`k−1) for ` - Np and by
Uq − 1 for q | Np. It suffices to see that the image of L+

p (m) vanishes in Tm/peis,k[[Z×p ]] for all
classical k ≡ j(m) (mod p−1). But, by construction, the image of L+

p (m) in Tm/peis,k[[Z×p ]] equals
Φ({∞}−{0})|Z×p for some eigensymbol Φ in H1

c (Γ0,Meask(Zp))+ annihilated by peis,k. Thus, by
Theorem 2.3, Φ({∞} − {0})|Z×p = 0 as desired. 2

Let m ⊆ T be a maximal ideal satisfying (Good Eisen). Set L+
p (mc) equal to the image of

L+
p (m) in Tcmc [[Z×p ]] which is the cuspidal two-variable p-adic L-function. If we further assume that

both (Goren) and (Cusp Goren) hold, by Theorem 3.5, the cuspidal Eisenstein ideal Icmc ⊆ Tcmc is
principal, generated by, say, Leis,m. The following theorem gives a lower bound on the µ-invariants
of the forms in the Hida family parameterized by mc in terms of Leis,m. As we will be imposing
the following three hypotheses in much of what follows, let us say that m ⊆ T satisfies (?) if m
satisfies (Good Eisen), (Goren) and (Cusp Goren).

Before stating our theorem on µ-invariants, we first define how these invariants are normalized.

Definition 3.13. Let O be a finite extension of Zp and let ΛO = O[[1 + pZp]]. Let $ be a
uniformizer of the integral closure of O. For a non-zero element h ∈ ΛO, we define µ(f) to be n,
where n is the largest integer such that h ∈ $nΛO −$n+1ΛO.

Let pf be a classical height-one prime of Tcmc associated to some ordinary cuspidal eigenform
f in the Hida family corresponding to mc. Write O := Of for the finite extension of Zp equal to
the integral closure of Tcmc/pf , and write $ for a uniformizer of O. We write Leis,m(pf ) for the
image of Leis,m in Tcmc/pf ⊆ O.

For each a with 0 6 a < p−1 and R any ring, we have a map R[[Z×p ]]→ R[[1+pZp]] given by
[x] 7→ ωa(x)[x/ω(x)] where x ∈ Z×p . We write L+

p (f, ωa) and L+
p (m, ωa) for the respective images

of L+
p (f) and L+

p (m) under the corresponding maps. Further, we write µ(f, ωa) for µ(L+
p (f, ωa)).

Theorem 3.14. Let m ⊆ T be a maximal ideal satisfying (?). Let Leis,m denote a generator of
the Eisenstein ideal Ic ⊆ Tcmc . Then

Leis,m divides L+
p (mc)

in Tcmc [[Z×p ]]. In particular,
µ(f, ωa) > ord$(Leis,m(pf ))

for all even a with 0 6 a 6 p− 2, and all f in the Hida family corresponding to mc.
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Proof. By Theorem 3.12, L+
p (m) ∈ Im[[Z×p ]]. Projecting to Tcmc [[Z×p ]] implies that L+

p (mc) ∈
Icmc [[Z×p ]], and is thus divisible by Leis,m as desired.

The second assertion is immediate from the first as L+
p (mc) specializes to L+

p (f) at the
prime pf while Leis,m specializes to the number Leis,m(pf ) ∈ O and thus contributes to the µ-
invariant. 2

3.5 Upper bounds
We now establish an upper bound on µ-invariants of these residually reducible forms under the
hypothesis (Mult One).

Theorem 3.15. Fix an Eisenstein maximal ideal m ⊆ T satisfying (Mult One). Let f be a
classical cuspidal eigenform in the Hida family for mc. Then

µ(f) 6 ord$(ap(f)− 1).

Proof. To prove this theorem, we simply check that the valuation of L+
p (f) evaluated at the

trivial character is bounded by ord$(ap(f)− 1) as this immediately gives the desired bound on
the µ-invariant. By the interpolation property of L+

p (f), we have

L+
p (f)(1) =

(
1− 1

ap(f)

)
· ϕ+

f ({∞} − {0})(1).

We claim that ϕ+
f ({∞} − {0})(1) is a p-adic unit, which clearly implies the theorem.

To see this, let k denote the weight of f . Then, by [BD15, Proposition 2.5(iii)], there is a
unique (up to scaling) boundary eigensymbol ϕk,ψ in H1

c (Γ0,P∨k−2)+ with the same system of
Hecke eigenvalues as E(p)

k,ψ. We fix ϕk,ψ to be as defined in [BD15, (22)] which is normalized so
that its image in H1

c (Γ0,P∨k−2⊗Fp)+ is non-zero.
Since ϕ+

f and ϕk,ψ have congruent systems of Hecke eigenvalues, by (Mult One), we have
that the images of these symbols in H1

c (Γ0,P∨k−2⊗Fp)+ are non-zero multiples of one another.
Moreover, the explicit description of ϕk,ψ in [BD15, (22)], tells use that ϕk,ψ is not supported on
the ∞ cusp while ϕk,ψ({0}) is the functional P (z) 7→ P (0). Thus,

ϕk,ψ({∞} − {0})(1) = 0− ϕk,ψ({0})(1) = −1,

and thus ϕ+
f ({∞} − {0})(1) is a p-adic unit as desired. 2

3.6 Conjecture on µ-invariants
Under the assumption (?) (which implies (Mult One)), Theorems 3.14 and 3.15 imply the following
string of inequalities:3

ord$(Leis,m(pf )) 6 µ(f) 6 ord$(ap(f)− 1). (3)

Given the philosophy that µ-invariants are ‘as small as they can be’, it is tempting to make
the following conjecture.

Conjecture 3.16. Fix a maximal ideal m ⊆ T satisfying (?) and let Leis,m denote a generator
of Icmc . Then

µ(f, ωa) = ord$(Leis,m(pf )) (4)

for all even a and all classical pf contained in mc.

3 Since Up − 1 ∈ Ic, we have that Leis,m divides Up − 1 which is consistent with these inequalities.
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The following proposition shows that to check this conjecture it suffices to check that (4)
holds for a single form f in the family.

Proposition 3.17. Assume m ⊆ T is a maximal ideal satisfying (?). For each fixed even number
a, we have that µ(f, ωa) = ord$(Leis,m(pf )) holds for one classical pf ⊆ mc if and only if this
equation holds for all such pf .

Proof. By Theorem 3.14, L+
p (mc, ωa)/Leis,m is integral, and by assumption, this power series has

at least one specialization with vanishing µ-invariant. Thus, by [EPW06, Proposition 3.7.3], every
specialization has vanishing µ-invariant, proving the proposition. 2

3.7 When the bounds meet
In the case when the lower and upper bounds of (3) meet (e.g. when Up − 1 generates Icmc), the
Iwasawa theory of our situation becomes much simpler. We begin with a lemma.

Proposition 3.18. Let m ⊆ T be an Eisenstein maximal ideal. The following statements are
equivalent:

(1) Icmc is generated by Up − 1;
(2) Ick,mc is generated by Up − 1 for every k ≡ j(m) (mod p− 1), k > 2;
(3) Ick,mc is generated by Up − 1 for some k ≡ j(m) (mod p− 1), k > 2.

Proof. We check that (3) implies (1). Since Ick,mc is principal, by Theorem 3.5, we have that Icmc is
principal, generated by, say, Leis,m. Consider now (Up − 1)/Leis,m ∈ Tcmc . This element specializes
to a unit in weight k, and is thus itself a unit. Hence, Leis,m differs from Up − 1 by a unit, and
thus Up − 1 generates Icmc . 2

Definition 3.19. An Eisenstein maximal ideal m of T satisfies (Up − 1 gens) if any of the
equivalent conditions of Proposition 3.18 hold.

Lemma 3.20. (Up − 1 gens) implies (Goren) and (Cusp Goren).

Proof. This claim follows immediately from Theorem 3.5. 2

In what follows, we write λ(f) for λ(f, ω0) and µ(f) for µ(f, ω0).

Theorem 3.21. For an Eisenstein maximal ideal m ⊆ T satisfying (Good Eisen) and (Up −
1 gens), we have

L+
p (mc, ω0) = Leis,m · U

where U is a unit in Tcmc [[1 + pZp]]. In particular, for every f in the Hida family of mc, we have

λ(f) = 0 and µ(f) = ord$(ap(f)− 1).

That is, Lp(f, ω0) is simply a power of p, up to a unit.

Proof. By Lemma 3.20, (Goren) and (Cusp Goren) hold automatically. Further, for pf ⊆ mc,
(Up − 1 gens) and the inequalities in (3) tell us the value of the µ-invariant exactly:

ord$(Leis,m(pf )) = µ(f) = ord$(ap(f)− 1).
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But, as in the proof of Theorem 3.15, we know that L+
p (f) evaluated at 1 has p-adic valuation

equal to ord$(ap(f)− 1). Since this valuation also equals the µ-invariant, we get that λ(f) = 0.
By Theorem 3.14, the quotient Lp(mc, ω0)/Leis,m is integral. Further,

Lp(m
c, ω0)

Leis,m
(pf ) =

Lp(f, ω
0)

Leis,m(pf )

has vanishing µ- and λ-invariants (since µ(f) = ord$(Leis,m(pf ))), and is thus a unit. But then
Lp(m

c, ω0)/Leis,m has a unit specialization, and it must itself be a unit. 2

3.8 The special case of (Cuspidal rank one)
In the special case where (Cuspidal rank one) of the introduction holds, the results of the previous
sections both become more concrete (with Leis,m being replaced by a p-adic L-function) and no
longer require any Gorenstein hypotheses (as they are automatically satisfied). We have the
following proposition.

Proposition 3.22. Let m ⊆ T be a maximal ideal. The following statements are equivalent:

(1) dimΛ Tcmc = 1;
(2) dimZp Tck,mck = 1 for some k ≡ j(m) (mod p− 1), k > 2;

(3) dimZp Tck,mck = 1 for all k ≡ j(m) (mod p− 1), k > 2.

Proof. This proposition follows from Hida’s control theorem: Tcmc/pkTcmc ∼= Tck,mck . 2

Definition 3.23. For a maximal ideal m ⊆ T, we say that m satisfies (Cuspidal rank one) if any
of the equivalent conditions of Proposition 3.22 hold.

Lemma 3.24. If an Eisenstein maximal ideal m ⊆ T satisfies (Good Eisen) and (Cuspidal rank
one), then it also satisfies (Goren) and (Cusp Goren).

Proof. If (p, j) satisfies (Cuspidal rank one), then Tck,mck has rank 1 over Zp and clearly (Cusp
Goren) holds. Further, by Lemma 3.1, (Good Eisen) implies that Tk,mk has rank 2 over Zp. This
in turn implies that Tk,mk is generated by a single element over Zp. In particular, Tk,mk is a
complete intersection and thus (Goren) holds. 2

By the above lemma and Theorem 3.5, we know that Icmc is principal when (Cuspidal rank
one) holds. In this case, work by Wiles and Ohta [Wil90, Oht03] implies that this generator can
be taken to be a p-adic L-function. More precisely, let Lp(ψ, κ) be defined as in [BD15]. Here we
view Lp(ψ, κ) as a function on weight space and we have

Lp(ψ, z
k) = −(1− ψ−1(p)pk−1)

Bk,ψ−1

k

for k > 1 with (−1)k = ψ(−1). Set Γw,j = 1 + pZp and view Zp[[Γw,j ]] as Iwasawa functions on
Wj . Then Lp(ψ, κ)|Wj is in Zp[[Γw,j ]] as long as either ψ is non-trivial or j 6= 0.

Note that under (Cuspidal rank one) we can identify Tcmc with Zp[[Γw,j ]] and we can and will
view Lp(ψ, κ)|Wj as an element of Tcmc .

Theorem 3.25. If m⊆ T satisfies (Cuspidal rank one), then Icmc is generated by Lp(ψ−1
m , κ)|Wj(m)

.
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Proof. This theorem is simply [Oht03, Proposition 3.1.9] in the special case when (Cuspidal rank
one) holds. 2

Under (Cuspidal rank one), we can consider L+
p (mc) in Tcmc [[Z×p ]] ∼= Zp[[Γw,j × Z×p ]], and we

write L+
p (mc) as L+

p (κ) where κ is thought to range over weights in Wj .
The following theorem is the simplified version of Theorem 3.14 when (Cuspidal rank one)

holds. We denote by fk the unique normalized cuspidal eigenform of weight k and level Γ0

congruent to Eord
k,ψ.

Theorem 3.26. Fix an Eisenstein maximal ideal m ⊆ T satisfying (Good Eisen) and (Cuspidal
rank one). Then

Lp(ψ
−1
m , κ) divides L+

p (κ)

in Zp[[Γw,j × Z×p ]]. In particular,

µ(fk, ω
a) > ordp(Lp(ψ

−1
m , zk)) = ordp(Bk,ψm/k)

for each even a with 0 6 a 6 p− 1 and for all k > 2 with k ≡ j(m) (mod p− 1).

Proof. This theorem follows immediately from Theorems 3.14 and 3.25, noting that Lemma 3.24
gives us that (Goren) and (Cusp Goren) hold. 2

We can likewise deduce the analogue of Theorem 1.4 of the introduction from Theorem 3.21.

Theorem 3.27. Fix an Eisenstein maximal ideal m ⊆ T satisfying (Good Eisen) and (Cuspidal
rank one) and for which

ordp(Bk,ψm/k) = ordp(ap(k)− 1)

for some k ≡ j(m) (mod p− 1). Then

L+
p (κ, ω0) = Lp(ψ

−1
m , κ) · U

where U is a unit in Zp[[Γw,j×(1+pZp)]]. In particular, for every k > 2 with k ≡ j(m) (mod p−1),
we have that

λ(fk) = 0 and µ(fk) = ordp(Lp(ψm, k)) = ordp(Bk,ψm/k).

That is, L+
p (fk, ω

0) is simply a power of p, up to a unit.

3.9 Numerical verification of Conjecture 3.16
Using Proposition 3.17, we numerically verified that the a = 0 case of this conjecture holds for
N = 1 and all irregular pairs (p, k) with p < 2000. However, in every such case, ord$(Leis,m(pf )) =
ord$(ap(f)− 1), and thus the inequalities in (3) automatically imply the conjecture holds. Thus
these checks do not yield much evidence for the conjecture.

However, when a 6≡ 0 (mod p − 1), the upper bound in (3) does not a priori hold and we
instead directly computed the relevant µ-invariant to verify this conjecture. Namely, we verified
that Conjecture 3.16 holds when N = 1 and p < 750 for all even values of a (except when p = 547
and k = 486 when (Cuspidal rank one) does not hold). Further, for N prime, let χN denote the
unique quadratic character of conductor N . We verified this conjecture for χN for N = 3, 5, 7
and p < 500, 400, 300 respectively, again for all even values of a. These computations included
approximately 100 distinct eigenforms and in all of these examples the above-mentioned exception
was the only time (Cuspidal rank one) failed.
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We further mention that in all of these tests there was a single example where the a = 0 case
of the conjecture did not immediately follow from the bounds in (3), namely, ord19(B8,χ5) = 2.
In this case there is a unique cuspidal eigenform f ∈ S8(Γ1(5), χ5,Z19) congruent to E8,χ5 , and
as expected from the Bernoulli divisibility, these forms are congruent modulo 192. Moreover,
ord19(a19(f) − 1) = 3 and thus the bounds in (3) do not meet. In this case, we computed that
µ(f, ω0) = 2, which verifies Conjecture 3.16. We further computed that λ(f, ω0) = 1 in contrast
to the behavior of these invariants described by Theorem 3.21 when the bounds of (3) do meet.

We briefly mention here the method used to compute the relevant µ-invariants as it was a
bit novel and explain why (Cuspidal rank one) was needed. Fix N , ψ and a pair (p, k) such that
p | Bk,ψ. We formed a random overconvergent modular symbol Φ of level Np, weight k, and
nebentype ψ as in [PS11]. Working modulo a low accuracy (around modulo p4), we projected
Φ to the ordinary subspace (i.e. computed Φ | U4

p ), and then used the other Hecke operators to
form a (non-boundary) eigensymbol whose `th eigenvalue was congruent to 1 + χ(`)`k−1. When
(Cuspidal rank one) holds, there is a unique such symbol and thus this symbol must be the
one associated to the cuspidal eigenform we are considering. Evaluating the resulting symbol at
{∞} − {0} then gives the relevant p-adic L-function (modulo p4) from which an upper bound
for the µ-invariant can be obtained. In every case, this upper bound matched our proven lower
bound, verifying the conjecture.

4. Selmer groups

Let f =
∑

n anq
n be a normalized eigenform in Sk(Γ1(N), ψ,Qp). We further assume that f is

p-ordinary, that is, ordp(ap) = 1. Attached to f we have its (homological) Galois representation
ρf : GQ → Aut(Vf ) where Vf is a two-dimensional vector space over K = Qp({an}n). We note
that det(ρf ) = ψεk−1 where ε is the p-adic cyclotomic character. Set O equal to the ring of
integers of K, and choose a Galois stable O-lattice Tf ⊆ Vf .

Since f is p-ordinary, the representation ρf is locally reducible at p [Hid12, Theorem 4.2.7(2)],
and we have an exact sequence of GQp-representations

0→ O(η−1ψεk−1)→ Tf → O(η)→ 0

where η is an unramified character which sends Frobp to αp, the unit root of x2−apx+ψ(p)pk−1.
Further, set Af = Vf/Tf which is isomorphic to (K/O)2 and endowed with an action of GQ.

We then have an exact sequence of GQp-representations

0→ K/O(η−1ψεk−1)→ Af → K/O(η)→ 0, (5)

and
0→ O/$rO(η−1ψεk−1)→ Af [$r]→ O/$rO(η)→ 0 (6)

where $ is a uniformizer of O. Finally, set F = O/$O.

4.1 Definitions of Selmer groups
Let Q∞ denote the cyclotomic Zp-extension of Q and set Γ := Gal(Q∞/Q). Following
Greenberg [Gre89], we define the Selmer group Sel(Q∞, Af ) as the collection of classes σ in
H1(Q∞, Af ) such that: (1) for v a place of Q∞ not over p, resv(σ) is unramified, that is, σ is in
the kernel of

H1(Q∞, Af )→ H1(Iv, Af )

883

https://doi.org/10.1112/S0010437X19007127 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007127


J. Bellaïche and R. Pollack

where Iv is a choice of the inertia group at v; and (2) σ lies in the kernel of

H1(Q∞, Af )→ H1(Ip,∞, Af )→ H1(Ip,∞,K/O)

where the final map is induced by (5) and Ip,∞ is a choice of an inertia group at the unique prime
of Q∞ over p.

One can also analogously define these Selmer groups over Q or over Q(µp∞). We can define
Selmer groups of Af,j := Af ⊗ωj by simply twisting (5) and using this new sequence to define
the local condition at p. Since Q(µp)/Q has degree prime to p, we have the following relationship
between these Selmer groups:

Sel(Q(µp∞), Af ) ∼=
p−2⊕
j=0

Sel(Q∞, Af,j).

Remark 4.1. We note that if f arises from some elliptic curve E/Q, then Sel(Q, Af ) defined above
may not equal the p-adic Selmer group of E, Sel(Q, E[p∞]), whose local conditions are defined
by the Kummer map. Indeed, for ` 6= p, the image of the Kummer map vanishes while there can
be unramified cocyles at ` for primes of bad reduction. As a result, Sel(Q, Af ) can be larger than
Sel(Q, E[p∞]) and we will see that control theorems (see Proposition 4.4) work better for these
larger Selmer groups.

The definition of the local condition at p in all of these Selmer groups is given by restriction
to the inertia group at p. However, as proven in the following lemma, restricting to the
decomposition at p instead does not change the definition of these Selmer groups. (In the language
of Greenberg [Gre89], the strict Selmer group matches the full Selmer group in our case.)

Lemma 4.2. Let Dp,∞ ⊃ Ip,∞ be a choice of decomposition and inertia groups at the unique
prime of Q∞ over p, and likewise define Dp ⊃ Ip as decomposition and inertia groups at p. Then
the following maps are injective:

H1(Dp,K/O(ηωj))→ H1(Ip,K/O(ωj))

and
H1(Dp,∞,K/O(ηωj))→ H1(Ip,∞,K/O(ωj)).

Proof. We check the injectivity of the first map as the argument for the second is identical. The
kernel of this map is H1(Qun

p /Qp, (K/O(ηωj))Ip) where Qun
p is the maximal unramified extension

of Qp. If j 6≡ 0 (mod p− 1), then (K/O(ηωj))Ip = 0 and we are done.
Otherwise, since Gal(Qun

p /Qp) is topologically cyclic generated by Frobp, we have that
H1(Qun

p /Qp,K/O(η)) is given by the cokernel of

K/O(η)
Frobp−1
−→ K/O(η).

As long as Frobp−1 is not identically zero on K/O(η) we are done since K/O is divisible. Since
η(Frobp) = αp, the unit root of x2 − apx+ ψ(p)pk−1, we simply need to check then that αp 6= 1.
But if αp = 1, then the other root of this quadratic would be ψ(p)pk−1. Hence ap = 1+ψ(p)pk−1,
which violates the Weil bounds. 2
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We will need to consider one last kind of Selmer group; namely, we will define the Selmer
group of the finite Galois module Af [$n]. We follow the method of [EPW06, § 4.2] and note that
these Selmer groups depend not just on Af [$n], but on the modular form f itself. Namely, if
we are working over Q∞, then our local condition at v - p is given by the image of AGvf /$n in
H1(Q∞,v, Af [$n]) where Gv = GQ∞,v . At p, we use (6) to define our local condition just as in
the case of characteristic 0. As before, we can also define these objects over Q or Q(µp∞) and we
can analogously define Selmer groups of Af,j [$n].

The reason for the above definition of the local condition at v - p is that it is exactly the
condition needed to make the following lemma true.

Lemma 4.3. There are natural maps

Sel(Q, Af,j [$r])→ Sel(Q, Af,j)[$r],

Sel(Q∞, Af,j [$r])→ Sel(Q∞, Af,j)[$r]

which are surjective and have respective kernels H0(Q, Af,j)/prH0(Q, Af,j) and H0(Q∞,
Af,j)/p

rH0(Q∞, Af,j).

Proof. Verifying this lemma is just a diagram chase. 2

4.2 The control theorem
We now state a key control theorem for these Selmer groups, closely following [Gre99].

Proposition 4.4. If H0(Q, Af,j [$]) = 0, then the natural map

Sel(Q, Af,j)→ Sel(Q∞, Af,j)Γ

is injective and has cokernel bounded by the size of O/(αp−1)O. Moreover, the map is surjective
if j 6≡ 0 (mod p− 1).

Proof. By Lemma 4.2, we have a commutative diagram:

Sel(Q, Af,j)

��

� � // H1(QΣ/Q, Af,j)

h

��

// H(p)
loc ×H

1(Dp,K/O(ηωj))

r

��

Sel(Q∞, Af,j)Γ � � // H1(QΣ/Q∞, Af,j)Γ // (H(p)
∞,loc ×H

1(Dp,∞,K/O(ηωj)))Γ

where H(p)
loc :=

⊕
`|N H

1(I`, Af ) and H(p)
∞,loc :=

⊕
v|N H

1(Iv, Af ) where v runs over primes of Q∞.
We seek to apply the snake lemma and thus we must analyze the kernel and cokernel of h and
the kernel of r.

The cokernel of h maps to H2(Γ, H0(Q∞, Af,j)) which vanishes since Γ ∼= Zp has
cohomological dimension 1. The kernel of h equals H1(Γ, H0(Q∞, Af,j)). To see that this group
vanishes, it suffices to see that H0(Q∞, Af,j) vanishes. But by assumption H0(Q, Af,j [$]) = 0
which implies H0(Q, Af,j) = 0 which in turn implies H0(Q∞, Af,j) = 0 as Gal(Q∞/Q) is pro-p.
Thus, h is an isomorphism.

To determine the kernel of r, we first note that I` ∼= Iv if v | ` 6= p as Q∞/Q is unramified at `.
Thus H(p)

loc injects into H(p)
∞,loc, and ker(r) equals the kernel of H1(Dp,K/O(ηωj))→ H1(Dp,∞,

K/O(ηωj)) which in turn is isomorphic to

H1(Q∞,p/Qp, H
0(Q∞,p,K/O(ηωj))).
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If j 6≡ 0 (mod p − 1), then the above H0-term vanishes and ker(r) = 0. Otherwise, since
Gal(Q∞,p/Qp) is topologically cyclic, we have ker(r) is given by the Gal(Q∞,p/Qp)-coinvariants
of H0(Q∞,p,K/O(η)). Since η is the unramified character sending Frobp to αp, we have

H0(Q∞,p,K/O(η)) = ker(K/O
×(αp−1)
−→ K/O) ∼= O/(αp − 1)O.

But then
|ker(r)| = |H0(Q∞,p,K/O(η))| = |O/(αp − 1)O|.

The proposition then follows, in either case, from the snake lemma. 2

4.3 The main conjecture
Let ΛO := O[[1 + pZp]] ∼= O[[Gal(Q∞/Q)]]. The following main conjecture relates these Selmer
group over Q∞ to p-adic L-functions.

Conjecture 4.5 (Main conjecture). We have that Sel(Q∞, Af,j)∨ is a finitely generated torsion
ΛO-module, and

charΛO[1/p] Sel(Q∞, Af,j)∨ = L+
p (f, ωj) · ΛO[1/p].

At this level of generality, where the Galois representation of f is not assumed to be residually
irreducible, we can only state a main conjecture with p inverted. The reason for this is that Lp(f)
only depends upon the modular form f , while Sel(Q∞, Af,j) depends on a choice of a lattice in
the Galois representation Vf . The choice of a lattice can change the left-hand side by powers
of $. The issue of which lattice to pick to correctly match the p-adic L-function will be further
discussed in the next section.

The following is a deep theorem of Kato which proves half of the main conjecture.

Theorem 4.6 (Kato). We have that Sel(Q∞, Af,j)∨ is a finitely generated torsion ΛO-module,
and

charΛO[1/p] Sel(Q∞, Af,j)∨ divides L+
p (f, ωj)

in ΛO[1/p].

Proof. See [Kat04, Theorems 17.4.1 and 17.4.2]. Note that the hypothesis that ρf has large image
is not used in this part of Kato’s work. 2

5. Algebraic results

We continue with the notation of the previous section so that f is a normalized cuspidal eigenform
in Sk(Γ1(N), ψ,Qp) where p - N and p - ϕ(N).

Definition 5.1. Let eis(f) denote the largest integer n > 0 such that f ≡ Eord
k,ψ (mod$n) where

this congruence occurs in O/$nO[[q]].

Throughout this section we assume that eis(f)> 0. In particular, f is ordinary and let m = mf

denote the maximal ideal in T corresponding to f . Note then that ψ = ψm. We further assume
that m satisfies (Good Eisen).

We note again that there is not a unique lattice (up to homothety) in the Galois representation
Vf . The following lemma describes the situation more precisely.
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Lemma 5.2. If mf satisfies (Good Eisen), then in Vf there exists a sequence of Galois stable
lattices

T0 ( T1 ( · · · ( Teis(f),

no two of which are homothetic, such that the following statements hold.

(1) Ti/Ti−1 is isomorphic to F.
(2) For i 6= 0, eis(f), we have that Ti/$Ti is a split extension of F and F(ψωk−1).
(3) For i = eis(f), we have a non-split extension

0→ F(ψωk−1)→ Teis(f)/$Teis(f)→ F→ 0.

(4) For i = 0, we have a non-split extension

0→ F→ T0/$T0→ F(ψωk−1)→ 0.

(5) Ti/$iTi contains a submodule isomorphic to O/$iO(ψεk−1).

Proof. As f admits a congruence to Eord
k,ψ modulo $eis(f), the existence of such a chain of lattices

is standard as in [Bel09, § 1.2]. If a longer chain existed, then f would admit a congruence modulo
$m with m > eis(f) to some Eisenstein series (necessarily not Eord

k,ψ). However, (Good Eisen) and
Lemma 3.1 prevent this possibility. 2

We will see that the choice of lattice in Vf will affect the value of the µ-invariant of the
corresponding Selmer group.

5.1 Lower bounds
Set A(r)

f,j := Vf/Tr ⊗ωj for 0 6 r 6 eis(f). By Theorem 4.6, the Selmer group Sel(Q∞, A
(r)
f,j) is a

cotorsion ΛO-module and thus has associated µ- and λ-invariants. Following Greenberg, we now
give lower bounds on these µ-invariants which grow as r grows.

Theorem 5.3. For 0 6 r 6 eis(f) and for j even, we have

µ(Sel(Q∞, A
(r)
f,j)
∨) > r.

Proof. By Lemma 5.2, we have that A(r)
f,j contains a submodule isomorphic to O/$rO(ψεk−1ωj)

which is cyclic, odd, and ramified at p. Our theorem then follows exactly as in [Gre99,
Proposition 5.7] where an analogous statement is proven in the case of elliptic curves. 2

To relate this discussion to the our bounds on analytic µ-invariants, especially Theorem 3.14,
we have the following lemma.

Lemma 5.4. Let m ⊆ T be a maximal ideal and assume that the cuspidal Eisenstein ideal
Icmc ⊆ Tcmc is principal with generator Leis,m. Then for pf ⊆ mc, we have

eis(f) = ord$(Leis,m(pf )).

Proof. This lemma follows simply from the definition of I. 2
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5.2 Upper bounds
Let m be a maximal ideal of T, and let f be a classical eigenform in the Hida family for mc. Set
T = Teis(f) as in Lemma 5.2, and Af := Vf/T . This is the choice of lattice which maximizes our
lower bound on the µ-invariant. This subsection is devoted to proving an upper bound on the
µ-invariant of Sel(Q∞, Af )∨. Compare with Theorem 3.15 on the analytic side.

Consider now our nebentype character ψ : (Z/NZ)× → Qp as a Galois character, and let
Kψ ⊆ Q(µN ) be the smallest field which trivializes ψ. We note that Kψ is disjoint from Q(µp),
and thus Gal(Kψ(µp)/Kψ) ∼= ∆. In particular, we can discuss the ωj-eigenspaces in Cl(Kψ(µp)).
We need a Vandiver-type hypothesis to achieve an upper bound on the µ-invariant, namely,

the ψωr-eigenspace of Cl(Kψ(µp))[p] vanishes. (Vand ψωr)

Remark 5.5. We note that this condition does not hold generally when N > 1. See [Wak15,
Corollary 1.4] for explicit counter-examples and the relation of these counter-examples to Tm

being Gorenstein.

Theorem 5.6. Let m ⊆ T be an maximal ideal satisfying:

(i) (Good Eisen);
(ii) (Vand ψ−1ω2−j(m));
(iii) j(m) = 2 =⇒ ψ(p) 6= 1.

Then for f a classical eigenform in the Hida family for mc, we have

µ(Sel(Q∞, Af )∨) 6 ord$(ap(f)− 1).

We begin with a simple lemma which gives an upper bound on the µ-invariant of a Λ-module
in terms the module’s Γ-coinvariants.

Lemma 5.7. Let X be a finitely generated torsion ΛO-module with no finite submodules. If XΓ

is finite with size bounded by M , then qµ(X) 6M .

Proof. Using the structure theorem of finitely generated Λ-modules, we know that we have a map

X −→ Y

with finite kernel and cokernel where Y =
⊕

i Λ/fnii Λ and the fi are irreducible. Since X has no
finite submodule, we get an exact sequence

0→ X −→ Y −→ K → 0

with K finite. Thus,

0→ XΓ
→ Y Γ

→ KΓ
→ XΓ −→ YΓ −→ KΓ→ 0.

Since we are assuming that XΓ is finite, we have fi(0) 6= 0 for all i, and thus Y Γ = 0. Our exact
sequence is then just

0→ KΓ
→ XΓ −→ YΓ −→ KΓ→ 0,

and we deduce that |XΓ| = |YΓ| since |KΓ| = |KΓ|. Finally, since (ΛO/$
rΛO)Γ has size qr, we

have |YΓ| > qµ(X). Thus
M > |XΓ| = |YΓ| > qµ(X)

as desired. 2
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In light of Lemma 5.7, we need to bound the size of Sel(Q∞, Af )Γ. By Proposition 4.4, we
thus need to control the size of Sel(Q, Af ). This is done in the following lemma.

Proposition 5.8. Under the hypotheses of Theorem 5.6, we have Sel(Q, Af ) = 0.

Proof. By definition of T := Teis(f), there exists a non-split short exact sequence

0→ F(ψωk−1)→ T/$T → F→ 0.

In particular, H0(Q, Af [$]) = H0(Q,F(ψωk−1)) = 0 as ψωk−1 is odd. Thus, by Lemma 4.3, to
prove this proposition it suffices to check that Sel(Q, Af [$]) = 0.

The above short exact sequence yields

0→ H0(QΣ/Q,F)→ H1(QΣ/Q,F(ψωk−1))→ H1(QΣ/Q, Af [$])→ H1(QΣ/Q,F).

We claim that the image of H1(QΣ/Q,F(ψωk−1)) in H1(QΣ/Q, Af [$]) contains Sel(Q, Af [$]).
To this end, take φ ∈ Sel(Q, Af [$]) and let im(φ) denote the image of φ in H1(QΣ/Q,F)

= Hom(Gal(QΣ/Q),F), and we will check that im(φ) vanishes. Since φ is a Selmer class, φ is
unramified outside p. Further, the very definition of the local condition at p tells us that im(φ)
is unramified at p. In particular, im(φ) is unramified everywhere and hence zero as desired.

Thus
dimF(Sel(Q, Af [$])) 6 dimF(H1(QΣ/Q,F(ψωk−1)))− 1,

with the −1 coming from H0(QΣ/Q,F) ∼= F. Lemma 5.9 below, whose hypotheses are satisfied
by (Good Eisen) and our running assumption that p - ϕ(N), then gives

dimF(Sel(Q, Af [$])) 6 dimFp(Cl(Kψ(µp))[p]
(ψ−1ω2−k))

which is 0 by (Vand ψ−1ω2−k). 2

Lemma 5.9. Let ψ be a character of conductor N and let Σ denote the set of primes dividing
pN . Assume that:

(1) p - ϕ(N);
(2) (−1)k = ψ(−1);
(3) k ≡ 2 (mod p− 1) =⇒ ψ(p) 6= 1.

Then
dimF(H1(QΣ/Q,F(ψωk−1))) 6 dimF(Cl(Kψ(µp))[p]

(ψ−1ω2−k)) + 1.

Proof. Let X = F(ψωk−1) and X∗ = F(ψ−1ω2−k). Set H1
f (QΣ/Q, X∗) equal to the subcollection

of classes in H1(QΣ/Q, X∗) which are locally trivial at all places in Σ. Then, by [Wil95,
Proposition 1.6], we have

#H1(QΣ/Q, X)

#H1
f (QΣ/Q, X∗)

= h∞
∏
`∈Σ

h`,

where

h` = #H0(Q`, X
∗) and h∞ =

#H0(R, X∗) ·#H0(Q, X)

#H0(Q, X∗)
.
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We analyze each term individually. First note that H0(Q, X) = 0 as ψωk−1 is non-trivial
(being odd) andH0(Q, X∗) = 0 as we have assumed that ψ−1ω2−k is non-trivial. Further, #H0(R,
X∗) = q as ψ−1ω2−k is an even character. Now, for ` ∈ Σ − {p}, clearly H0(Q`, X) = 0 as ψ is
ramified at `. Finally, H0(Qp, X

∗) = 0 as either k 6≡ 2 (mod p− 1) or ψ(p) 6= 1 by assumption.
Thus, h∞ = q, h` = 1 for all ` ∈ Σ, and

#H1(QΣ/Q, X) = q ·#H1
f (QΣ/Q, X∗).

Let ∆ψ = Gal(Kψ(µp)/Q), which has size prime to p as we are assuming that p - ϕ(N). Thus we
have

H1(QΣ/Q, X∗)
∼
→ H1(QΣ/Kψ(µp), X

∗)∆ψ

∼= Hom∆ψ
(Gal(QΣ/Kψ(µp)), X

∗)

∼= Hom(Gal(QΣ/Kψ(µp))
(ψ−1ω2−k),F).

The image of H1
f (QΣ/Q, X∗) in H1(QΣ/Q, X∗) thus lands in

Hom(Gal(Hψ/Kψ(µp))
(ψ−1ω2−k),F)

where Hψ denotes the Hilbert class field of Kψ(µp). Hence,

#H1(QΣ/Q,F(ψωk−1)) 6 q ·# Cl(Kψ(µp))[p]
(ψ−1ω2−k),

which proves the lemma. 2

Proof of Theorem 5.6. By Proposition 5.8, (Vand ψ−1ω2−k) implies Sel(Q, Af ) = 0. Thus, by
Proposition 4.4, we have that |Sel(Q∞, Af )Γ| 6 qord$(ap(f)−1). We note that, by our choice of T ,
we have H0(Q, Af [$]) = 0, which is needed to invoke Proposition 4.4. Finally, by [GV00,
Proposition 2.5], Sel(Q∞, Af )∨ has no non-zero finite submodules; thus µ(Sel(Q∞, Af )∨) 6
ordp(ap(f)− 1) by Lemma 5.7. 2

Remark 5.10. We note that if j(m) = 2 and ψ(p) = 1, then Proposition 5.8 does not hold. Indeed,
in this case Lemma 5.9 gives that the image of H1(QΣ/Q,F(ψωk−1)) in H1(QΣ/Q, Af [$]) yields
a non-trivial class in Sel(Q, Af [$]). Nonetheless Theorem 5.6 likely holds in this case even if our
method of proof fails.

5.3 Conjecture
We continue with the notation and assumptions of the previous section so that Af = Vf/Teis(f).
Theorems 5.3 and 5.6 give the following string of inequalities:

eis(f) 6 µ(Sel(Q∞, Af )∨) 6 ord$(ap(f)− 1). (7)

Greenberg has formulated precise conjectures on µ-invariants of Selmer groups of an elliptic
curve in terms of the Galois module structure of E[pn] for n large enough [Gre99, Conjecture 1.11
and p. 70]. These conjectures readily generalize to the case of modular forms and in this context
predict that the lower bound gives the true value of the µ-invariant.

Conjecture 5.11. We have
µ(Sel(Q∞, Af )∨) = eis(f).
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5.4 When the bounds meet
As on the analytic side, when the upper and lower bound in (7) meet, the Iwasawa theory becomes
very simple. In this section, we will prove the following theorem which establishes that the Selmer
group is entirely given by the µ-invariant in this situation (compare with Theorem 3.21 on the
analytic side).

Theorem 5.12. Let m ⊆ T be an maximal ideal satisfying:
• (Good Eisen);
• (Up − 1 gens);
• j(m) = 2 =⇒ ψ(p) 6= 1.

Then for f a classical eigenform in the Hida family for mc, we have

Sel(Q∞, Af ) ∼= (ΛO/$
eis(f)ΛO)∨.

Proof. To ease notation, let S = Sel(Q∞, Af ). First note that by Theorem 3.5 we know
that T is Gorenstein as (Up − 1 gens) holds. Then by [Wak15, Theorem 1.2], we have that
(Vand ψ−1ω2−j(m)) holds. Hence, by Theorems 5.3 and 5.6,

eis(f) 6 µ(S∨) 6 ord$(ap(f)− 1).

Further, by Lemma 5.4, (Up − 1 gens) implies that eis(f) = ord$(ap(f)− 1), and thus µ(S∨) =
ord$(ap(f)− 1).

Let h ∈ ΛO denote the characteristic power series of S∨. Then, by [Gre99, Lemma 4.2], we
have

ordq |SΓ| = ord$ h(0) + ordq |SΓ|.

Clearly, ord$ h(0) > µ(S∨) = ord$(ap(f) − 1). Further, in the course of the proof of
Proposition 4.4, the exact sequence

0→ Sel(Q, Af )→ SΓ
→ ker(r) (8)

and the surjection O/(ap(f) − 1)O � ker(r) were derived. By Proposition 5.8, we have
Sel(Q, Af ) = 0, and thus ordq |SΓ| 6 ord$(ap(f)− 1). Thus, we must have that

ordq |SΓ| = ord$ h(0) = ord$(ap(f)− 1) and ordq |SΓ| = 0.

But now µ(h) = ord$ h(0), and hence λ(h) = 0 (as in the proof of Theorem 3.21).
We now know that µ(S∨) = eis(f) and λ(S∨) = 0, and thus to prove our theorem it suffices

to check that S∨ is a cyclic ΛO-module. By Nakayama’s lemma, it suffices to check that (S∨)Γ is
a cyclic O-module, or equivalently that SΓ is a cyclic O-module. Returning to (8), we can now
deduce that SΓ ∼= ker(r) ∼= O/(ap(f)− 1)O as all of these modules have the same size. Thus, SΓ

is O-cyclic, which concludes the proof. 2

Corollary 5.13 (Main conjecture). Let m ⊆ T be an maximal ideal satisfying:
• (Good Eisen);
• (Up − 1 gens);
• j(m) = 2 =⇒ ψ(p) 6= 1.

Then, for f a classical eigenform in the Hida family for mc, we have

charΛO(Sel(Q∞, Af )∨) = $eis(f)ΛO = Lp(f/Q∞)ΛO.

Proof. Simply combine Theorems 3.21 and 5.12. 2
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Appendix A. Two-variable p-adic L-functions

Let T denote the universal ordinary Hecke algebra of tame level Γ1(N) acting on modular forms
(not just cuspforms), and let m denote a maximal ideal of T. We aim to construct a two-variable
p-adic L-function over Tm, assuming the maximal ideal m satisfies (Mult One). Specifically, we
construct elements4

L+
p (m) ∈ Tm⊗Zp Zp[[Z×p ]] and L−p (m) ∈ Tcmc ⊗Zp Zp[[Z×p ]]

such that for any classical height-one prime pf ⊆ Tm of residue characteristic 0, the image of
L+
p (m) in Tm/pf ⊗Zp[[Z×p ]] yields the p-adic L-function L+

p (f), and similarly for L−p (m).

A.1 Integral control theorems
Recall the definition of Pg for g > 0 as well as the specialization map Measg(Zp) → P∨g from
§ 2.3. In this section we aim to prove the following integral version of the control theorem in
Theorem 2.2. In what follows, we write H i

c(X) for H i
c(Γ0, X).

Theorem A.1. Specialization induces an isomorphism

H1
c (Measg(Zp))ord ∼−→ H1

c (P∨g )ord.

Towards proving Theorem A.1, we recall the following famous result of Mahler.

Theorem A.2. Any continuous function f : Zp → Qp can be written uniquely in the form
f(x) =

∑∞
j=0 cj

(
x
j

)
with {cj} a sequence in Qp tending to 0. Moreover,

sup
x∈Zp

|f(x)|p = sup
j
|cj |p.

In particular, if f takes values in Zp, then all of the cj are integral.

Proof. See [Mah58]. 2

Corollary A.3. The map which associates µ ∈ Meas(Zp) to the sequence {µ(
(
x
j

)
)}∞j=0

establishes a bijection between Meas(Zp) and the collection of sequences in Zp.

Proof. This corollary follows immediately from Theorem A.2. 2

Lemma A.4. The specialization map Measg(Zp)→ P∨g is surjective.

4 Note that Tm
∼= Tcmc if m is not Eisenstein and the necessary distinction being drawn between the plus and minus

p-adic L-functions disappears.
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Proof. By Theorem A.2, Pg is generated over Zp by the binomial coefficients
(
x
j

)
for 0 6 j 6 k.

Thus this lemma follows directly from Corollary A.3. 2

Proof of Theorem A.1. By Lemma A.4, we have an exact sequence

0→ K → Measg(Zp)→ P∨g → 0

where K is the subspace of measures which vanish on polynomials of degree less than or equal
to k. The long exact sequence for cohomology then gives

H1
c (K)ord

→ H1
c (Measg(Zp))ord

→ H1
c (P∨g )ord

→ H2
c (K)ord.

We first show H1
c (K)ord = 0. To this end, take Φ ∈ H1

c (K)ord, and for any n we can write
Φ = Ψ | Unp with Ψ ∈ H1

c (K)ord. Then

Φ(D) = (Ψ|Unp )(D) =

p−1∑
a=0

Ψ

((
1 a
0 pn

)
D

)∣∣∣∣ (1 a
0 pn

)
.

Since all values of Ψ are in K, we have in particular that

Ψ

((
1 a
0 pn

)
D

)
(Zp) = Ψ

((
1 a
0 pn

)
D

)
(1Zp) = 0.

Thus, by Lemma A.5 below, we have Φ(D)(a + pnZp) = 0 for all a. But since n was chosen
arbitrarily, we have that Φ(D) and thus Φ is identically zero.

To see H2
c (K)ord = 0, note that

H2
c (K)ord ∼= H0(K)ord ∼= (KΓ0)ord ∼= (Kord)Γ0 .

Here we are computing Kord with respect to the Up-operator
∑p−1

a=0

(
1 a
0 p

)
. It thus suffices to show

that Kord = 0. But this follows from Lemma A.6 below. 2

Lemma A.5. If µ ∈ Meas(Zp) such that µ(Zp) = 0, then(
µ

∣∣∣∣(1 a
0 pn

))
(b+ pnZp) = 0

for all b ∈ Zp.

Proof. We have(
µ

∣∣∣∣(1 a
0 pn

))
(b+ pnZp) =

(
µ

∣∣∣∣(1 a
0 pn

))
(1b+pnZp(z)) = µ(1b+pnZp(a+ pnz)).

When a 6≡ b (mod pn), the function 1b+pnZp(a + pnz) is identically zero. When a ≡ b (mod pn),
we have

µ(1b+pnZp(a+ pnz)) = µ(1Zp(z)) = µ(Zp) = 0

by assumption. 2

Define an action of Up on Meas(Zp) simply by the action of
∑p−1

a=0

(
1 a
0 p

)
.
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Lemma A.6. We have Meas(Zp)ord = 0.

Proof. For µ ∈ Meas(Zp)ord, write µ = µn | Unp for each n > 0. Then

µ(b+ pnZp) =

pn−1∑
a=0

(
µn

∣∣∣∣(1 a
0 pn

))
(b+ pnZp) = µn(Zp),

which is independent of b. But this clearly forces µ to vanish. 2

We end this section with a ‘mod p’ control theorem.

Lemma A.7. We have
H1
c (P∨g )ord⊗Fp ∼= H1

c (P∨g ⊗Fp)ord.

Proof. Starting with the short exact sequence

0→ P∨g
×p−→ P∨g −→ P∨g ⊗Fp→ 0

gives
0→ H1

c (P∨g )ord ×p−→ H1
c (P∨g )ord −→ H1

c (P∨g ⊗Fp)ord
→ H2

c (P∨g )ord.

As before, we have
H2
c (P∨g )ord ∼= ((P∨g )Γ0)ord ∼= ((P∨g )ord)Γ0 .

Since Measg(Z×p )� P∨g (Lemma A.4) and Measg(Z×p )ord = 0 (Lemma A.6), we get (P∨g )ord = 0

and thus H2
c (P∨g )ord = 0. 2

A.2 Two-variable measures and specialization
Recall the natural isomorphism

Meas(Z×p × Zp) ∼= Zp[[Z×p × Zp]]

which sends the Dirac measure δx supported at x ∈ Z×p × Zp to the group-like element [x] in
Zp[[Z×p × Zp]]. We endow Zp[[Z×p × Zp]] with the Zp[[Z×p ]]-action arising from the embedding

Z×p → Zp[[Z×p ]]

a 7→ a2[(a, a)].

The factor of a2 here is related to the fact that weight-k modular forms correspond to
Symk−2-valued modular symbols. In terms of measures, the corresponding action of Zp[[Z×p ]] on
Meas(Z×p × Zp) is given by

([a] · µ)(f(x, y)) = a2

∫
Z×p ×Zp

f(ax, ay) dµ(x, y)

for a ∈ Z×p and µ ∈ Meas(Z×p × Zp).
The space Meas(Z×p × Zp) also admits an action of Σ0(p) defined by

(µ|γ)(f(x, y)) =

∫
Z×p ×Zp

f((x, y) · γ) dµ(x, y).
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The specialization to weight g is then the following Σ0(p)-equivariant map:

Meas(Z×p × Zp) −→ Measg(Zp)

µ 7→
(
f 7→

∫
Z×p ×Zp

xgf(y/x) dµ(x, y)

)
.

Let pk ⊆ Zp[[Z×p ]] denote the ideal generated by elements of the form [a]− ak. We note that
pk is a principal ideal with generator πk = [γ]− γk where γ is a topological generator of Z×p .

Lemma A.8. The specialization map Meas(Z×p × Zp)→ Measg(Zp) sits in the exact sequence

0→ Meas(Z×p × Zp)
×πk−→ Meas(Z×p × Zp)→ Meask−2(Zp)→ 0

where πk is any generator of the ideal pk.

Proof. To prove this lemma, we will work with the interpretation of these measure spaces as
group algebras. Specialization is then the map

Zp[[Z×p × Zp]]→ Zp[[Zp]]

which sends the group-like element [(a, b)] to ak−2[b/a]. We immediately see then that
specialization is surjective as [(1, b)] maps to [b].

To see that multiplication by πk is injective, note that Zp[[Z×p ×Zp]] is isomorphic to a direct
sum of p−1 copies of Zp[[(1+pZp)×Zp]] with projections induced by the characters of (Z/pZ)×.
Since Zp[[(1 + pZp) × Zp]] is a domain, it suffices to see that no projection of πk is 0, which is
true by inspection.

Finally, to compute the kernel of specialization, we will make a change of variables on
Zp[[Z×p × Zp]]. Namely, consider the group isomorphism

Z×p × Zp→ Z×p × Zp
(r, s) 7→ (r, rs)

which induces a ring isomorphism

Zp[[Z×p × Zp]]
α−→ Zp[[Z×p × Zp]].

The map α is Zp[[Z×p ]]-linear if we endow the target with the same Zp[[Z×p ]]-action as before, but
we endow the source with the Zp[[Z×p ]]-action arising from embedding

Z×p → Zp[[Z×p ]]

a 7→ a2[(a, 1)].

By precomposing by α, it suffices to compute the kernel of Zp[[Z×p × Zp]]→ Zp[[Zp]] where the
group-like element [(a, b)] simply maps to ak−2[b]. This kernel is visibly equal to pkZp[[Z×p ×Zp]]
as desired. 2
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A.3 Two-variable control theorem
For ease of notation we writeM for Meas(Z×p × Zp) andMg for Measg(Zp).

Theorem A.9. Specialization induces the isomorphism

H1
c (M)ord⊗Zp (Zp[[Z×p ]]/pk) ∼= H1

c (Mk−2)ord.

Proof. Taking the long exact sequence corresponding to the exact sequence from Lemma A.8 and
passing to ordinary parts gives

0 −→ H1
c (M)ord ×πk−→ H1

c (M)ord −→ H1
c (Mk−2)ord −→ H2

c (M)ord.

We have
H2
c (M)ord ∼= H0(M)ord = (MΓ0)ord = (Mord)Γ0

which one can see vanishes just as in the proof of the Lemma A.6, completing the proof of the
theorem. 2

Corollary A.10. For k > 2, we have

H1
c (M)ord⊗ (Zp[[Z×p ]]/pk) ∼= H1

c (P∨k−2)ord.

Proof. Combine Theorems A.9 and A.1. 2

A.4 Control theorems on the dual side
For a maximal ideal m ⊆ T, the space H1

c (P∨g ⊗Fp)[mk] is more directly related to
HomΛ̃(H1

c (M)m, Λ̃) than to H1
c (M)m, where Λ̃ := Zp[[Z×p ]]. For this reason, we now prove a

control theorem on the dual side. We begin with a few lemmas.

Lemma A.11. Let K be a field, R a finitely generated K-algebra, and M a finitely generated
R-module. For any ideal I ⊆ R, we have:

(1) M [I]∨ ∼= M∨/IM∨;
(2) (M/IM)∨ ∼= M∨[I].

Here X∨ = HomK(X,K).

Proof. First note that the second isomorphism implies the first. Indeed, applying the second
isomorphism to M∨ gives

(M∨/IM∨)∨ ∼= (M∨)∨[I]

and thus
(M∨/IM∨) ∼= M [I]∨.

To see the second isomorphism, there is a natural map

(M/IM)∨→M∨

which is clearly injective. Moreover, the image of this map lands in M∨[I] since if a ∈ I and
φ : M →M/IM → K is in the image, then (a · φ)(m) = φ(am) = 0 for all m ∈M .

Finally, to get surjectivity, take φ ∈ M∨[I]. So φ : M → K and a · φ = 0 for all a ∈ I.
To prove surjectivity, we simply need to see that φ(IM) = 0. But this follows since for a ∈ I,
φ(am) = (a · φ)(m) = 0. 2
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Lemma A.12. Let M be a projective R-module and I = aR a principal ideal of R where a is not
a zero-divisor. Then

HomR(M,R)/I HomR(M,R) ∼= HomR(M,R/I) ∼= HomR/I(M/IM,R/I).

Proof. Since a is not a zero-divisor, we have

0 −→ R
×a−→ R −→ R/I −→ 0,

and thus

0 −→ HomR(M,R)
×a−→ HomR(M,R) −→ HomR(M,R/I) −→ Ext1

R(M,R).

This last Ext group vanishes as M is projective over R, which proves the lemma. 2

The following lemma gives control theorems for HomΛ̃(H1
c (M)m, Λ̃).

Lemma A.13. For k ≡ j(m) (mod p− 1) and g = k − 2 > 0, we have

HomΛ̃(H1
c (M)m, Λ̃)⊗Λ̃ Λ̃/pk ∼= Hom(H1

c (P∨g )mk ,Zp)

and
HomΛ̃(H1

c (M)m, Λ̃)⊗T T/m ∼= Hom(H1
c (P∨g ⊗Fp)[mk],Fp).

Proof. Set X = H1
c (M)ord. Then for the first part we have

HomΛ̃(Xm, Λ̃)⊗Λ̃ Λ̃/pk ∼= HomΛ̃(Xm/pkXm, Λ̃/pk) (Lemma A.12)
∼= HomΛ̃((X/pkX)mk , Λ̃/pk)
∼= Hom(H1

c (P∨g )mk ,Zp) (Corollary A.10).

For the second part, we have

HomΛ̃(Xm, Λ̃)⊗T T/m ∼= HomΛ̃(Xm, Λ̃)⊗Λ̃ (Λ̃/pk)⊗T T/m
∼= Hom(H1

c (P∨g )mk ,Zp)⊗T T/m (part 1 above)
∼= Hom(H1

c (P∨g )mk ⊗Zp Fp,Fp)⊗T T/m (Lemma A.12)

∼= Hom(H1
c (P∨g ⊗Fp)mk ,Fp)⊗T T/m (Lemma A.7)

∼= Hom(H1
c (P∨g ⊗Fp)[mk],Fp) (Lemma A.11). 2

A.5 Freeness over the Hecke algebra
For m ⊆ T maximal, we aim to show that m satisfies a mod p multiplicity-one assumption if and
only if HomΛ̃(H1

c (M)εm, Λ̃) is free over Tm for ε = + and free over Tcmc if ε = −. However, such a
result cannot hold unconditionally as the Eisenstein Hecke eigensystems do not always all occur
in the plus subspace. We thus introduce the following hypothesis on m to force this condition to
hold.

Definition A.14. We say that m ⊂ T satisfies (Eisen+) if HomΓ0(∆,P∨k−2)−mk = 0 for all
(equivalently, for one) classical k ≡ j(m) (mod p− 1).

Note that (Eisen+) is automatically satisfied if m is not an Eisenstein maximal ideal. It is also
automatically satisfied if N is square-free. But it fails, for instance, when N = 9 as the boundary
symbol attached to Ek,χ,χ lies in the minus subspace where χ is the non-trivial (odd) character
of order 3.
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Lemma A.15. If m ⊆ T satisfies (Eisen+), for k > 2, k ≡ j(m) (mod p− 1), we have

H1
c (P∨k−2)+

mk
⊗Qp

∼= Mk(Γ0,Zp)mk ⊗Qp

and
H1
c (P∨k−2)−mk ⊗Qp

∼= Sk(Γ0,Zp)mk ⊗Qp

as Hecke modules.

Proof. The lemma follows immediately from [Bel12, Proposition 3.15]. 2

Theorem A.16. Let m be a maximal ideal of T satisfying (Eisen+). The following statements
are equivalent:

(1) HomΛ̃(H1
c (M)+

m , Λ̃), is a free Tm-module of rank 1;
(2) dimT/mH

1
c (P∨k−2⊗Fp)+[mk] = 1 for all k > 2, k ≡ j(m) (mod p− 1);

(3) dimT/mH
1
c (P∨k−2⊗Fp)+[mk] = 1 for some k > 2, k ≡ j(m) (mod p− 1).

Proof. Lemma A.13 gives that (1) implies (2). The implication (2) implies (3) is clear. So we
just need to show that (3) implies (1). To this end, by Lemma A.13 and Nakayama’s lemma, (3)
implies that Y + := HomΛ̃(H1

c (M)+
m , Λ̃) is a cyclic Tm-module. We then have an exact sequence

0→ K → T→ Y +
→ 0

and thus
0→ K/pkK → T/pkT→ Y +/pkY

+
→ 0

as Y + is Λ̃-torsion-free. Note that if we show for a single k that K/pkK = 0, then, by Nakayama’s
lemma, K = 0, and Y + is free of rank 1 over T.

To this end, recall that T/pkT ∼= Tk which is a torsion-free Zp-module. Also, Y +/pkY
+ ∼=

Hom(H1
c (P∨k−2)+

mk
,Zp) by Lemma A.13 which is also torsion-free. Thus, it suffices to see that the

Zp-ranks of Tk,mk and H1
c (P∨k−2)+

mk
match. But this follows immediately from Lemma A.15. 2

Theorem A.17. Let mc be a maximal ideal of Tc satisfying (Eisen+). The following statements
are equivalent:

(1) HomΛ̃(H1
c (M)−mc , Λ̃), is a free Tcmc-module of rank 1;

(2) dimT/mH
1
c (P∨k−2⊗Fp)−[mk] = 1 for all k > 2, k ≡ j(m) (mod p− 1);

(3) dimT/mH
1
c (P∨k−2⊗Fp)−[mk] = 1 for some k > 2, k ≡ j(m) (mod p− 1).

Proof. We first need to justify why X− := H1
c (M)−m is even a module over Tcmc . To this end, take

h in the kernel of Tm→ Tcmc , and we will show that h kills X−. For x ∈ X−, consider the image
of hx in

X−⊗Λ̃ Λ̃/pk ∼= H1
c (P∨k−2)−mk .

Further, by Lemma A.15, we haveH1
c (P∨k−2)−mk ↪→ Sk(Γ0,Qp). Thus, the image of hx inX−/pkX−

vanishes. Since this is true for all k > 2, we deduce that hx = 0 and that X− is a Tcmc-module.
The remainder of the proof follows exactly as in the proof of Theorem A.16. 2
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A.6 Two-variable p-adic L-functions
In this section, we assume that

dimT/mH
1
c (P∨k−2⊗Fp)ε[mk] = 1

so that we know that HomΛ̃(H1
c (M)εm, Λ̃) is a free Tεm-module, where T+

m := Tm and T−m := Tcmc .
Moreover, we now fix an isomorphism HomΛ̃(H1

c (M)εm, Λ̃) ∼= Tεm.
Consider the Λ̃-linear map

H1
c (M)ord

→M := Meas(Z×p × Zp)
Φ 7→ Φ({∞} − {0}).

Let Lεp denote the corresponding element of

HomΛ̃(H1
c (M)ord,ε,M) ∼= HomΛ̃(H1

c (M)ord,ε, Λ̃) ⊗̂Λ̃ Zp[[Z×p × Zp]]
∼= HomΛ̃(H1

c (M)ord,ε, Λ̃) ⊗̂Λ̃ (Λ̃ ⊗̂Zp Zp[[Zp]])
∼= HomΛ̃(H1

c (M)ord,ε, Λ̃) ⊗̂Zp Zp[[Zp]].

Here the second isomorphism arises from

Zp[[Z×p × Zp]] ∼= Λ̃ ⊗̂Zp Zp[[Zp]]
[(a, b)] 7→ [a]⊗ [b/a]

where Λ̃ acts on Λ̃ ⊗̂Zp Zp[[Zp]] simply by acting on the first coordinate.
Let Lεp(m) denote the image of Lεp in

HomΛ̃(H1
c (M)εm,M) ∼= HomΛ̃(H1

c (M)εm, Λ̃) ⊗̂Zp Zp[[Zp]] ∼= Tεm ⊗̂Zp Zp[[Zp]] ∼= Tεm[[Zp]].

For p a height-one prime ideal of Tεm with O := Tεm/p, we write p(Lεp(m)) for the image of Lεp(m)

under the map

Tεm[[Zp]]� (Tεm/p)[[Zp]] ∼= O[[Zp]].

We call Lεp(m) the two-variable p-adic L-function attached to m as it has the following
interpolation property.

Proposition A.18. Let m be a maximal ideal of T, and let pf be a classical height-one prime
of T corresponding to an eigenform f . Let O denote the subring of Qp generated by the Hecke
eigenvalues of f . Then

pf (Lεp(m))|Z×p = Lεp(f)

as O-valued measures on Z×p (for some choice of canonical period Ωε
f ).

Proof. Given the control theorems proven in this appendix, the proof of this theorem is just a
diagram chase. 2
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