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Integers that are sums of two rational
sixth powers
Alexis Newton and Jeremy Rouse

Abstract. We prove that 164 634 913 is the smallest positive integer that is a sum of two rational sixth
powers, but not a sum of two integer sixth powers. If Ck is the curve x6 + y6 = k, we use the existence
of morphisms from Ck to elliptic curves, together with the Mordell–Weil sieve, to rule out the existence
of rational points on Ck for various k.

1 Introduction and statement of results

Fermat’s classification of which integers are the sum of two integer squares allows one
to prove that if k is a positive integer and there are a, b ∈ Q with a2 + b2 = k, then
there are c, d ∈ Z with c2 + d2 = k. (For more detail, see Proposition 5.4.9 of [5].)

However, when considering higher powers, the analogous result is no longer true.
In particular, 6 = ( 17

21)
3 + ( 37

21 )
3 despite the fact that there are no integers x and y so

that x3 + y3 = 6. In [3], Bremner and Morton prove that 5 906 = ( 25
17 )

4 + ( 149
17 )

4 is the
smallest positive integer which is a sum of two rational fourth powers, but not a sum
of two integer fourth powers. Their proof involves a number of explicit calculations
involving class numbers and units in rings of integers of number fields.

It is natural to ask what can be said about values of n > 4. In particular, is there
always an integer k that is a sum of two rational nth powers, but not a sum of two
integer nth powers? In John Byrum’s unpublished undergraduate thesis (conducted
under the direction of the second author), he proves that if there is a prime p ≡ 1
(mod 2n) with p ≤ 2n2 − n + 1, then there is a positive integer k that is a sum of two
rational nth powers, but not a sum of two integer nth powers. It is not known that one
can find such a prime p. Even assuming the generalized Riemann hypothesis (GRH),
the strongest known result at this time is that the smallest prime p ≡ 1 (mod 2n) is less
than or equal to (ϕ(2n) log(2n))2 (by Corollary 1.2 of [15]), which is not sufficiently
small unless n = 3. It is conjectured that the smallest prime p ≡ a (mod q) satisfies
p ≪ q1+ε , which would be sufficient.

The goal of the present paper is to handle the case n = 6 and prove an analogous
result to that of Bremner and Morton. Our main result is the following.
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Integers that are sums of two rational sixth powers 167

Theorem 1 The smallest positive integer which is a sum of two rational sixth powers
but not a sum of two integer sixth powers is

164 634 913 = (44
5
)

6
+ ( 117

5
)

6
.

To prove the main result, we must show that if an integer k < 164 634 913 is sixth-
power free and is not a sum of two integer sixth powers, then it is not a sum of two
rational sixth powers either. We proceed by studying when Ck ∶ x6 + y6 = kz6 has a
solution in Qp for all primes p, which reduces the number of necessary k to consider
to 111 625. To handle these, we decompose the Jacobian of Ck (up to isogeny) as a
product of 10 elliptic curves, each with j-invariant zero. If k /∈ {1, 2} is sixth-power
free and one of these elliptic curves has rank zero, it follows that Ck(Q) is empty (via
Theorem 6). If we are able to determine a finite-index subgroup of the Mordell–Weil
group of one of the elliptic curves, we use the Mordell–Weil sieve to prove that Ck(Q)
is empty.

We note that there are infinitely many integers that are sums of two rational sixth
powers, but not sums of two integer sixth powers.

Theorem 2 Let t be an integer and f1 = (2 863 + 10 764t)/13 and f2 = (1 207 +
26 455t)/13. Then f 6

1 + f 6
2 is an integer that is a sum of two rational sixth powers,

but not a sum of two integer sixth powers.

The polynomial f 6
1 + f 6

2 is constructed so that the coefficients of t, t2 , . . . , t6 are all
multiples of 13, whereas the constant coefficient is equivalent to 5 (mod 13). Since it is
impossible to have an integer equivalent to 5 (mod 13) be a sum of two integer sixth
powers, we have our result.

Remark It seems likely that no positive integer can be written as a sum of two
rational sixth powers in more than one way. In [9], Ekl searched for integer solutions
to a6 + b6 = c6 + d6 with a ≠ c and a ≠ d and found none for which a6 + b6 < 7.25 ×
1024. The surface X ∶ a6 + b6 = c6 + d6 is a surface of general type, and the Bombieri–
Lang conjecture predicts that there are only finitely many rational points on X that do
not lie on a genus 0 or 1 curve.

2 Background

We let Qp denote the field of p-adic numbers. We say a curve C is locally solvable if
C(R) ≠ ∅ and C(Qp) ≠ ∅ for all primes p.

For our purposes, an elliptic curve is a smooth cubic curve of the form

E ∶ y2 + a1x y + a3 y = x3 + a2x2 + a4x + a6 .

There is a natural abelian group structure on E(Q), the set of rational points on E.

Theorem 3 [17, Theorem VIII.4.1] The group E(Q) is finitely generated. That is, there
is a finite group E(Q)tors so that E(Q) ≅ E(Q)tors ×Zr for some nonnegative integer r.
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168 A. Newton and J. Rouse

The nonnegative integer r is called the rank of E(Q). The Birch and Swinnerton-
Dyer conjecture predicts that if L(E , s) is the L-function of E, the ords=1L(E , s) = r.
This is proved in the case that r = 0 or 1 by Gross and Zagier [13] and Kolyvagin [14].

For k ≠ 0, the curve Ck ∶ x6 + y6 = kz6 is a curve of genus 10. For k = 1, the
decomposition of the Jacobian is worked out in [1], and it follows that each factor
of J(C1) is an elliptic curve with j-invariant zero. We will show in Section 5 that
there are nonconstant morphisms from Ck to six different elliptic curves of the form
Ea ∶ y2 = x3 + a. The torsion subgroup of an elliptic curve of the form Ea has been
known for some time.

Theorem 4 [11] If Ea ∶ y2 = x3 + a, then

Ea(Q)tors ≅

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z/6Z if a is a sixth power,
Z/3Z if a is a square but not a sixth power or

a is − 432 times a sixth power,
Z/2Z if a is a cube but not a sixth power,
Z/1Z otherwise.

There is a torsion point on y2 = x3 + a for which x and y are both nonzero only
when a = −432k6 (namely (12k2 ∶ ±36k3 ∶ 1)) or a = k6 (namely (2k2 ∶ ±3k3 ∶ 1)).

The Mordell–Weil sieve is a technique for proving that a curve C has no rational
points. For a thorough treatment of this subject, see the paper of Bruin and Stoll [4].

Let J be the Jacobian of C, and assume that we have in hand a Q-rational divisor D
of degree 1 on C. Let ι∶C → J be the map ι(P) = P − D. Fix a positive integer N and a
finite set S of primes. We then have the following commutative diagram:

C(Q) ι ��

��

J(Q)/N J(Q)

α
��

∏p∈S C(Fp)
β �� ∏p∈S J(Fp)/N J(Fp)

If C(Q) is nonempty, then there will be an element in ∏p∈S J(Fp)/N J(Fp) that is in
the image of both α and β. Therefore, if we can find an N and a finite set S for which
the image of α and the image of β are disjoint, then C(Q) is empty.

The curve Ck has maps to six different elliptic curves: Ek , E4k , E−k2 , E16k2 , Ek3 ,
and E−4k4 . As a consequence, we will replace J with one of these six curves in our
applications. Computing the Mordell–Weil group (or a finite index subgroup thereof)
for one of these six elliptic curves allows us to apply the Mordell–Weil sieve to Ck .

3 Finding an integer that is a sum of two rational sixth powers

We will describe briefly how the representation of 164 634 913 = (44/5)6 + (117/5)6

was generated by the authors. We seek integers x, y, and m for which x6 + y6 ≡ 0
(mod m6) with gcd(x , m) = gcd(y, m) = 1. This equation implies that x y−1 must
have order 4 or 12 in (Z/m6Z)×, which implies that all the prime factors of m must
be ≡ 1 (mod 4). The smallest such m is m = 5.
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Integers that are sums of two rational sixth powers 169

We let q = 1 068 be an element of order 4 in (Z/56Z)×. Then 16 + q6 ≡ 0 (mod 56).
We wish to find an integer a so that ±a mod 56 and ±aq mod 56 are both small. We

consider the lattice L ⊆ R2 consisting of all vectors {[x
y] ∶ y ≡ qx (mod 56)}. We find

that an LLL-reduced basis for this lattice consists of [117
44] and [ 44

−117] from which we

obtain 164 634 913 = ( 44
5 )6 + ( 117

5 )6.
We wish to note that this representation was found at least twice previouoeisly.

First, it is given by Gandhi on page 1 001 of [12]. Second, it was noted by John W.
Layman on October 20, 2005 in connection with Online Encyclopedia of Integer
Sequences (OEIS) sequence A111152 (the smallest integers that are a sum of two
rational nth powers, but not a sum of two integer nth powers).

For integers of the form xn + yn with n odd, there are no local restrictions, and
setting x = 2n−1−1

2 and y = 2n−1+1
2 leads to a fairly small integer that is a sum of two

rational nth powers. For n = 5, this leads to 68 101 = ( 15
2 )

5 + ( 17
2 )

5. At present, it is
not known if 68 101 is the smallest positive integer that is a sum of two rational fifth
powers, but not a sum of two integer fifth powers.

4 Local solvability

In this section, we study the question of when Ck ∶ x6 + y6 = k is locally solvable.

Theorem 5 Let k be a positive integer which is sixth-power free. Then Ck is locally
solvable if and only if Ck has points over Qp for all primes p < 400 and all odd prime
factors p ∣ k have p ≡ 1 (mod 4).

Proof The curve Ck is smooth over Fp for all primes p other than 2, 3 and those
dividing k. Since Ck has genus 10, Hasse’s theorem gives that ∣Ck(Fp)∣ > p + 1 − 20√p
provided Ck/Fp is smooth. The latter quantity is positive if p > 400. Furthermore,
Hensel’s lemma implies that if Ck(Fp) has a nonsingular point, then it lifts to a
nonsingular point of Ck(Qp) and hence Ck(Qp) ≠ ∅.

If p ∣ k and p ≡ 1 (mod 4), then p = a2 + b2 for some a, b ∈ Z. Since
a2 + b2 ∣ a6 + b6, we have that (a ∶ b ∶ 1) is a smooth point on Ck/Fp and therefore
Ck(Qp) ≠ ∅.

Suppose that p ∣ k, p ≡ 3 (mod 4) and (x0 ∶ y0 ∶ z0) ∈ Ck(Qp)with x0 , y0 , z0 ∈ Zp ,
not all of which are multiples of p. It follows that p divides one of x2

0 + y2
0 or x4

0 −
x2

0 y2
0 + y4

0 , and both of these imply that x0 ≡ y0 ≡ 0 (mod p). It follows that x6
0 + y6

0 =
kz6

0 is a multiple of p6. Since k is sixth-power free, it follows that p ∣ z0, which is a
contradiction. Thus, Ck(Qp) = ∅. ∎

We note that the smallest positive integer k that is not a sum of two integer sixth
powers for which Ck is locally solvable is k = 2 017.

To enumerate the k < 164 634 913 for which Ck is locally solvable, we note that if
Ck is locally solvable, then k ≡ 1, 2 (mod 7), k ≡ 1, 2 (mod 8), and k ≡ 1, 2 (mod 9).
Moreover, for each p ≡ 1 (mod 6) with 13 ≤ p ≤ 400, we enumerate and cache the
integers which are sums of two sixth powers modulo p. Now, we test integers less than
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170 A. Newton and J. Rouse

or equal to 164 634 913 in each of the eight residue classes modulo 504 = 7 × 8 × 9. We
remove the values of k that are not sixth-power free, that are divisible by a prime ≡ 3
(mod 4), that are sums of two integer sixth powers, and that reduce modulo some
p ≡ 1 (mod 6) to an element of Fp that is not a sum of two sixth powers. The result
is a list of 111 625 values of k < 164 634 913 which are not sums of two integer sixth
powers and for which Ck is locally solvable. The computation runs in 46.29 seconds,
and the code can be found in the script step1-localtest.txt.

5 Maps from Ck to elliptic curves

The curve Ck ∶ x6 + y6 = kz6 has at least 72 automorphisms defined over Q(ζ6),
generated by the maps μ1(x ∶ y ∶ z) = (ζ6x ∶ y ∶ z), μ2(x ∶ y ∶ z) = (x ∶ ζ6 y ∶ z), and
μ3(x ∶ y ∶ z) = (y ∶ x ∶ z). Magma can work out the action of each of these maps on
the 10-dimensional space of holomorphic 1-forms on Ck . We find eight subgroups H
of Aut(Ck) for which the quotient curve Ck/H has genus 1 and the corresponding
one-dimensional subspaces of holomorphic 1-forms are distinct. From these, it is not
difficult to compute the corresponding map to an elliptic curve.

For example, one such subgroup is ⟨μ5
1 μ2 , μ3

2 μ3⟩. The monomials x3 y3, x yz4, and
x6 − y6 are all fixed by μ5

1 μ2, and each is sent to their negative by μ3
2 μ3. If ϕ ∶ Ck → P2

is given by ϕ((x ∶ y ∶ z)) = (x3 y3 ∶ x yz4 ∶ x6 − y6), then we have ϕ(P) = ϕ(α(P)) for
all points P on Ck and all α ∈ ⟨μ5

1 μ2 , μ3
2 μ3⟩. Letting a = x3 y3, b = x yz4, and c = x6 −

y6, the image of ϕ is the curve

a3 − k2

4
b3 + 1

4
ac2 = 0.

This curve has genus 1, and thus is the quotient curve Ck/⟨μ5
1 μ2 , μ3

2 μ3⟩. This curve has
the point (0 ∶ 0 ∶ 1) on it, and a change of variables turns this into the elliptic curve
E−4k4 . Composing these maps gives the map ϕ ∶ Ck → E−4k4 given by ϕ(x ∶ y ∶ z) =
(k2x yz4 ∶ −k2x6 + k2 y6 ∶ x3 y3).

The table below lists all 10 independent maps from Ck to elliptic curves.

Subgroup of Aut(Ck) Codomain Map
⟨μ2

1 μ3
2⟩ Ek (x , y) ↦ (−y2 , x3)

⟨μ3
1 μ2

2⟩ Ek (x , y) ↦ (−x2 , y3)
⟨μ1 μ2

2⟩ E4k (x , y) ↦ ( x4

y2 , x6+2y6

y3 )
⟨μ2

1 μ2⟩ E4k (x , y) ↦ ( y4

x2 , 2x6+y6

x3 )
⟨μ1 μ3

2⟩ E−k2 (x , y) ↦ ( k
y2 , kx3

y3 )
⟨μ3

1 μ2⟩ E−k2 (x , y) ↦ ( k
x2 , k y3

x3 )
⟨μ1 μ5

2 , μ2
1 μ2⟩ E16k2 (x , y) ↦ (−4x2 y2 ,−8x6 + 4k)

⟨μ1 μ4
2⟩ Ek3 (x , y) ↦ ( kx2

y2 , k2

y3 )
⟨μ4

1 μ2⟩ Ek3 (x , y) ↦ ( k y2

x2 , k2

x3 )
⟨μ5

1 μ2 , μ3
2 μ3⟩ E−4k4 (x , y) ↦ ( k2

x2 y2 , −k2 x6+k2 y6

x3 y3 )
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Integers that are sums of two rational sixth powers 171

We wish to note that for the maps from Ck → E4k , the quotient curve by the
subgroup indicated (either ⟨μ1 μ2

2⟩ or ⟨μ2
1 μ2⟩) is the genus two hyperelliptic curve

given by Dk ∶ y2 = 1
k x6 + 1

4k2 . This equation may be rewritten as

(2ky
x3 )

2
= ( 1

x2 )
3
+ 4k.

As a consequence, we have the map ϕ(x , y) = ( 1
x2 , 2k y

x3 ) from Dk → E4k . (The authors
did not find a subgroup of Aut(Ck) that fixed a one-dimensional space of differentials
corresponding to these maps.)

Theorem 6 Suppose that k is a sixth-power-free integer and P = (x , y) is a rational
point on Ck , and the image of P under one of the 10 maps given above is a torsion point.
Then k = 1 or k = 2.

Proof Apart from the cases of Ea6 and E−432a6 , every torsion point on Ea has the
x or y coordinate zero. Inspecting the 10 maps above, we find that if P ∈ Ck(Q) and
its image on Ea has the x or y coordinate zero, then x = 0 or y = 0 or (for the 7th or
10th maps) that x6 = y6 = k/2. This implies that k/2 is a sixth power, but since k is
sixth-power free, k = 2.

Now, we consider the case that Ea = Eα6 or Ea = E−432α6 for
a ∈ {k, 4k,−k2 , 16k2 , k3 ,−4k4}. If α is a rational number and k = α6 is a sixth power,
this forces k = 1. If 4k = α6 and k is sixth-power free, then k = 16, but x6 + y6 = 16
has no points in Q2. The cases −k2 = −432α6 and −4k4 = −432α6 never occur. If
16k2 = α6, then k = 2. Finally, if k3 = α6, then k is a perfect square. In this case, Ek3

has the torsion points (2α2 ,±3α3). However, we have that 2α2 = α2 x2

y2 or α2 y2

x2 , which

implies that 2 = x2

y2 or y2

x2 , contradicting the irrationality of
√

2. ∎

As a consequence of the above result, if k /∈ {1, 2} is sixth-power free and the
rank of one of the six elliptic curves Ek , E4k , E−k2 , E16k2 , Ek3 , or E−4k4 is zero,
then k is not a sum of two rational sixth powers. For each of the 111 625 values of k
found in the previous section, we need to determine the Mordell–Weil group (or a
finite index subgroup thereof) of one of these six curves. The most straightforward
approach to this problem is to conduct a 2-descent. However, a 2-descent on Ek
requires computing the class group of Q( 3

√
−k), and this is time-consuming to do

unconditionally if k is large. We proceed to apply a number of other techniques
specific to our situation and resort to an unconditional 2-descent only when absolutely
necessary.

6 Checking if L(Ek3 , 1) = 0

The elliptic curve Ek3 ∶ y2 = x3 + k3 is a quadratic twist of E1 ∶ y2 = x3 + 1. If k ≡ 1
(mod 8), the sign of the functional equation for Ek3 is 1, whereas if k ≡ 2 (mod 8),
the sign of the functional equation is −1. We are able to rule out most odd values of k
by showing that L(Ek3 , 1) ≠ 0.
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172 A. Newton and J. Rouse

Waldspurger’s theorem [18] says, very roughly speaking, that

∑
k

k1/4
√

L(Ek3 , 1)qk

is a weight 3/2 modular form of a particular level. In Theorem 11 of [16], Purkait works
out the predictions of Waldspurger’s theorem, showing that there is a modular form
f = ∑ b(k)qk of level 576 and trivial character whose Fourier coefficients encode the
L-values of L(Ek3 , 1) under the assumption that 3 ∤ k. In Example 2 of [16], Purkait
gives a complicated formula for this modular form f in terms of ternary theta series.
We are able to find a formula more amenable to computation using the theta series
for the six ternary quadratic forms:

Q1 = x2 + 4y2 + 144z2 ,
Q2 = 4x2 − 4x y + 5y2 + 36z2 ,
Q3 = 4x2 + 9y2 + 16z2 ,
Q4 = x2 + 16y2 + 36z2 ,
Q5 = 4x2 + 13y2 + 10yz + 13z2 , and
Q6 = 4x2 + 4y2 + 4yz + 37z2 .

These six quadratic forms constitute a single genus. Let

h = 5
16

θQ1 −
3
16

θQ2 −
7
16

θQ3 +
5
16

θQ4 +
9
16

θQ5 −
3
16

θQ6 = ∑ c(n)qn .

Then, for k ≡ 1 (mod 24), we have c(k) = b(k), and if k ≡ 17 (mod 24), we have
c(k) = 6b(k). It follows that if k ≡ 1 (mod 8) is a fundamental discriminant and
c(k) ≠ 0, then L(Ek3 , 1) ≠ 0. Hence, Ek3 has rank zero, and if k > 1, this implies that
k is not the sum of two rational sixth powers. (If k is not square-free, we can simply
replace k with k/m2 in the above calculation.)

Each theta series above can be computed by multiplying a binary theta series by a
unary theta series. In this way, it is possible to compute the first 165 million coefficients
of h and among these determine the odd values of k for which L(Ek3 , 1) ≠ 0. Of the
111 625 values of k for which Ck is locally solvable, 55 284 are odd, whereas 56 341
are even. The computation just described rules out all but 2 753 odd values of k.
The computation takes 559.20 seconds, and the code run can be found in the script
step2-wald.txt.

7 Computing Mordell–Weil groups

Here and elsewhere, we rely on the procedure for explicit n-descent developed by
Cremona et al. in [6–8] and implemented in Magma with much of the code written
by Michael Stoll, Tom Fisher, and Steve Donnelly.

First, we use that each elliptic curve Ea has a cyclic 3-isogeny. We take the
remaining 59 094 values of k and compute the 3-isogeny Selmer groups to bound the
rank for the elliptic curves in the set {Ek , E4k , E−k2 , E16k2 , E−4k4}. We hope to rule
out k’s for which one of these curves has rank zero and so we only test elliptic curves
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with root number equal to 1. This test is run in step3-3isog.txt and takes a bit
under 6 hours (namely 20 551.4 seconds). This step rules out 39 586 values of k, and
19 508 values remain.

Second, for each of the 19 508 remaining k’s, we perform a full 3-descent
by doing a first and second 3-isogeny descent (via the Magma command
ThreeDescentByIsogeny) on Ek , E4k , and Ek3 . For these curves, this command
requires class group computations of low-discriminant quadratic and cubic fields. We
search for points on the resulting 3-covers in the hope that we can provably compute
the rank of Ek , E4k , or Ek3 . This test is run in step4-findMW.txt. Once the
3-covers are found, we sort the curves in increasing order of the upper bound on the
rank and search for points on the associated 3-covers with a height bound of 10 000.
If we are not successful, we double the height bound and search again. If we are not
successful at a height bound of 320 000, we give up. This is the most time-consuming
step of the process, taking about 26 hours. This step finds 864 additional values of k for
which one of Ek , E4k , or Ek3 has rank zero. In the end, we succeed in computing the
Mordell–Weil groups of one of Ek , E4k , or Ek3 for all but 196 values of k. There are also
34 cases where the elliptic curve in question has rank 5, and one case (k = 123 975 217)
for which the rank of Ek is 6. For these k’s, we seek to find the Mordell–Weil group of
a different elliptic curve.

Third, for each of the 196 + 35 = 231 remaining k’s, we obtain as much uncondi-
tional information as possible about the ranks of the six elliptic curves using descent
by 3-isogeny, as well as a 2-descent on Ek3 (combined with the Cassels–Tate pairing
to identify 2-covers as corresponding to a nontrivial element of the Shafarevich–Tate
group of Ek3 ). Once these unconditional upper bounds on ranks have been obtained,
we search for points on these curves by assuming GRH and performing 2-descents
and 4-descents on all six curves and searching for points on the 2-covers and 4-
covers to see if enough independent points are found to match the unconditional
rank upper bound. This takes about 22 minutes (1 292.52 seconds). The code that
runs these computations is available in the scripts step5-24descent.txt and
step5-highrank.txt. Of the 196k’s for which generators were not found, this
step is unsuccessful for 26, and of the 35k’s for which one of Ek , E4k , or Ek3 has rank
5 or 6, this is unsuccessful for four values of k.

Fourth, for each of the 30 remaining values of k, we use the method of Fisher
[10] to search for points using 12-descent. For each of the remaining k’s, there is
at least one elliptic curve Ea for which we have an unconditional upper bound on
the rank of 1, and for which the root number is −1. For each such k, we choose a
minimal subject to these conditions and perform a conditional 12-descent and search
for points. We succeed in finding a generator in 23 cases. We fail to find a generator
for the following seven values of k: 49 897 450; 117 092 530; 120 813 050; 128 327 978;
130 187 450; 149 477 050; and 160 631 290. (For k = 128 327 978, Ek3 has rank 5 with
easily found generators.) This is performed with the script step6-12desc.txt,
and the running time is just over 3 hours (11 180.99 seconds).

So far, we have avoided doing an unconditional 2-descent on any elliptic curve
other than Ek3 because of the cost of computing the class group of a (potentially
high discriminant) cubic field. We now do this for the remaining seven values of
k. For each k, we choose the elliptic curve for which the corresponding Minkowski
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bound is the smallest. For k = 49 897 450 and k = 149 477 050, this shows that Ek has
rank zero. For k = 120 813 050 and k = 130 187 450 this shows that E4k has rank zero.
For k = 128 327 978, the computation shows that E16k2 has rank zero (using both a
2-descent and the Cassels–Tate pairing). For k = 117 092 530 and k = 160 631 290, a 2-
descent shows that Ek has rank 1 (whereas previously our unconditional bound on
the rank had been 3). This is performed with the script step7-2descents.txt,
and the running time is just under 2 hours (7 153.69 seconds). For k = 117 092 530, the
Minkowski bound for Q( 3

√
−k) is 57 383 551, and the time needed for the proof phase

of the class group computation is 3 327.08 seconds.
Of the 19 508 values of k that remained after Step 3 864 were removed in Step 4 and

5 more were removed in Step 7. For each of the remaining 18 639 values of k, we know
a finite-index subgroup of the Mordell–Weil group of one of the six corresponding
elliptic curves, and moreover that curve has rank less than or equal to 4. In fact, of the
18 639 values of k, the chosen elliptic curve has rank 1 in 16 032 cases, rank 2 in 1 172
cases, rank 3 in 1 371 cases, and rank 4 in only 64 cases.

8 Using the Mordell–Weil sieve

As indicated in Section 2, the goal of the Mordell–Weil sieve is to choose an integer
N and a finite set S of primes p of good reduction for E and consider the diagram:

Ck(Q) ι ��

��

E(Q)/NE(Q)

α
��

∏p∈S Ck(Fp)
β �� ∏p∈S E(Fp)/NE(Fp)

If one finds that im α ∩ im β = ∅, then Ck(Q)must be empty. Here, E can be any of the
six elliptic curves Ek , E4k , E−k2 , E16k2 , Ek3 , or E−4k4 . In practice, we are not always able
to provably find E(Q). Instead, we have used theSaturation command in Magma
to compute a finite index subgroup A ⊆ E(Q)with the property that [E(Q) ∶ A] is not
divisible by any primes p ≤ 100. It follows that if there is no prime � > 100 for which
� ∣ N , then A/NA ≅ E(Q)/NE(Q), and we may use A in place of E(Q) in the diagram
above. In practice, the largest N we need to use is N = 84.

Before discussing the method and the results, we begin with a simple example. Let
k = 138 826. We have E4k(Q) ≅ Z, and a generator is

P = (605 879 737
2 3582 , −17 828 809 046 227

2 3583 ) .

We use the map ϕ ∶ Ck → E4k given by ϕ(x , y) = ( x4

y2 , x6+2y6

y3 ). We find that Ck(F5)
contains six points, E4k(F5) ≅ Z/6Z, but that the image of Ck(F5) → E4k(F5) con-
sists of three points. The reduction P̃ ∈ E4k(F5) has order 6, and if n is an integer, then
nP reduces to a point in E4k(F5) that is in the image of Ck(F5) → E4k(F5) if and only
if n is even. It follows that if Q ∈ Ck(Q), then ϕ(Q) = nP for some even n.

https://doi.org/10.4153/S0008439522000157 Published online by Cambridge University Press

https://github.com/newtan18/Sums-of-Two-Sixth-Powers/blob/main/step7-2descents.txt
https://doi.org/10.4153/S0008439522000157


Integers that are sums of two rational sixth powers 175

Now, we consider reduction modulo 7. In this case, Ck(F7) has 36 points and the
image of Ck(F7) → E4k(F7) consists of 6 points. We have E4k(F7) ≅ Z/2Z ×Z/6Z,
and the reduction P̃ ∈ E4k(F7) again has order 6. This time, we find that nP reduces
to a point in E4k(F7) that is in the image of Ck(F7) → E4k(F7) if and only if n ≡
1 or 5 (mod 6). It follows that if Q ∈ Ck(Q), then ϕ(Q) = nP for some odd n, and
this contradicts the previous paragraph. Thus, Ck(Q) = ∅.

As explained in Section 3.2 of [4], the sets A/NA can be very large if N is large or if
the rank of E is high. For this reason, we follow their suggestion of successively raising
N one prime factor at a time. Suppose that we have already computed the admissible
elements of A/NA (i.e., those that could possibly occur as the image of a point from
Ck(Q)) by sieving using a collection of small primes S. We then choose a small prime r
and set N ′ = rN . Then we find the full preimage of the admissible elements in A/N ′A,
retest their admissibility for primes in S, and possibly test a further set of primes.
Unlike the case of [4], the maximum N needed to prove that Ck(Q) is empty is never
more than 84 (whereas Bruin and Stoll report occasionally needing to have N as large
as 10100).

As an example, consider the case of k = 3 506 050. The elliptic curve Ek has rank 4
and trivial torsion subgroup. First, we let N = 2 and test the primes p of good reduction
less than or equal to 311. We find that of the 16 elements of A/2A, 9 are admissible.
We then increase N to 4 and begin with 9 × 16 = 144 elements of A/4A. We retest
their admissibility for primes less than or equal to 311 and find that all of them are
admissible. We then increase N from 4 to 12 and test primes p ≤ 479. Initially, we
had 11 664 elements of A/12A, but this is reduced to 1 296. Next, we increase N from
12 to 84 and start with 3 111 696 elements of A/84A. Testing for p ≤ 229 reduces this
to 1 204 elements, and by the time we test p = 1021, no admissible elements remain.
Hence, C3 506 050(Q) = ∅. The total time required for this k was 508 seconds, and this
is the most time-consuming of all the k’s we test.

Compared with the previous steps, the Mordell–Weil sieve step is comparatively
fast, taking about 35 minutes (2 107.69 seconds) to show that Ck(Q) = ∅ for all 18 639
remaining k’s with k < 164 634 913. This computation is performed by the script
step8-MWsieve.txt. This concludes the proof of Theorem 1. Below is a table
summarizing the steps in the computation and the time required for each.

Step Task Run time (seconds) k’s eliminated
1 Local solvability 46.29 164 523 287
2 L(Ek3 , 1) ≠ 0 559.20 52 531
3 3-isogeny descent 20 551.40 39 586
4 Full 3-descent 119 076 864
5 Conditional descent 1 292.52 0
6 12-descent 11 180.99 0
7 Unconditional 2-descent 7 153.69 5
8 Mordell–Weil sieve 2 107.69 18 639

Total 161 968 164 634 912
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9 Concluding remarks

As mentioned in the introduction, it is natural to consider the problem of finding the
smallest positive integer which is a sum of two rational nth powers but not a sum
of two integer nth powers. If n = 5, the curve Dk ∶ x5 + y5 = k admits no map to an
elliptic curve, and the projective closure of Dk always has a rational point (namely
(−1 ∶ 1 ∶ 0)). This precludes the possibility of ruling out rational points on Dk using
local methods or the Mordell–Weil sieve. For these reasons, the n = 5 case appears to
be more challenging than the n = 4 or n = 6 cases.

Similar techniques should allow one to approach the cases of n = 8 and n = 12
where there are maps from xn + yn = k to elliptic curves, but the smallest known
values of k for which these curves are known to have rational noninteger points are
8 000 587 738 704 025 541 501 346 146 and 873 135 263 681 497 645 296 811 652 793 869
145 886 016 236 198 018 083 488 332 176 234 017, respectively. The size of these numbers
would make an exhaustive search prohibitively time-consuming.
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