THE NORMALITY IN PRODUCTS WITH A COUNTABLY COMPACT FACTOR

LECHENG YANG

ABSTRACT. It is known that the product $\omega_1 \times X$ of ω_1 with an M_1 -space may be nonnormal. In this paper we prove that the product $\kappa \times X$ of an uncountable regular cardinal κ with a paracompact semi-stratifiable space is normal iff it is countably paracompact. We also give a sufficient condition under which the product of a normal space with a paracompact space is normal, from which many theorems involving such a product with a countably compact factor can be derived.

1. Introduction. As is well known, the product of a normal countably compact space with a metric space is normal, see [5], [12] and [17]. Kombarov [11] later generalized this by proving that the product of a normal countably compact space with a sequential paracompact space is normal. Since then the normality of products with a countably compact factor or more specially, with a cardinal factor, was investigated in [3], [7], [10], [14], [15] and [18]. Observe that the product of a normal countably compact space with a Lašnev space is normal. However, there exists an M_1 -space X such that $\omega_1 \times X$ is not normal [3]. On the other hand, the equivalence of normality and countable paracompactness was established for many cases in the theory of product spaces, see [8], [9], [13], [15], [16], [19] and [20], in particular, it is well known by [16] that the product of a normal countably paracompact space with a metric space is normal iff it is countably paracompact. In section 2 of this paper, we prove that the product $\kappa \times X$ of an uncountable regular cardinal κ with a paracompact semi-stratifiable space is normal iff it is countably paracompact. In section 3, in place of a semi-stratifiable space, we consider general paracompact spaces. A sufficient condition under which the product of a normal space with a paracompact space is normal is given, so that many theorems involving such a product can be derived.

All spaces considered here are regular T_1 . By N we denote the set of positive integers, and by κ a cardinal with the usual order to topology when consider it as a space. For a set Γ , $|\Gamma|$ is the cardinality of Γ and $\Gamma^{<\omega}$ is the set of all finite subsets of Γ .

2. Products with a semi-stratifiable factor. A space X is said to be *semi-stratifiable* [4] if there exists a function g of $X \times N$ into the topology of X, satisfying

- (i) $\bigcap_{n \in N} g(x, n) = \{x\}$ for each $x \in X$,
- (ii) if $\{x_n\}$ is a sequence of points in *X* with $x \in \bigcap_{n \in N} g(x_n, n)$ for some $x \in X$, then $\{x_n\}$ converges to *x*.

Received by the editors July 22, 1994; revised January 18, 1996.

245

AMS subject classification: 54B19, 54D15, 54D20.

[©] Canadian Mathematical Society 1998.

It is well known that semi-stratifiable spaces are perfect and subparacompact and that the class of semi-stratifiable spaces contains σ -spaces.

The following lemma, due to [8], is very useful in proving our main theorem in this section.

LEMMA 2.1. Let X be a countably paracompact space, and let E and F be a pair of disjoint subsets. Suppose that F is closed and there exist open sets U_n , $n \in N$ such that $E \subset \bigcap_{n \in N} U_n$ and $\bigcap_{n \in N} \overline{U}_n \cap F = \emptyset$. Then E and F are separated by open sets.

LEMMA 2.2([15]). A space X is normal iff for any disjoint closed sets F and K of X there exists a σ -locally finite open cover U of X such that \overline{U} is disjoint from F or K for each $U \in U$.

LEMMA 2.3. Let X be a countably compact space and Y a semi-stratifiable space. Then $X \times Y$ is countably metacompact.

PROOF. Let g be a function of $Y \times N$ into the topology of Y satisfying (i) and (ii) above. Let $\{G_n : n \in N\}$ be an increasing open cover of $X \times Y$. We shall now construct for each $n \in N$ inductively two σ -locally finite collections G_n and F_n of closed subsets of Y satisfying the following conditions.

(1) $G_n = \{F \setminus \bigcup_{x \notin G_n} g(p(x), n) : F \in F_{n-1}\}$

(2) $F_n = \bigcup \{F_F : F \in F_{n-1}\}$ such that F_F refines $\{F \cap g(p(x), n) : x \notin G_n\}$ where, $F_0 = \{Y\}$ and $p: X \times Y \to Y$ is the projection.

Assume that the above construction has been already performed for values no greater

than *n*. Then let

$$G_{n+1} = \{F \setminus \bigcup_{x \notin G_{n+1}} g(p(x), n+1) : F \in F_n\}$$

Since F_n is σ -locally finite collection of closed sets of Y, so is G_{n+1} .

To define F_{n+1} , fix an $F \in F_n$. Since Y is perfect and subparacompact, the collection

$$\{F \cap g(p(x), n+1) : x \notin G_{n+1}\}$$

has a σ -discrete closed refinement F_F . Since F_n is σ -locally finite and $\bigcup F_F \subset F$, we see that the collection $F_{n+1} = \bigcup \{F_F : F \in F_n\}$ is σ -locally finite. Thus we have inductively accomplished the desired construction.

Now set $G = \bigcup_{n \in N} G_n$. We assert that $Y = \bigcup G$.

Assume the contrary and pick $y \in Y \setminus \bigcup G$. Then there exist $(x_1, y_1) \notin G_1$ and $F_1 \in F_1$ such that $y \in F_1 \subset g(y_1, 1)$. Proceeding by induction, it follows from $y \in F_n \setminus \bigcup G_n$ that there exist $(x_{n+1}, y_{n+1}) \notin G_{n+1}$ and $F_{n+1} \in F_{n+1}$ such that $y \in F_{n+1} \subset g(y_{n+1}, n+1)$. Thus we have obtained a sequence $\{(x_n, y_n) \notin G_n : n \in N\}$ with $y \in \bigcap_{n \in N} g(y_n, n)$. It follows from the above definition of semi-stratifiable spaces that the sequence $\{y_n\}$ converges to y. Since X is countably compact, the sequence $\{x_n : n \in N\}$ has a cluster point x in Xso that the point (x, y) in $X \times Y$, being a cluster point of $\{(x_n, y_n) : n \in N\}$, is not in any G_n . This contradicts with the assumption of $\{G_n : n \in N\}$ being a cover of $X \times Y$. Thus $Y = \bigcup G$.

246

For each $n \in N$ write $G_n = \bigcup_{m \in N} G_{nm}$, where G_{nm} is locally finite. Let $G_{nm} = \bigcup G_{nm}$; then G_{nm} is closed and $X \times G_{nm} \subset G_n$ for each $n, m \in N$. Moreover, let $C_n = X \times \bigcup_{i,j \leq n} G_{ij}$. It follows that C_n is closed and $C_n \subset G_n$. It is easy to see that $\{C_n : n \in N\}$ covers $X \times Y$. Thus $X \times Y$ is countably metacompact.

THEOREM 2.4. Let X be a paracompact semi-stratifiable space and $cf(\kappa) \ge \omega_1$. Then $\kappa \times X$ is normal iff it is countably paracompact.

PROOF. Since normal countably metacompact spaces are countably paracompact, the necessity follows from Lemma 2.3. To prove the sufficiency, let A and B be any disjoint closed sets in $\kappa \times X$. In [18, Theorem 4.1], Yajima proved that there exists a σ -locally finite closed cover $F = \bigcup_{n \in N} F_n$ of X satisfying that for each $F \in F$, there exists a $\lambda(F) \in \kappa$ such that

$$\left(\left(\lambda(F),\kappa\right)\times F\right)\cap A=\emptyset \text{ or }\left(\left(\lambda(F),\kappa\right)\times F\right)\cap B=\emptyset.$$

Take a locally finite open expansion $G_n = \{G_F : F \in F_n\}$ of F_n for each $n \in N$ given by the paracompactness of X so that $\{\kappa \times G_F : F \in F_n\}$ is locally finite in $\kappa \times X$.

Now for each $F \in F$, if $((\lambda(F), \kappa) \times F) \cap A = \emptyset$, by the perfect normality of *X*, there exist open sets V_n , $n \in N$, such that

$$(\lambda(F),\kappa) \times F = \bigcap_{n \in \mathbb{N}} (\lambda(F),\kappa) \times V_n = \bigcap_{n \in \mathbb{N}} (\lambda(F),\kappa) \times \overline{V}_n \subset \kappa \times X \setminus A.$$

It follows from Lemma 2.1 that there exists an open set $U(F, 0) \subset \kappa \times G_F$ such that

$$(\lambda(F),\kappa) \times F \subset U(F,0) \subset \overline{U(F,0)} \subset \kappa \times X \setminus A$$

Moreover for each $F \in F$, since $[0, \lambda(F)] \times X$ is paracompact, there exist open sets U(F, 1) and U(F, 2) of $\kappa \times X$ such that $[0, \lambda(F)] \times F \subset U(F, 1) \cup U(F, 2) \subset \kappa \times G_F$ and $\overline{U(F, i)}$, i = 1, 2, is disjoint from A or B.

For each $n \in N$ put

$$U_n = \{U(F, i) : F \in F_n \text{ and } i = 0, 1, 2\}.$$

Then U_n is locally finite such that $U = \bigcup_{n \in N} U_n$ covers $\kappa \times X$ and for each $U \in U_n$, \overline{U} is disjoint from *A* or *B*. It follows from Lemma 2.2 that $\kappa \times X$ is normal. The theorem is proved.

Since normal countably metacompact spaces are countably paracompact, Lemma 2.3 actually says that the normal product of a countably compact space with a semi-stratifiable space is countably paracompact. But we do not know if the inversion is true or not. We pose here the following

PROBLEM 2.5. Let X be a normal countably compact space and Y a paracompact semi-stratifiable space. Is then the normality of $X \times Y$ equivalent to its countable paracompactness?

3. **Products with a paracompact factor.** A space *X* is said to be *shrinking* if for every open cover U of *X*, there exists an open cover $V = \{V(U) : U \in U\}$ of *X* such that $\overline{V(U)} \subset U$ for each $U \in U$. The open cover *V* is called a *shrinking* of *U*. It is well known that paracompact spaces are shrinking and shrinking spaces are normal.

The following lemma from Bešlagić [2] is often used for the proof of the shrinking property of spaces.

LEMMA 3.1. If for each open cover $U = \{U_{\alpha} : \alpha \in \kappa\}$ of a space X, there exists an open cover $\{V_{\alpha,n} : \alpha \in \kappa \text{ and } n \in N\}$ such that $\overline{V}_{\alpha,n} \subset U_{\alpha}$ for each $\alpha \in \kappa$ and $n \in N$. Then X is shrinking.

Let κ be a regular uncountable cardinal. In [19], the author proved that the normal product $\kappa \times X$ of κ and a semi-stratifiable space X with $\chi(X) < \kappa$ is shrinking. In a letter to the author, Yajima kindly pointed out that this actually is true for any subparacompact space X with $\chi(X) < \kappa$. However the idea used there is very useful. In fact, using the idea we shall establish Theorem 3.2 below from which many theorems involving products with a κ -compact factor can be derived. But we first give some terminology.

Let *X* and *Y* be spaces, and *U* a cover of $X \times Y$. A subset *S* of *Y* is called *stable* to *U*, if every $x \in X$ has a neighborhood O_x such that $O_x \times S \subset U$ for some $U \in U$.

THEOREM 3.2. Let X be a normal (shrinking) space and Y a paracompact space. If for every binary (any) open cover $U \text{ of } X \times Y$, each point in Y has a stable neighborhood to U. Then $X \times Y$ is normal (shrinking).

PROOF. Let U be any open cover of $X \times Y$ and suppose that each point y in Y has a stable neighborhood V_y to U. It suffices to show that U has a shrinking. Put for each $U \in U$

$$G(U, y) = \bigcup \{P : P \text{ is open in } X \text{ such that } P \times V_y \subset U \}$$

Then $X = \bigcup \{G(U, y) : U \in U\}$. It follows from the normality (resp. shrinking property) of *X* that there exists an open cover $\{H(U, y) : U \in U\}$ of *X* such that $\overline{H(U, y)} \subset G(U, y)$ for each $U \in U$. Take a locally finite open cover $\{W_y : y \in Y\}$ of *Y* with $\overline{W}_y \subset V_y$ given by the paracompactness of *Y*. Now for each $U \in U$ define

$$W_U = \bigcup \{ H(U, y) \times W_y : y \in Y \text{ such that } \overline{H(U, y) \times W_y} \subset U \}$$

One sees easily that $\{W_U : U \in U\}$ is a shrinking of U. The proof of the theorem is complete.

It is known by [6] that the product of a normal countably compact space with a first countable paracompact space is normal. We now have

COROLLARY 3.3. Let X be a shrinking countably compact space and Y a first countable paracompact space. Then $X \times Y$ is shrinking.

PROOF. Let *U* be any open cover of $X \times Y$. Let $y \in Y$ and take a neighborhood base $\{V_n : n \in N\}$ of *y*. For each $n \in N$, put

 $G_n = \bigcup \{P : P \text{ is open in } X \text{ such that } P \times V_n \subset U \text{ for some } U \in U \}.$

It follows that $X = \bigcup_{n \in N} G_n$. Since X is countably compact, $X = \bigcup_{n=1}^m G_n$ for some $m \in N$. One sees that $V_y = \bigcap_{n=1}^m V_n$ is a stable neighborhood of y to U. By Theorem 3.2, $X \times Y$ is shrinking.

A space is said to be κ -paracompact if its every open cover of cardinality $\leq \kappa$ admits a locally finite open refinement, and a space is κ -collectionwise normal if for every discrete collection $\{F_{\gamma} : \gamma \in \Gamma\}$ of closed sets of the space with $|\Gamma| \leq \kappa$ there exists a collection $\{U_{\gamma} : \gamma \in \Gamma\}$ of mutually disjoint open sets such that $F_{\gamma} \subset U_{\gamma}$ for each $\gamma \in \Gamma$.

Let I^{κ} be the product space of κ copies of I = [0, 1], and $A(\kappa)$ the one-point compactification of the discrete space of cardinality κ . Then it is known from Morita [12] and Alas [1] respectively that a space *X* is κ -paracompact and normal iff $X \times I^{\kappa}$ is normal, and a space *X* is κ -collectionwise normal and countably paracompact iff $X \times A(\kappa)$ is normal. Thus the same proof as in Corollary 3.3 also shows the following

COROLLARY 3.4 ([12, THEOREM 4.1]). Let X be a normal κ -compact space and Y a paracompact space with $\chi(Y) \leq \kappa$. Then $X \times Y$ is normal and thus collectionwise normal and κ -paracompact.

COROLLARY 3.5 ([11, THEOREM 1.1]). The product of a normal countably compact space with a sequential paracompact space is normal and thus collectionwise normal and countably paracompact.

PROOF. Let *X* be a normal countably compact space and *Y* a sequential paracompact space. Let $\{V_1, V_2\}$ be a binary open cover of $X \times Y$. Let $\overline{y} \in Y$. Put

$$G_i = \{x \in X : (x, \overline{y}) \in V_i\}, i = 1, 2.$$

Then G_i , i = 1, 2, is open and $X = G_1 \cup G_2$. Since X is normal, there exist open sets H_1, H_2 such that $X = H_1 \cup H_2$ and $\overline{H_i} \subset G_i$ for i = 1, 2. Put

$$S_i = \{ y \in Y : \overline{H}_i \times \{ y \} \subset V_i \}, i = 1, 2.$$

Then S_i is open. Otherwise, for example, we can find a sequence $\{y_n \in Y \setminus S_1 : n \in N\}$ which converges to a point $y_o \in S_1$. For each $n \in N$, choose $x_n \in \overline{H}_1$ so that $(x_n, y_n) \notin V_1$. Let $x_0 \in \overline{H}_1$ be a cluster point of the sequence $\{x_n : n \in N\}$ so that (x_0, y_0) is a cluster point of the sequence $\{(x_n, y_n) \notin V_1 : n \in N\}$. It follows that $(x_0, y_0) \notin V_1$, this is impossible. S_1 thus is open. It is easy to see that $S_1 \cap S_2$ is a stable neighborhood of \overline{y} to $\{V_1, V_2\}$. Theorem 3.2 then implies that $X \times Y$ is normal.

A space is called *strongly* κ -*compact* if the closure of any subset of cardinality $\leq \kappa$ is compact [11]. It is easy to see that strongly κ -compact spaces are κ -compact. In order to show that normal products with a strong κ -compact factor are collectionwise normal and κ -paracompact with the aid of Alas' result and Morita's result mentioned above, we need the following lemma.

LEMMA 3.6. Let X be a strongly κ -compact space and Y a compact space. Then $X \times Y$ is strongly κ -compact.

PROOF. Let *F* be any subset of $X \times Y$ of cardinality κ and $G = \{G_{\gamma} : \gamma \in \Gamma\}$ a collection of open sets of $X \times Y$ with $\overline{F} \subset \bigcup G$. We have to find a finite subcollection of *G* which covers \overline{F} .

Index *F* by κ as $F = \{(x_{\alpha}, y_{\alpha}) : \alpha \in \kappa\}$. Let $p: X \times Y \to X$ be the projection. Note that *p* is closed. Now for each $\varphi \in \Gamma^{<\omega}$ let

$$V_{\varphi} = \{ x \in X : (\{x\} \times Y) \cap \overline{F} \subset \bigcup_{\gamma \in \varphi} G_{\gamma} \}.$$

Then V_{φ} is open since Y is compact. On the other hand,

$$p(\overline{F}) \subset \bigcup \{ V_{\varphi} : \varphi \in \Gamma^{<\omega} \}$$

However, since *p* is closed, $p(\overline{F}) = \overline{\{x_{\alpha} : \alpha \in \kappa\}}$. It follows from the strong κ -compactness of *X* that there exist finitely many $\varphi_1, \ldots, \varphi_n \in \Gamma^{<\omega}$ such that

$$\overline{\{x_{\alpha}:\alpha\in\kappa\}}\subset\bigcup_{i=1}^{n}V_{\varphi_{i}}.$$

Let us put for each $\gamma \in \varphi_i, i = 1, \ldots, n$,

$$H_{\varphi_i,\gamma} = (V_{\varphi_i} \times Y) \cap G_{\gamma}.$$

Then $\{H_{\varphi_i,\gamma}: \gamma \in \varphi_i \text{ and } i = 1, \dots, n\}$ covers \overline{F} .

COROLLARY 3.7 ([11, THEOREM 1.4]). Let X be a normal strongly κ -compact space and Y a paracompact space with $t(Y) \leq \kappa$. Then $X \times Y$ is normal, and thus collectionwise normal and κ -paracompact.

PROOF. Let V_i, G_i, H_i and S_i , for i = 1, 2, be as in the proof of Corollary 3.5. It remains to prove that $S_i, i = 1, 2$, is open. This is essentially done in Kombarov [11]. Indeed, for example, let $y \in S_1$ such that $y \in \overline{F}$ for some $F \subset Y \setminus S_1$ with $|F| \leq \kappa$. Index F as $F = \{y_\alpha : \alpha \in \kappa\}$. For each $\alpha \in \kappa$ choose $x_\alpha \in \overline{H}_1$ so that $(x_\alpha, y_\alpha) \notin V_1$. Take a neighborhood base $\{V_\gamma : \gamma \in \Gamma\}$ of y. For each $\gamma \in \Gamma$ define $R_\gamma = \{x_\alpha : \alpha \in \kappa$ and $y_\alpha \in V_\gamma\}$. It follows that the collection $\{\overline{R}_\gamma : \gamma \in \Gamma\}$ of compact sets has the finite intersection property. And thus we may pick an $x \in \bigcap\{\overline{R}_\gamma : \gamma \in \Gamma\} \subset \overline{H}_1$. Since $(x, y) \in V_1$, there exists a neighborhood H of x such that $H \times V_{\gamma_0} \subset V_1$ for some $\gamma_0 \in \Gamma$. We can find some $x_\alpha \in H \cap R_{\gamma_0}$. One sees easily that $(x_\alpha, y_\alpha) \in V_1$, a contradiction proving that $S_i, i = 1, 2$, is open.

COROLLARY 3.8. Let X be a paracompact space with $t(X) \leq \kappa$. Then $X \times \kappa^+$ is collectionwise normal and κ -paracompact.

COROLLARY 3.9 ([10, THEOREM 2.7]). Let X be a paracompact space. If $X \times \kappa$ is orthocompact, then it is shrinking, where $cf(\kappa) \leq \omega_1$.

PROOF. If $X \times \kappa$ is orthocompact, by [10, Lemma 1.1], X has orthocaliber κ , *i.e.*, if $x \in X$ and U is a collection of neighborhoods of x with $|U| = \kappa$, then there exists $V \in U$ such that $x \in Int(\bigcap V)$ with $|V| = \kappa$. Now let $G = \{G_{\gamma} : \gamma \in \Gamma\}$ be any open cover of $X \times \kappa$ and fix $x \in X$. Then for each $\alpha \in \kappa$, there exist $f(\alpha) < \alpha$ and a neighborhood V_{α} of x such that $V_{\alpha} \times (f(\alpha), \alpha] \subset G_{\gamma}$ for some $\gamma \in \Gamma$. Take $\theta \subset \kappa$ such that $|\theta| = \kappa$ and $V_x = \bigcap \{V_{\alpha} : \alpha \in \theta\}$ is a neighborhood of x. Then, although $\theta \neq \kappa$, using the Pressing Down Lemma, we can regard V_x as a stable neighborhood of x to G. Hence, the corollary is proved.

REFERENCES

- 1. O. T. Alas, On a characterization of collectionwise normality, Canad. Math. Bull. 14(1971), 13–15.
- 2. A. Bešlagic, Normality in products, Topology Appl. 22(1986), 71-82.
- 3. K. Chiba, On products of normal spaces, Rep. Fac. Sci. Shizuoka Univ. 9(1974), 1-11.
- 4. G. D. Creede, Concerning semi-stratifiable spaces, Pacific J. Math. 32(1970), 47-54.
- 5. J. Dieudonné, Un critére de normalité pour les espaces produits, Colloq. Math. 6(1958), 29-32.
- 6. R. Engelking, General Topology, Haldermann Verlin, 1989.
- **7.** G. Gruenhage, T. Nogura and S. Purisch, *Normality of X* $\times \omega_1$, Topology Appl. **39**(1991), 263–275.
- 8. T. Hoshina, Products of normal spaces with Lašnev spaces, Fund. Math. 124(1984), 143-153.
- 9. T. Hoshina, Normality of product spaces II, Topics in General Topology (K. Morita and J. Nagata, eds.) North-Holland, Amsterdam, 1989.
- N. Kemoto and Y. Yajima, Orthocompactness and normality of products with a cardinal factor, Topology Appl. 49(1993), 141–148.
- A. P. Kombarov, On the product of normal spaces. Uniformities of Σ-products, Soviet Math. Dokl. 13(1972), 1068–1071.
- 12. K. Morita, Paracompactness and product spaces, Fund Math. 50(1961/62), 223-236.
- 13. K. Nagami, Countable paracompactness of inverse limits and products, Fund. Math. 73(1972), 261–270.
- 14. T. Nogura, *Tightness of compact Hausdorff spaces and normality of products*, J. Math. Soc. Japan 28(1976), 360–362.
- **15.** T. C. Przymusiński, *Products of normal spaces*, Handbook of Set Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, Amsterdam, 1984.
- 16. M. E. Rudin and M. Starbird, Products with a metric factor, General Topology Appl. 5(1975), 235-248.
- 17. A. H. Stone, Paracompactness and product spaces, Bull. Amer. Math. Soc. 54(1948), 977–982.
- **18.** Y. Yajima, *Subnormality of X* × κ and Σ -products, Topology Appl. **54**(1993), 111–122.
- 19. L. Yang, Countable paracompactness of Σ-products Proc. Amer. Math. Soc., 122(1994), 949–956.
- 20. P. Zenor, Countable paracompactness in product spaces, Proc. Amer. Math. Soc. 30(1971), 199-201.

Institute of Mathematics University of Tsukuba Tsukuba-city 305 Japan