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Abstract. We find explicit free resolutions for the D-modules Df s and D½s� f s=D½s� f sþ1, where
f is a reduced equation of a locally quasi-homogeneous free divisor. These results are based on
the fact that every locally quasi-homogeneous free divisor is Koszul free, which is also proved
in this paper.
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Introduction

In this paper we study the module Df s, where D is the ring of germs at 0 2 Cn of

linear holomorphic differential operators and f is a reduced local equation of a

locally quasi-homogeneous free divisor D � ðCn; 0Þ.

The module Df s encodes an enormous amount of geometric information of the

singularity f ¼ 0, but usually it is hard to work with in an explicit way. We prove

the following results (see Corollary 5.8 and Theorem 5.9):

ðAÞ Let f ¼ 0 be a reduced local equation of a locally quasi-homogeneous free divisor

of Cn, and let fd1; . . . ; dn
1g be a basis of the module of vector fields vanishing on f.

Then

(1) The di generate the ideal AnnD f s.

(2) There exist explicit Koszul–Spencer type free resolutions for the modules Df s

and D½s� f s=D½s� f sþ1 built on d1; . . . ; dn
1 and f; d1; . . . ; dn
1, respectively.

Locally quasi-homogeneous free divisors form an important class of divisors

with non isolated singularities: normal crossing divisors, the union of reflecting

hyperplanes of a complex reflection group, free hyperplane arrangements or the

discriminant of stable mappings in Mather’s ‘nice dimensions’ are examples of such

divisors.
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Let X be a complex analytic manifold. Given a divisor D � X, let us write

j:U ¼ X nD ,!X for the corresponding open inclusion and O�ð�DÞ for the

meromorphic de Rham complex with poles along D. In [11], Grothendieck proved

that the canonical morphism O�ð�DÞ ! Rj�ðCUÞ is an isomorphism (in the derived

category). This result is usually known as (a version of) Grothendieck’s Comparison

Theorem.

In [17], K. Saito introduced the logarithmic de Rham complex associated with

D, O�Xðlog DÞ, generalizing the well known case of normal crossing divisors (cf.

[8]). In the same paper, K. Saito also introduced the important notion of free

divisor.

In [7], it is proved that the logarithmic de Rham complex O�Xðlog DÞ computes the

cohomology of the complement U if D is a locally quasi-homogeneous free divisor

(we say that D satisfies the logarithmic comparison theorem). In other words, the

canonical morphism O�Xðlog DÞ ! Rj�ðCUÞ is an isomorphism, or using Grothen-

dieck’s result, the inclusion O�Xðlog DÞ ,!O�ð�DÞ is a quasi-isomorphism. In fact,
in [5] it is proved that, in the case of dimX ¼ 2, D is locally quasi-homogeneous if

and only if it satisfies the logarithmic comparison theorem.

Since the derived direct image Rj�ðCUÞ is a perverse sheaf (it is the de Rham com-

plex of the holonomic module of meromorphic functions with poles along D [15], II,

th. 2.2.4), we deduce that O�Xðlog DÞ is perverse for every locally quasi-homogeneous

free divisor.

On the other hand, the first author proved the following results [4]:

Let D � X be a Koszul free divisor (see Definition 1.6) and J the left ideal of the

ring DX of differential operators on X generated by the logarithmic vector fields with

respect to D. Then

(1) The left DX-module DX=J is holonomic.

(2) There is a canonical isomorphism in the derived category

O�Xðlog DÞ ’ RHomDX
ðDX=J ;OXÞ:

As a consequence, the logarithmic de Rham complex associated with a Koszul free

divisor is a perverse sheaf.

The proof of ðAÞ depends strongly on the following result, which has been sugges-

ted by the above results (see Theorem 4.3):

ðBÞ Every locally quasi-homogeneous free divisor is Koszul free.

In the first three sections we introduce some material concerning locally quasi-

homogeneous free divisors, Koszul free divisors, the notion of linear type ideal

and the module Df s.

In the fourth section we include the proof of ðBÞ in our previous paper [6].

The fifth section is the main part of this paper and contains the proof of ðAÞ and

some related results.

In the sixth section we study some examples and we state some problems and

conjectures.
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The first part of ðAÞ has been proposed (without proof) in [1, page 240] in the

particular case of discriminants of versal deformations of simple hypersurface singu-

larities. The normal crossing divisors case has been treated in [10].

1. Locally Quasi-homogeneous and Koszul Free Divisors

1.1. Let X be a n-dimensional complex analytic manifold. We denote by

p:T�X! X the cotangent bundle, OX the sheaf of holomorphic functions on X,

DX the sheaf of linear differential operators on X (with holomorphic coefficients),

GrF� ðDXÞ the graded ring associated with the filtration F� by the order, sðPÞ the
principal symbol of a differential operator P and f
;
g the Poisson bracket on

OT�X or GrF� ðDXÞ. We will note O ¼ OX;p, D ¼ DX;p and GrF� ðDÞ ¼ GrF� ðDXÞp
the respective stalks at p, with p a point of X. If J � D is a left ideal, we denote

by sðJÞ the corresponding graded ideal of GrF� ðDÞ. Given a divisor D � X, we

denote by DerðlogDÞ the OX-module of the logarithmic vector fields with respect

to D [17]. If f is a local equation of D at p, we denote by Derðlog f Þ the stalk

at p of DerðlogDÞ, whose elements are germs at p of vector fields d such that

dð f Þ 2 ð f Þ.

DEFINITION 1.2. A divisor D is Euler-homogeneous at p 2 D if there is a local

equation h for D around p, and a germ of (logarithmic) vector field d such that
dð f Þ ¼ f. A such d is called a local Euler vector field for f.

The set of points where a divisor is Euler-homogeneous is open.

DEFINITION 1.3 (cf. [7]). A germ of divisor ðD; pÞ � ðX; pÞ is quasi-homogeneous

if there are local coordinates x1; . . . ; xn 2 OX;p with respect to which ðD; pÞ has a

weighted homogeneous defining equation (with strictly positive weights). A divisor D

in a n-dimensional complex manifold X is locally quasi-homogeneous if the germ

ðD; pÞ is quasi-homogeneous for each point p 2 D. A germ of divisor ðD; pÞ � ðX; pÞ

is locally quasi-homogeneous if the divisor D is locally quasi-homogeneous in a

neighborhood of p.

Obviously a locally quasi-homogeneous divisor is Euler-homogeneous at every

point.

DEFINITION 1.4. We say that a reduced germ f 2 OX;p is locally quasi-

homogeneous if the germ of divisor ðf f ¼ 0g; pÞ is.

Remark 1:5: A reduced germ f 2 OX;p is locally quasi-homogeneous if and only if

for every q 2 f f ¼ 0g near p there are local coordinates z1; . . . ; zn 2 OX;q and a quasi-

homogeneous polynomial Pðt1; . . . ; tnÞ (with strictly positive weights) such that

fq ¼ Pðz1; . . . ; znÞ. &
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DEFINITION 1.6 ([17], [4], def. 4.1.1). Let D � X be a divisor. We say that D is free

at p 2 X if Derðlog DÞp is a free O-module (of rank n). We say that D is a Koszul free

divisor at p 2 X if it is free at p and there exists a basis fd1; . . . ; dng of Derðlog DÞp
such that the sequence of symbols fsðd1Þ; . . . ; sðdnÞg is regular in GrF� ðDÞ ¼
GrF� ðDXÞp. If D is a free (resp. Koszul free) divisor at each point of X, we simply say

that it is free (resp. Koszul free). We say that a reduced germ f 2 OX;p is free if the

divisor f
1ð0Þ is free at p.

Let’s remark that a divisor D is automatically Koszul free at every p 2 XnD.

Remark 1:7: The ideal ID;p ¼ GrF� ðDÞDerðlog DÞp is generated by the elements

of any basis of Derðlog DÞp. As D is Koszul free at p if and only if

depthðID;p;GrF� ðDÞÞ ¼ n (cf. [14], cor. 16.8), it is clear that the definition of Koszul free

divisor does not depend on the election of a particular basis. By the coherence of

GrF� ðDXÞ, if a divisor isKoszul free at a point, then it isKoszul free near that point. &

We have not found a reference for the following well known proposition (see [14],

th. 17.4 for the local case).

PROPOSITION 1.8. Let Cfxg be the ring of convergent power series in the variables

x ¼ x1; . . . ; xn and let G be the graded ring of polynomials in the variables x1; . . . ; xt
with coefficients in Cfxg. A sequence s1; . . . ; ss of homogeneous polynomials in G is

regular if and only if the set of zeros VðIÞ of the ideal I generated by s1; . . . ; ss has
dimension nþ t
 s in U� Ct, for some open neighborhood U of 0 ðthen each irre-

ducible component has dimension nþ t
 sÞ.

Proof. Let Cfx; xg be the ring of convergent power series in the variables

x1; . . . ; xn; x1; . . . ; xt. As the si are homogeneous in G and the ring Cfx; xg is a flat
extension of G, the si are a regular sequence in G if and only if they are a regular

sequence in Cfx; xg. But the last condition is equivalent to the equality (loc. cit.):

dimð0;0ÞðVðIÞÞ ¼ dimðCfx; xg=IÞ ¼ nþ t
 s:

Finally, using the fact that all the si are homogeneous in the variables x, the local
dimension of VðIÞ at ð0; 0Þ coincides with its dimension in U� Ct for some neighbor-

hood U of 0. &

COROLLARY 1.9. Let D � X be a free divisor. Let J be the ideal in OT�X generated

by p
1Derðlog DÞ. Then, D is Koszul free if and only if the set VðJÞ of zeros of J has

dimension n ðin this case, each irreducible component of VðJÞ has dimension nÞ.

PROPOSITION 1.10. Let X be a complex manifold of dimension n and let D � X be a

divisor. Then

ð1Þ Let X0 ¼ X� C and D0 ¼ D� C. The divisor D � X is Koszul free if and only if

D0 � X0 is Koszul free.
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ð2Þ Let Y be another complex manifold of dimension r and let E � Y be a divisor.

Then: ðaÞ The divisor ðD� YÞ [ ðX� EÞ is free if D � X and E � Y are free.

ðbÞ The divisor ðD� YÞ [ ðX� EÞ is Koszul free if D � X and E � Y are Koszul

free.

Proof. (1) It is a consequence of [7], Lemma 2.2, (iv) and the fact that s1; . . . ; sn is
a regular sequence in OX;p½x1; . . . ; xn� if and only if xnþ1; s1; . . . ; sn is a regular
sequence in OX0;ðp;tÞ½x1; . . . ; xn; xnþ1�.
(2) a) It is an immediate consequence of Saito’s criterion (cf. [7], Lemma 2.2, (v)).

(b) It is a consequence of a) and Corollary 1.9. &

EXAMPLE 1.11. Examples of Koszul free divisors are:

(1) Nonsingular divisors.

(2) Normal crossing divisors.

(3) Plane curves: If dimC X ¼ 2, we know that every divisor D � X is free [17],

cor. 1.7. Let fd1; d2g be a basis of Derðlog DÞx. Their symbols fs1; s2g are
obviously linearly independent over O, and by Saito’s criterion [17], 1.8, they
are relatively primes in GrF� ðD ¼ O½x1; x2�. So they form a regular sequence in

GrF� ðDÞ, and D is Koszul free (see [4], cor. 4.2.2).

(4) Proposition 1.10 gives a way to obtain Koszul free divisors in any dimension.

(5) There are irreducible Koszul free divisors in dimensions greater than 2, which are

not constructed from divisors in lower dimension [16]: X ¼ C3 and D � f f ¼ 0g,

with

f ¼ 28z3 
 27x2z2 þ 24x4zþ 2432xy2z
 22x3y2 
 33y4:

A basis of Derðlog f Þ is fd1; d2; d3g, with

d1 ¼ 6y@x þ ð8z
 2x2Þ@y 
 xy@z;

d2 ¼ ð4x2 
 48zÞ@x þ 12xy@y þ ð9y2 
 16xzÞ@z;

d3 ¼ 2x@x þ 3y@y þ 4z@z;

and the sequence fsðd1Þ; sðd2Þ; sðd3Þg is GrF� ðDÞ-regular.

2. Ideals of Linear Type

DEFINITION 2.1 (cf. [18], x7.2). Let A be a commutative ring, I � A an ideal,

RðIÞ ¼
L1

i¼0 I
dtd � A½t� the Rees algebra of I and SimðIÞ the symmetric algebra of

the A-module I. We say that I is of linear type if the canonical (surjective) morphism

of graded A-algebras SimðIÞ ! RðIÞ is an isomorphism.
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LEMMA 2.2. Given a commutative ring A and an ideal I � A generated by a family of

elements faigi2L, the following properties are equivalent:

ðaÞ I is of linear type.

ðbÞ If j:A½fXigi2L� ! RðIÞ is the morphism of graded algebras defined by jðXiÞ ¼ ait,

then the kernel of j is generated by homogeneous elements of degree 1.

Proof. We consider the kernel of the surjective morphism of graded A-algebras

F:A½fXigi2L� ! SimðIÞ; defined by FðXi1 � � �Xid Þ ¼ ai1 � � � aid : Then kerðFÞ ¼ kerðjÞ if
and only if I is of linear type, kerðFÞ is an ideal generated by its homogeneous ele-
ments of degree 1, kerðFÞ1, and kerðFÞ1 ¼ kerðjÞ1. &

The definition and the lemma above sheafify in the obvious way.

The following results concern the case where the ideal I is generated by a regular

sequence.

LEMMA 2.3. Let fa1; . . . ; amg be an A-sequence. For p4m, if aas11 � � � a
sm
m 2

ðas1þk11 ; . . . ; a
spþkp
p Þ, then a 2 ðak11 ; . . . ; a

kp
p Þ.

Proof. For j ¼ pþ 1; . . . ;m, fas1þk11 ; . . . ; a
spþkp
p ; a

spþ1
pþ1; . . . ; a

sj
j g is a regular

A-sequence, and we can prove inductively that

aas11 . . . a
sj
1
j
1 2 ða

s1þk1
1 ; . . . ; aspþkpp Þ:

For i ¼ p
 1; . . . ; 0, fas1þk11 ; . . . ; asiþkii ; akiþ1iþ1 ; . . . ; a
kp
p g is a regular A-sequence, and we

inductively prove that

aas11 . . . asii 2 ða
s1þk1
1 ; . . . ; asiþkii ; akiþ1iþ1 ; . . . ; a

kp
p Þ: &

PROPOSITION 2.4. Let A be a commutative ring and let I � A be an ideal generated

by a regular sequence a1; . . . ; an. Then, the kernel of the morphism of graded algebras

A½X1; . . . ;Xn� ! A½t�; Xi 7! ait;

is generated by aiXj 
 ajXi, 14 i < j4 n. In particular, I is of linear type.

Proof. Let g be an homogeneous polynomial of degree m in A½X1; . . . ;Xn� such

that gða1; . . . ; anÞ ¼ 0. Let expg ¼ cXeg be the greatest monomial of g in the inverse

lexicographic order, with eg ¼ ðs1; . . . ; st; 0; . . . ; 0Þ, st 6¼ 0. Then

gðX1; . . . ;XnÞ 
 expg 2 ðX
s1þ1
1 ; . . . ;Xstþ1

t Þ:

By lemma 2.3, c ¼
Pt
1

i¼1 aiai 2 ða1; . . . ; at
1Þ. Then

fðX1; . . . ;XnÞ ¼ gðX1; . . . ;XnÞ 

Xt
1
i¼1

aiðaiXt 
 atXiÞX
s1
1 � � �X

sn
n

is an homogeneous polynomial of degree m such that ef < eg and

f ðX1; . . . ;XnÞ 
 gðX1; . . . ;XnÞ 2 J ¼ ðaiXj 
 ajXi; 0 < i < j4 nÞ:
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In particular, f ða1; . . . ; anÞ ¼ 0. Consequently, after a finite number of steps, we will

obtain hðX1Þ ¼ cmX
m
1 , such that hðX1Þ 
 gðX1; . . . ;XnÞ 2 J: So hða1Þ ¼ cma

m
1 ¼ 0,

cm ¼ 0 and gðX1; . . . ;XnÞ 2 J: &

3. The Module Df s

Let X be a n-dimensional complex analytic manifold, p a point in X and f 2 O ¼ OX;p

a nonzero germ of holomophic function with f ðpÞ ¼ 0. Let D be the (germ of) divisor

defined by f ¼ 0. The free module of rank one over the ringO½f
1; s� generated by the
symbol f s has a natural left module structure over the ring D½s� [2]: the action of a
derivation d 2 DerCðOÞ is given by dðf sÞ ¼ dð f Þsf
1f s.
The following lemma is well-known and the proof is straightforward.

LEMMA 3.1. For every linear differential operator P 2 D of order d, we have

Pðf sÞ ¼ CP;0f
s þ CP;1

s
1

� �
f s
1 þ � � � þ CP;d

s
d

� �
f s
d

where

CP;d ¼ d!sðPÞðdf Þ ¼ f� � � ffsðPÞ; f g; f g � � �d ; f g:

Denote by Jf � O the Jacobian ideal associated with f. The surjection

d 2 DerCðOÞ7!dð f Þ 2 Jf

and the canonical isomorphism of graded O-algebras

SimOðDerCðOÞÞ ’ GrF� ðDÞ ð1Þ

induce a surjective graded morphism of O-algebras

jf:GrF� ðDÞ 
! RðJf Þ: ð2Þ

In coordinates, GrF� ðDÞ ¼ O½x1; . . . ; xn�, xi ¼ sð@iÞ and

jfðsðPÞÞ ¼ sðPÞð@1ð f Þt; . . . ; @nð f ÞtÞ ¼ sðPÞðdf Þtd

for every differential operator P 2 D of order d.

The homogeneous part of degree 1 of kerjf is naturally identified with the O-module

Yf ¼ fd 2 DerCðOÞjdð f Þ ¼ 0g

by means of the canonical isomorphism ð1Þ.

Lemma 3.1 implies that sðAnnD f sÞ � kerjf.

PROPOSITION 3.2. With the above notations, if Jf is of linear type, then

sðAnnD f sÞ ¼ ker jf and the left ideal AnnD f s of D is generated by Yf.

Proof. By Lemma 2.2, ker jf ¼ GrF� ðDÞYf � sðAnnD f sÞ.

The inclusion DYf � AnnD f s is obvious. Let’s prove that AnnD f s � DYf.

Clearly, F1AnnD f s ¼ Yf. Suppose F
d
1AnnD f s � DYf and take a differential opera-
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tor P 2 FdAnnD f snFd
1AnnD f s. Then, sðPÞ 2 kerjf ¼ GrF� ðDÞsðYf Þ, and sðPÞ ¼P
AisðdiÞ; where di 2 Yf and the Ai are homogeneous of degree d
 1. Let Qi be dif-

ferential operators such that sðQiÞ ¼ Ai. We apply the induction hypothesis to

P

P

i Q
idi 2 Fd
1AnnD f s and we conclude the result. &

PROPOSITION 3.3 ðIsolated singularities case, cf. ½13�; 2:7Þ. If f has isolated sin-

gularity, then kerjf is generated by @ið f Þxj 
 @jð f Þxi, 14 i < j4 n. In particular, the

left ideal AnnD f s of D is generated by @ið f Þ@j 
 @jð f Þ@i, 14 i < j4 n.

Proof. It is a consequence of Lemma 2.4 and Proposition 3.2. &

4. Locally Quasi-homogeneous Free Divisors are Koszul Free

PROPOSITION 4.1. Let U be a connected open set of a complex n-dimensional

analytic manifold X and let S � U be a closed analytic set of dimension s. If a sequence

C ¼ fs1; . . . ; sn
sg of homogeneous polynomials in OXðUÞ½x1; . . . ; xn� is regular at

every point q 2 U n S ði.e. it is regular in OX;q½x1; . . . ; xn�Þ, then it is regular at every

point of U.

Proof. Let p 2 S and let p:U� Cn
! U be the projection. By Proposition 1.8, we

have to prove that the ideal I ¼ ðs1; . . . ; sn
sÞ defines an analytic set

V ¼ VðIÞ � U� Cn of dimension nþ s. By hypothesis, we know that C is regular on

U n S, and so (loc. cit.) the dimension of (every irreducible component of)

V \ p1ðU n SÞ is nþ s. Now, letW be an irreducible component of V. It has, at least,

dimension nþ s. If W is contained in p
1ðSÞ ¼ S� Cn, then it must be equal to

p
1ðSÞ. If not, dimW ¼ dimðW \ p
1ðU n SÞÞ4 dimðV \ p
1ðU n SÞÞ ¼ nþ s. So,

we conclude that W has dimension nþ s. &

COROLLARY 4.2. Let D be a free divisor in some analytic manifold X and let S � D

a discrete set of points. If D is Koszul free at every point x 2 D n S, then D is Koszul

free ðat every point of XÞ.

THEOREM 4.3. Every locally quasi-homogeneous free divisor is Koszul free.

Proof. We proceed by induction on the dimension t of the ambient manifold X.

For t ¼ 1, the theorem is trivial and for t ¼ 2, the theorem is directly proved in

example 1.11, 3. Now, we suppose that the result is true for t < n, and let D be a

locally quasi-homogeneous free divisor of a complex analytic manifold X of

dimension n. Let p 2 D and let fd1; . . . ; dng be a basis of the logarithmic derivations
of D at p.

Thanks to [7], prop. 2.4 and Lemma 2.2, (iv), there is an open neighborhood U of

p such that for each q 2 U \D, with q 6¼ p, the germ of pair ðX;D; qÞ is isomorphic to

a product ðCn
1
� C;D0 � C; ð0; 0ÞÞ, where D0 is a locally quasi-homogeneous free

divisor. Induction hypothesis implies that D0 is a Koszul free divisor at 0. Then,

by Proposition 1.10.1, D is a Koszul free divisor at q too. We have then proved that

D is a Koszul free divisor in Unfpg. We conclude by using Corollary 4.2. &
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COROLLARY 4.4. Every free divisor that is locally quasi-homogeneous at the

complement of a discrete set is Koszul free.

In particular, the last corollary gives rise a new proof of the fact that every divisor

in dimension 2 is Koszul free (cf. 1.11, 3)).

5. The Module Df s for Locally Quasi-Homogeneous Free Divisors

5.1. In this section, f 2 O ¼ OX;p will be a reduced locally quasi-homogeneous free

germ 1.4, 1.6. That means that D ¼ f f ¼ 0g is a locally quasi-homogeneous free divi-

sor near p.

We will also assume that

(1) The equation f and its Euler vector field E are globally defined on X.

(2) EðqÞ 6¼ 0 for every q 2 X n fpg.

(3) Derðlog DÞ is OX-free (of rank n ¼ dimX).

In order to proceed inductively on the dimension of the ambient variety when

working with such f ’s, we quote the following direct consequence of [9], Lemmas

1.3, 1.5 (see also [7], prop. 2.4).

PROPOSITION 5.2. Let f 2 OX;p a reduced locally quasi-homogeneous free germ and

let D be the divisor f ¼ 0. For q 2 Dnfpg close to p, there are local coordinates

z1; . . . ; zn 2 OX;q centered at q and a quasi-homogeneous polynomial G0ðt1; . . . ; tn
1Þ in

n
 1 variables which is also a locally quasi-homogeneous free germ in OCn
1;0 and such

that fq ¼ G0ðz1; . . . ; zn
1Þ.

We call ~Yf the OX-sub-module (and Lie algebra) of Derðlog DÞ whose sections are

vector fields annihilating f. Denote by J f � OX the jacobian ideal sheaf associated

with f. The stalk of ~Yf (resp. of J f) at p is then Yf (resp. Jf).

As in (2), we have a surjective graded morphism of OX-algebras

Ff:GrF� ðDXÞ 
! RðJ f Þ;

whose stalk at p is jf.

We have

Derðlog DÞ ¼ ~Yf � ðOXEÞ; Derðlog f Þ ¼ Yf � ðOEÞ; ð3Þ

and ~Yf;Yf are free of rank n
 1.

PROPOSITION 5.3. The Koszul complex associated with ~Yf � DerCðOCnÞ ¼

Gr1F� ðDXÞ � GrF� ðDXÞ:
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0 ! GrF� ðDXÞ �OX

n̂
1

~Yf 
!
d
nþ1

� � � !
d
2

GrF� ðDXÞ �OX

1̂

~Yf !
d
1

GrF� ðDXÞ;

d
kðF� ðs1 ^ � � � ^ skÞÞ ¼
Xk
i¼1

ð
1Þi
1Psi � ðs1 ^ � � � ŝi � � � ^ skÞ;

is exact.

Proof. We need to prove that some (or any) basis fd1; . . . ; dn
1g of ~Yf form a

regular sequence in GrF� ðDXÞ, but such a basis can be augmented to a basis

fd1; . . . ; dn
1;Eg of Derðlog DÞ, that we know by Theorem 4.3 to form a regular

sequence in GrF� ðDXÞ. &

PROPOSITION 5.4. With the hypothesis of 5:1, if the augmented graded complex of

GrF� ðDXÞ-modules

0! GrF� ðDXÞ �OX

n̂
1

~Yf 
!
d
nþ1

� � � !
d
1

GrF� ðDXÞ !
Ff RðJ f Þ ! 0 ð4Þ

is exact on X
 fpg, then it is exact everywhere.

Proof. We know that Ff is surjective. By Proposition 5.3, the only thing to prove

is kerFf ¼ Im d
1. We can proceed separately on each homogeneous component:

0! Grm
nþ1F� ðDXÞ �OX

n̂
1

~Yf 
!
dm

nþ1

� � � !
dm

1
GrmF� ðDXÞ !

Fm
f J m

f ! 0:

Let’s consider the coherent OX-module F ¼ Im dm

1 and the short sequence

0 ! F ! GrmF� ðDXÞ !
Fm

f J m
f ! 0: ð5Þ

By Proposition 5.3 and the fact that the cohomology with support Hi
pðOXÞ vanishes

for i 6¼ n, we deduce that Hi
pðF Þ ¼ 0 for i ¼ 0; 1 and H0

pðJ m
f Þ ¼ 0. These properties

and the exactness of (5) on X
 fpg imply the proposition (cf. [12], (8.14)). &

The following lemma is clear.

LEMMA 5.5. Let g 2 On
1 ¼ Cfy1; . . . ; yn
1g and call f ¼ g, but as an element in

On ¼ Cfy1; . . . ; yng. Then:

ð1Þ kerjf is generated by kerjg and sð@ynÞ.
ð2Þ Yf is generated by Yg and @yn .

THEOREM 5.6. Let f 2 O ¼ OX;p be a reduced locally quasi-homogeneous free germ.

Then the graded complex of GrF� ðDÞ-modules

0! GrF� ðDÞ �O

n̂
1

Yf !
e
nþ1
� � � !

e
1
GrF� ðDÞ !

jf RðJf Þ ! 0

is exact. In particular, the kernel of the morphism
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GrF� ðDÞ !
jf RðJf Þ

is the ideal generated by Yf and then the jacobian ideal Jf is of linear type.

Proof. By the exactness of (5.3), the only thing to prove is that kerjf is generated

by sðYf Þ. We will use induction on n ¼ dimX. If n ¼ 2, we apply Proposition 3.3.

We suppose that the result is true if the ambient variety has dimension n
 1. By

Proposition 5.4, we need to prove the exactness of the complex (4) on U n fxg, for

some open neighborhood U of x, or equivalently, that kerFf is generated by sðYf Þ at

every q 2 U n fxg. The result is then a consequence of Proposition 5.2, Lemma 5.5

and the induction hypothesis. &

DEFINITION 5.7. The Spencer complex? for ~Yf is the complex of free left DX-

modules given by:

0 ! DX �OX

n̂
1

~Yf 
!
e
nþ1

� � � !
e
2 DX �OX

1̂

~Yf !
e
1 DX;

e
1ðP� dÞ ¼ Pd;

e
kðP� ðd1 ^ � � � ^ dkÞÞ

¼
Xk
i¼1

ð
1Þi
1Pdi � ðd1 ^ � � � d̂i � � � ^ dkÞþ

þ
X

14 i<j4 k

ð
1ÞiþjP� ð½di; dj� ^ d1 ^ � � � d̂i � � � d̂j � � � ^ dkÞ:

In a similar way we define the Spencer complex for Yf, which is the stalk at p of the

Spencer complex for ~Yf.

Both Spencer complexes can be augmented by considering the obvious maps

DX ! DX f s;D! Df s.

COROLLARY 5.8. With the hypothesis of 5:1, we have

ðaÞ The Spencer complex for Yf is a resolution of Df s. In particular, the left ideal

AnnDf
s is generated by Yf.

ðbÞ The left ideal AnnD½s� f
s is generated by Yf and E
 s.

ðcÞ The left ideal AnnD Z, where Z is the class of f s in the quotient D½s� f s=D½s� f sþ1, is
generated by Yf and f.

Proof. For (a) we proceed as in [4], prop. 4.1.3 by using Proposition 3.2 and

Theorem 5.6. Property (b) follows easily from (a), and property (c) follows from (a)

and (b). &

?
It should be noticed that such complex was originally used by Chevalley and Eilenberg in the setting

of the cohomology of Lie algebras (cf. [19], 7.7).
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Let’s call Xf ¼ Yf � ðOf Þ (resp. eXf ¼ eYf � ðOXf Þ), which is a free sub-O-module
(respectively, sub-OX
module) and a Lie subalgebra of D (resp. of DX). It can be

also canonically embedded in GrF� ðDÞ (resp. GrF� ðDXÞ) equipped with the

Poisson bracket f
;
g. As in 5.3 and 5.7, we define the Koszul complex associated

with Xf � GrF� ðDÞ (resp. eXf � GrF� ðDXÞ) and the Spencer complex associated

with Xf � D (resp eXf � DX). The Koszul (resp. Spencer) complex associated with

Xf � GrF� ðDÞ (resp. with Xf � D) is obviously the stalk at p of the Koszul (resp.
of the Spencer) complex associated with eXf � GrF� ðDXÞ (resp. with eXf � DX).

THEOREM 5.9. With the hypothesis of 5:1, the following properties hold:

ð1Þ The Koszul complex associated with Xf � GrF� ðDÞ is exact.
ð2Þ The Spencer complex associated with Xf � D is a free resolution of

D½s� f s=D½s� f sþ1.

Proof. For the first property, call K the Koszul complex associated with eXf �

GrF� ðDXÞ. The Koszul complex associated with Xf � GrF� ðDÞ is the stalk at p of K.
We proceed by induction on the dimension of the ambient variety. If that dimen-

sion is 1, Xf ¼ Of, and the Koszul complex associated with f is clearly exact. Suppose

the result true if the dimension of the ambient variety is < n.

Now, suppose dimX ¼ n.

Let d1; . . . ; dn
1 be a basis of eYf in some small enough neighborhood U of p.

According to proposition 4.1, we need to prove that K is exact on U n fpg.

For every q 2 U with fðqÞ 6¼ 0, the germ of f at q is an unit and by Proposition 5.3,

the complex K is exact at q.

Let q be a point in D ¼ f f ¼ 0g, q 6¼ p. By Proposition 5.2, there are local coordi-

nates z1; . . . ; zn 2 OX;q and a quasi-homogeneous polynomial G0ðt1; . . . ; tn
1Þ 2

OCn
1;0 in n
 1 variables which is also a locally quasi-homogeneous free germ in

OCn
1;0 and such that fq ¼ G0ðz1; . . . ; znÞ.

Let Gðt1; . . . ; tnÞ 2 OCn;0 be the same polynomial as G
0ðt1; . . . ; tn
1Þ but considered

in n variables. The exactness of Kq is then equivalent to the exactness of the Koszul

complex associated with XG � GrF�DCn;0.

Let’s write Om ¼ Cft1; . . . ; tmg and call x
0
i the principal symbol of @=@ti.

Let

fd01; . . . ; d
0
n
2g � �

n
1

i¼1
On
1

@

@ti

be a basis of YG0 . A basis of YG is then

d01; . . . ; d
0
n
2;

@

@tn

� �
� �

n

i¼1
On

@

@ti
:

Call s0i the principal symbol of d
0
i; i ¼ 1; . . . ; n
 2.
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By induction hypothesis we know that the Koszul complex associated

with XG0 � GrF�DCn
1;0 ¼ On
1½x
0
1; . . . ; x

0
n
1� is exact or, equivalently, that s01; . . . ;

s0n
2;G
0 is a regular sequence in On
1½x

0
1; . . . ; x

0
n
1�. That implies that s

0
1; . . . ; s

0
n
2;

x0n;G ¼ G0 is a regular sequence in On½x
0
1; . . . ; x

0
n�, i.e. that the Koszul complex asso-

ciated with XG � GrF�DCn;0 is exact, and the result is proved.

For the second property, we filter the Spencer complex associated with Xf � D as

in [10], prop. 2.3.4:

degðYf Þ ¼ 1; degð f Þ ¼ 0:

Its graded complex coincides with the Koszul complex associated with Xf � GrF� ðDÞ,
and then the Spencer complex is exact. To conclude, we use Corollary 5.8, (c). &

Remark 5.10. From Corollary 5.8(b), and following the proof of Theorem 5.9, we

can also prove that under the hypothesis of 5.1, the following results hold:

(a) The Spencer complex over D½s� associated with Yf � ðOðE
 sÞÞ is a D½s�-free
resolution of D½s� f s.

(b) The Spencer complex over D associated with Yf � ðOðEþ kÞÞ is a D-free resolu-
tion of Df
k ¼ O½ f
1� for any integer k� 0:

6. Examples and Questions

We know several (related) kind of free divisors:

[LQH]

Locally quasi-homogeneous (Definition 1.3).

[EH]

Euler homogeneous (Definition 1.2).

[LCT]

Free divisors satisfying the logarithmic comparison theorem.

[KF]

Koszul free (Definition 1.6).

[P]

Free divisors such that the complex O�Xðlog DÞ is a perverse sheaf.

We have then the following implications: [LQH]) [EH] (obvious),

[LQH]) [LCT] by [7], th. 1.1, [LCT]) [P], by [15], II, th. 2.2.4) [KF]) [P] by [4]

th. 4.2.1, [LQH]) [KF] by Theorem 4.3.

EXAMPLE 6.1 (Free divisors in dimension 2). We recall Theorem 3.9 from [5]: Let

X be a complex analytic manifold of dimension 2 and D � X a divisor. The following

conditions are equivalent:
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(1) D is Euler homogeneous.

(2) D is locally quasi-homogeneous.

(3) The logarithmic comparison theorem holds for D.

rConsequently, in dimension 2 we have:

½LQH� , ½EH� , ½LCT�

and [KF] (cf. 1.11, 3) and [P] ([4]) always hold. In particular,

½KF� 6) ½LQH�; ½EH�; ½LCT�:

Examples of plane curves not satisfying logarithmic comparison theorem are, for

instance, the curves of the family (cf. [5]):

xq þ yq þ xyp
1 ¼ 0; p5 qþ 15 5:

EXAMPLE 6.2 (An example in dimension 3). Let’s consider X ¼ C3 and

D ¼ f f ¼ 0g, with f ¼ xyðxþ yÞðxþ yzÞ [4]. A basis of Derðlog DÞ is fd1; d2; d3g, with

d1 ¼ xy@x þ y2@y 
 4ðxþ yzÞ@z;

d2 ¼ xðxþ 3yÞ@x 
 yð3xþ yÞ@y þ 4xðz
 1Þ@z;

d3 ¼ x@x þ y@y

the determinant of the coefficients matrix being 
16f and

d1ð f Þ ¼ 0; d2ð f Þ ¼ 0; d3ð f Þ ¼ 4f:

In particular, D is Euler homogeneous (E ¼ ð1=4Þd3) and we know [5] that it satisfies
the logarithmic comparison theorem. Let I � OT�X be the ideal generated by the

symbols fs1; s2; s3g of the basis of Derðlog DÞ. By corollary 1.9, D is not Koszul free,

because the dimension of VðIÞ at ðð0; 0; lÞ; 0Þ 2 T�X is 4, and neither is D locally

quasi-homogeneous. So

½LCT� 6) ½KF�; ½LQH�; ½EH� 6) ½KF�; ½LQH�:

Finally, for the only missing relation, we quote the following conjecture from [5]:

CONJECTURE 6.3. If the logarithmic comparison theorem holds for D, then D is

Euler homogeneous.

EXAMPLE 6.4. Let’s see in the example 6.2 that the left ideal AnnDð f
sÞ is not

generated by Yf and then, Jf is not an ideal of linear type.

Here, we set X ¼ C3, p ¼ ð0; 0; 0Þ and E ¼ ð1=4Þd3. The O-modules Yf and

Derðlog f Þ ¼ Yf �O � E are generated by fd1; d2g and fd1; d2;Eg, respectively. The
symbols s1 ¼ sðd1Þ, s2 ¼ sðd2Þ form a GrF� ðDÞ-regular sequence (the proof is
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analogous to Example 1.11, 3)). Then, as in the proof of [4], prop. 4.1.2, we have

sðDYf Þ ¼ GrF� ðDÞsðYf Þ: For

P ¼ 2y2@x@y 
 2y
2@y

2 
 ð2xzþ 6yzÞ@x@z þ 10yz@y@z þ 8zð1
 zÞ@z
2þ

þ ð2x
 4yÞ@y@z 
 x@x 
 y@y 
 8z@z þ 4@z

and R ¼ C½x; y; z�, S ¼ R½x1; x2; x3�, m ¼ Rðx; y; zÞ we check that

(1) P 2 AnnDX
ðf sÞ,

(2) ðSðs1; s2Þ : sðPÞÞ ¼ Sðx; yÞ, and then ðSðs1; s2Þ : sðPÞÞ \ R ¼ Rðx; yÞ.

So, sðPÞ =2Rm½x1; x2; x3�sðYf Þ and, by faithful flatness,

sðPÞ =2O½x1; x2; x3�sðYf Þ ¼ GrF� ðDÞsðYf Þ:

We conclude that P =2DYf:

PROBLEM 6.5. We do not know whether a free divisor defined by a quasi-

homogeneous polynomial (with strictly positive weights) is locally quasi-homo-

geneous.

PROBLEM 6.6. We do not know any example of a free divisor D � X whose

logarithmic de Rham complex O�Xðlog DÞ is not perverse.
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