
Canad. Math. Bull. Vol. 41 (2), 1998 pp. 245–251

THE NORMALITY IN PRODUCTS
WITH A COUNTABLY COMPACT FACTOR

LECHENG YANG

ABSTRACT. It is known that the product °1ðX of°1 with an M1-space may be non-
normal. In this paper we prove that the product îðX of an uncountable regular cardinal
î with a paracompact semi-stratifiable space is normal iff it is countably paracompact.
We also give a sufficient condition under which the product of a normal space with
a paracompact space is normal, from which many theorems involving such a product
with a countably compact factor can be derived.

1. Introduction. As is well known, the product of a normal countably compact
space with a metric space is normal, see [5], [12] and [17]. Kombarov [11] later gen-
eralized this by proving that the product of a normal countably compact space with a
sequential paracompact space is normal. Since then the normality of products with a
countably compact factor or more specially, with a cardinal factor, was investigated in
[3], [7], [10], [14], [15] and [18]. Observe that the product of a normal countably com-
pact space with a Lašnev space is normal. However, there exists an M1-space X such that
°1 ðX is not normal [3]. On the other hand, the equivalence of normality and countable
paracompactness was established for many cases in the theory of product spaces, see
[8], [9], [13], [15], [16], [19] and [20], in particular, it is well known by [16] that the
product of a normal countably paracompact space with a metric space is normal iff it is
countably paracompact. In section 2 of this paper, we prove that the product îðX of an
uncountable regular cardinal îwith a paracompact semi-stratifiable space is normal iff it
is countably paracompact. In section 3, in place of a semi-stratifiable space, we consider
general paracompact spaces. A sufficient condition under which the product of a normal
space with a paracompact space is normal is given, so that many theorems involving such
a product can be derived.

All spaces considered here are regular T1. By N we denote the set of positive integers,
and by î a cardinal with the usual order to topology when consider it as a space. For a
set Γ, jΓj is the cardinality of Γ and ΓÚ° is the set of all finite subsets of Γ.

2. Products with a semi-stratifiable factor. A space X is said to be semi-stratifi-
able [4] if there exists a function g of X ð N into the topology of X, satisfying

(i)
T

n2N g(x, n) ≥ fxg for each x 2 X,
(ii) if fxng is a sequence of points in X with x 2

T
n2N g(xn, n) for some x 2 X, then

fxng converges to x.
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It is well known that semi-stratifiable spaces are perfect and subparacompact and that
the class of semi-stratifiable spaces contains õ-spaces.

The following lemma, due to [8], is very useful in proving our main theorem in this
section.

LEMMA 2.1. Let X be a countably paracompact space, and let E and F be a pair of
disjoint subsets. Suppose that F is closed and there exist open sets Un, n 2 N such that
E ²

T
n2N Un and

T
n2N Un \ F ≥ ;. Then E and F are separated by open sets.

LEMMA 2.2([15]). A space X is normal iff for any disjoint closed sets F and K of X
there exists a õ-locally finite open cover U of X such that U is disjoint from F or K for
each U 2 U.

LEMMA 2.3. Let X be a countably compact space and Y a semi-stratifiable space.
Then X ð Y is countably metacompact.

PROOF. Let g be a function of Y ð N into the topology of Y satisfying (i) and (ii)
above. Let fGn : n 2 Ng be an increasing open cover of X ð Y. We shall now construct
for each n 2 N inductively two õ-locally finite collections Gn and Fn of closed subsets
of Y satisfying the following conditions.

(1) Gn ≥ fF n
S

xÂ2Gn
g(p(x), n) : F 2 Fn�1g

(2) Fn ≥
S
fFF : F 2 Fn�1g such that FF refines fF \ g

�
p(x), n

�
: x Â2 Gng

where, F0 ≥ fYg and p: X ð Y ! Y is the projection.
Assume that the above construction has been already performed for values no greater

than n. Then let
Gn+1 ≥ fF n

[
xÂ2Gn+1

g
�
p(x), n + 1

�
: F 2 Fng

Since Fn is õ-locally finite collection of closed sets of Y, so is Gn+1.
To define Fn+1, fix an F 2 Fn. Since Y is perfect and subparacompact, the collection

fF \ g
�
p(x), n + 1

�
: x Â2 Gn+1g

has a õ-discrete closed refinement FF. Since Fn is õ-locally finite and
SFF ² F, we see

that the collection Fn+1 ≥
S
fFF : F 2 Fng is õ-locally finite. Thus we have inductively

accomplished the desired construction.
Now set G ≥

S
n2N Gn. We assert that Y ≥

S
G.

Assume the contrary and pick y 2 Yn
SG. Then there exist (x1, y1) Â2 G1 and F1 2 F1

such that y 2 F1 ² g(y1, 1). Proceeding by induction, it follows from y 2 Fn n
S

Gn that
there exist (xn+1, yn+1) Â2 Gn+1 and Fn+1 2 Fn+1 such that y 2 Fn+1 ² g(yn+1, n + 1). Thus
we have obtained a sequence f(xn, yn) Â2 Gn : n 2 Ng with y 2

T
n2N g(yn, n). It follows

from the above definition of semi-stratifiable spaces that the sequence fyng converges to
y. Since X is countably compact, the sequence fxn : n 2 Ng has a cluster point x in X
so that the point (x, y) in X ð Y, being a cluster point of f(xn, yn) : n 2 Ng, is not in any
Gn. This contradicts with the assumption of fGn : n 2 Ng being a cover of X ð Y. Thus
Y ≥

SG.
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For each n 2 N write Gn ≥
S

m2N Gnm, where Gnm is locally finite. Let Gnm ≥
SGnm;

then Gnm is closed and XðGnm ² Gn for each n, m 2 N. Moreover, let Cn ≥ Xð
S

i,j�n Gij.
It follows that Cn is closed and Cn ² Gn. It is easy to see that fCn : n 2 Ng covers XðY.
Thus X ð Y is countably metacompact.

THEOREM 2.4. Let X be a paracompact semi-stratifiable space and cf (î) ½ °1.
Then î ð X is normal iff it is countably paracompact.

PROOF. Since normal countably metacompact spaces are countably paracompact,
the necessity follows from Lemma 2.3. To prove the sufficiency, let A and B be any
disjoint closed sets in î ð X. In [18, Theorem 4.1], Yajima proved that there exists a
õ-locally finite closed cover F ≥

S
n2N Fn of X satisfying that for each F 2 F , there

exists a ï(F) 2 î such that
��
ï(F),î

�
ð F

�
\ A ≥ ; or

��
ï(F),î

�
ð F

�
\ B ≥ ;.

Take a locally finite open expansion Gn ≥ fGF : F 2 Fng of Fn for each n 2 N given
by the paracompactness of X so that fî ð GF : F 2 Fng is locally finite in î ð X.

Now for each F 2 F , if
��
ï(F),î

�
ðF

�
\A ≥ ;, by the perfect normality of X, there

exist open sets Vn, n 2 N, such that
�
ï(F),î

�
ð F ≥

\
n2N

�
ï(F),î

�
ð Vn ≥

\
n2N

�
ï(F),î

�
ð Vn ² îð X n A.

It follows from Lemma 2.1 that there exists an open set U(F, 0) ² îðGF such that
�
ï(F),î

�
ð F ² U(F, 0) ² U(F, 0) ² îð X n A.

Moreover for each F 2 F , since [0,ï(F)] ð X is paracompact, there exist open sets
U(F, 1) and U(F, 2) of îð X such that [0,ï(F)] ð F ² U(F, 1) [U(F, 2) ² îðGF and
U(F, i), i ≥ 1, 2, is disjoint from A or B.

For each n 2 N put

Un ≥ fU(F, i) : F 2 Fn and i ≥ 0, 1, 2g.

Then Un is locally finite such that U ≥
S

n2N Un covers îð X and for each U 2 Un, U
is disjoint from A or B. It follows from Lemma 2.2 that îð X is normal. The theorem is
proved.

Since normal countably metacompact spaces are countably paracompact, Lemma 2.3
actually says that the normal product of a countably compact space with a semi-stratifi-
able space is countably paracompact. But we do not know if the inversion is true or not.
We pose here the following

PROBLEM 2.5. Let X be a normal countably compact space and Y a paracompact
semi-stratifiable space. Is then the normality of X ð Y equivalent to its countable para-
compactness?
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3. Products with a paracompact factor. A space X is said to be shrinking if for
every open cover U of X, there exists an open cover V ≥ fV(U) : U 2 Ug of X such
that V(U) ² U for each U 2 U. The open cover V is called a shrinking of U. It is well
known that paracompact spaces are shrinking and shrinking spaces are normal.

The following lemma from Bešlagić [2] is often used for the proof of the shrinking
property of spaces.

LEMMA 3.1. If for each open cover U ≥ fUã : ã 2 îg of a space X, there exists an
open cover fVã,n : ã 2 î and n 2 Ng such that Vã,n ² Uã for each ã 2 î and n 2 N.
Then X is shrinking.

Let î be a regular uncountable cardinal. In [19], the author proved that the normal
product îðX of î and a semi-stratifiable space X with ü(X) Ú î is shrinking. In a letter
to the author, Yajima kindly pointed out that this actually is true for any subparacompact
space X with ü(X) Ú î. However the idea used there is very useful. In fact, using the idea
we shall establish Theorem 3.2 below from which many theorems involving products
with a î-compact factor can be derived. But we first give some terminology.

Let X and Y be spaces, and U a cover of Xð Y. A subset S of Y is called stable to U,
if every x 2 X has a neighborhood Ox such that Ox ð S ² U for some U 2 U.

THEOREM 3.2. Let X be a normal (shrinking) space and Y a paracompact space. If
for every binary (any) open cover U of XðY, each point in Y has a stable neighborhood
to U. Then X ð Y is normal (shrinking).

PROOF. Let U be any open cover of X ð Y and suppose that each point y in Y has
a stable neighborhood Vy to U. It suffices to show that U has a shrinking. Put for each
U 2 U

G(U, y) ≥
[
fP : P is open in X such that Pð Vy ² Ug.

Then X ≥
S
fG(U, y) : U 2 Ug. It follows from the normality (resp. shrinking property)

of X that there exists an open cover fH(U, y) : U 2 Ug of X such that H(U, y) ² G(U, y)
for each U 2 U. Take a locally finite open cover fWy : y 2 Yg of Y with Wy ² Vy given
by the paracompactness of Y. Now for each U 2 U define

WU ≥
[
fH(U, y) ðWy : y 2 Y such that H(U, y) ðWy ² Ug.

One sees easily that fWU : U 2 Ug is a shrinking of U. The proof of the theorem is
complete.

It is known by [6] that the product of a normal countably compact space with a first
countable paracompact space is normal. We now have

COROLLARY 3.3. Let X be a shrinking countably compact space and Y a first count-
able paracompact space. Then X ð Y is shrinking.

PROOF. Let U be any open cover of XðY. Let y 2 Y and take a neighborhood base
fVn : n 2 Ng of y. For each n 2 N, put
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Gn ≥
[
fP : P is open in X such that P ð Vn ² U for some U 2 Ug.

It follows that X ≥
S

n2N Gn. Since X is countably compact, X ≥
Sm

n≥1 Gn for some
m 2 N. One sees that Vy ≥

Tm
n≥1 Vn is a stable neighborhood of y to U. By Theorem 3.2,

X ð Y is shrinking.
A space is said to beî-paracompact if its every open cover of cardinality� î admits a

locally finite open refinement, and a space is î-collectionwise normal if for every discrete
collection fFç : ç 2 Γg of closed sets of the space with jΓj � î there exists a collection
fUç : ç 2 Γg of mutually disjoint open sets such that Fç ² Uç for each ç 2 Γ.

Let Iî be the product space of î copies of I ≥ [0, 1], and A(î) the one-point compact-
ification of the discrete space of cardinality î. Then it is known from Morita [12] and
Alas [1] respectively that a space X is î-paracompact and normal iff XðIî is normal, and
a space X is î-collectionwise normal and countably paracompact iff XðA(î) is normal.
Thus the same proof as in Corollary 3.3 also shows the following

COROLLARY 3.4 ([12, THEOREM 4.1]). Let X be a normal î-compact space and Y a
paracompact space with ü(Y) � î. Then XðY is normal and thus collectionwise normal
and î-paracompact.

COROLLARY 3.5 ([11, THEOREM 1.1]). The product of a normal countably compact
space with a sequential paracompact space is normal and thus collectionwise normal
and countably paracompact.

PROOF. Let X be a normal countably compact space and Y a sequential paracompact
space. Let fV1, V2g be a binary open cover of X ð Y. Let y 2 Y. Put

Gi ≥ fx 2 X : (x, y) 2 Vig, i ≥ 1, 2.

Then Gi, i ≥ 1, 2, is open and X ≥ G1 [ G2. Since X is normal, there exist open sets
H1, H2 such that X ≥ H1 [ H2 and Hi ² Gi for i ≥ 1, 2. Put

Si ≥ fy 2 Y : Hi ð fyg ² Vig, i ≥ 1, 2.

Then Si is open. Otherwise, for example, we can find a sequence fyn 2 Y n S1 : n 2 Ng
which converges to a point yo 2 S1. For each n 2 N, choose xn 2 H1 so that (xn, yn) Â2 V1.
Let x0 2 H1 be a cluster point of the sequence fxn : n 2 Ng so that (x0, y0) is a cluster
point of the sequence f(xn, yn) Â2 V1 : n 2 Ng. It follows that (x0, y0) Â2 V1, this is
impossible. S1 thus is open. It is easy to see that S1 \ S2 is a stable neighborhood of y to
fV1, V2g. Theorem 3.2 then implies that X ð Y is normal.

A space is called strongly î-compact if the closure of any subset of cardinality � î
is compact [11]. It is easy to see that strongly î-compact spaces are î-compact. In order
to show that normal products with a strong î-compact factor are collectionwise normal
and î-paracompact with the aid of Alas’ result and Morita’s result mentioned above, we
need the following lemma.
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LEMMA 3.6. Let X be a strongly î-compact space and Y a compact space. Then
X ð Y is strongly î-compact.

PROOF. Let F be any subset of X ð Y of cardinality î and G ≥ fGç : ç 2 Γg a
collection of open sets of X ð Y with F ²

SG. We have to find a finite subcollection of
G which covers F.

Index F by î as F ≥ f(xã, yã) : ã 2 îg. Let p: X ð Y ! X be the projection. Note
that p is closed. Now for each ß 2 ΓÚ° let

Vß ≥ fx 2 X : (fxg ð Y) \ F ²
[
ç2ß

Gçg.

Then Vß is open since Y is compact. On the other hand,

p(F) ²
[
fVß : ß 2 ΓÚ°g.

However, since p is closed, p(F) ≥ fxã : ã 2 îg. It follows from the strong î-compact-
ness of X that there exist finitely many ß1, . . . ,ßn 2 ΓÚ° such that

fxã : ã 2 îg ²
n[

i≥1
Vßi .

Let us put for each ç 2 ßi, i ≥ 1, . . . , n,

Hßi,ç ≥ (Vßi ð Y) \Gç.

Then fHßi,ç : ç 2 ßi and i ≥ 1, . . . , ng covers F.

COROLLARY 3.7 ([11, THEOREM 1.4]). Let X be a normal strongly î-compact space
and Y a paracompact space with t(Y) � î. Then XðY is normal, and thus collectionwise
normal and î-paracompact.

PROOF. Let Vi, Gi, Hi and Si, for i ≥ 1, 2, be as in the proof of Corollary 3.5. It
remains to prove that Si, i ≥ 1, 2, is open. This is essentially done in Kombarov [11].
Indeed, for example, let y 2 S1 such that y 2 F for some F ² Y n S1 with jFj � î.
Index F as F ≥ fyã : ã 2 îg. For each ã 2 î choose xã 2 H1 so that (xã, yã) Â2 V1.
Take a neighborhood base fVç : ç 2 Γg of y. For each ç 2 Γ define Rç ≥ fxã : ã 2 î
and yã 2 Vçg. It follows that the collection fRç : ç 2 Γg of compact sets has the finite
intersection property. And thus we may pick an x 2

T
fRç : ç 2 Γg ² H1. Since

(x, y) 2 V1, there exists a neighborhood H of x such that HðVç0 ² V1 for some ç0 2 Γ.
We can find some xã 2 H \ Rç0 . One sees easily that (xã, yã) 2 V1, a contradiction
proving that Si, i ≥ 1, 2, is open.

COROLLARY 3.8. Let X be a paracompact space with t(X) � î. Then X ð î+ is
collectionwise normal and î-paracompact.

COROLLARY 3.9 ([10, THEOREM 2.7]). Let X be a paracompact space. If X ð î is
orthocompact, then it is shrinking, where cf (î) � °1.
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PROOF. If X ð î is orthocompact, by [10, Lemma 1.1], X has orthocaliber î, i.e.,
if x 2 X and U is a collection of neighborhoods of x with jUj ≥ î, then there exists
V 2 U such that x 2 Int(

TV ) with jV j ≥ î. Now let G ≥ fGç : ç 2 Γg be any
open cover of X ð î and fix x 2 X. Then for each ã 2 î, there exist f (ã) Ú ã and a
neighborhood Vã of x such that Vã ð

�
f (ã),ã

i
² Gç for some ç 2 Γ. Take í ² î such

that jíj ≥ î and Vx ≥
T
fVã : ã 2 íg is a neighborhood of x. Then, although í Â≥ î,

using the Pressing Down Lemma, we can regard Vx as a stable neighborhood of x to G.
Hence, the corollary is proved.
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9. T. Hoshina, Normality of product spaces II, Topics in General Topology (K. Morita and J. Nagata, eds.)

North-Holland, Amsterdam, 1989.
10. N. Kemoto and Y. Yajima, Orthocompactness and normality of products with a cardinal factor, Topology

Appl. 49(1993), 141–148.
11. A. P. Kombarov, On the product of normal spaces. Uniformities of Σ-products, Soviet Math. Dokl. 13(1972),

1068–1071.
12. K. Morita, Paracompactness and product spaces, Fund Math. 50(1961/62), 223–236.
13. K. Nagami, Countable paracompactness of inverse limits and products, Fund. Math. 73(1972), 261–270.
14. T. Nogura, Tightness of compact Hausdorff spaces and normality of products, J. Math. Soc. Japan 28(1976),

360–362.
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