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POLYNOMIAL RINGS WITH THE OUTER 
PRODUCT PROPERTY 

A. V. GERAMITA 

Note. W e shall assume throughout t h a t all rings R are noetherian. This 
proper ty is not used in some of the lemmas bu t it intercedes before the main 
theorem. We retain this assumption to ease the exposition. 

I n t r o d u c t i o n . In [3] Lissner defined a class of rings called outer product rings, 

(OP-rings). These are commuta t ive rings R with ident i ty for which every 

exterior vector v £ /\n~lRn is decomposable, i.e., v = Vi A . . . A vn-i with 
Vi G Rn, i = 1, . . . , n - 1. 

If we look only a t those vectors v G f\n~lRn whose co-ordinates with respect 
to any basis of /\n~1Rn generate the uni t ideal in R and consider those rings R 
for which all vectors of this type are decomposable, we obtain the class of 
rings which have been referred to as Her mite-rings (i7-rings, see also Lissner 
[3]). This class of iJ-r ings evidently contains the class of OP-rings. 

PROPOSITION A. R is an H-ring if and only if for any n elements of R, 
ai , . . . , anj such that the ideal they generate in R is R, there exists an invertible 
n X n matrix with first row (ai, . . . , an). 

Proof. T h e reader should refer to [3, § 2, Proposition 2.1 and Corollary] for 
a proof of this s ta tement . 

One of the major reasons for considering iJ-r ings is contained in the follow
ing proposition. 

PROPOSITION B. The following two statements are equivalent. 
(i) R is an H-ring. 

(ii) If P is a finitely generated projective R-module such that P ® Rm ~ Rs 

for two integers m, s, then P ~ Rs~m. 

Proof. See [11, Proposition 12.2, p . 185]. 

In [7] Serre asked if every f.g. projective ^ -modu le , R = k[Xi, . . . , Xn] 
where k is a field, is necessarily free. Serre showed [7, Proposition 10] t h a t if 
P is a f.g. projective k[Xi, . . . , JVJ-module then P © Rm = Rs for some 
integers m, s, (depending on P). In view of Proposition B above, Serre's 
question amounts to asking whether k[Xi, . . . , Xn] is an H-r'mg. 
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In [10], Seshadri showed that for n = 2, finitely generated projective 
k[Xi, . . . , Xn]-modules are indeed free, while in [4] Lissner showed that 
R[X], when R is a principal ideal domain (P.I.D.), is an OP-ring, thereby 
obtaining Seshadri's theorem as a consequence. 

Our aim in this paper is to classify all those noetherian rings R such that 
R[X] is an OP-ring. This is accomplished via the following theorem. 

THEOREM. Let R be a noetherian ring. The following are equivalent: 
(i) R[X] is an OP-ring. 

(ii) R is a direct sum of rings of global dim _T and special principal ideal 
rings. 

In the second section we completely classify finitely generated projective 
R[X]-modules, when R[X] is an OP-ring. 

1. The outer product property. We recall a few lemmas. 

LEMMA 1. Let R be an OP-ring and <j> : R —» S be a surjection. Then S is an 
OP-ring. 

Proof. See [13, Proposition 1.3]. 

LEMMA 2. Let R be a ring and let S be a multiplicatively closed subset of R 
(0 g S, 1 G S). If R is an OP-ring then so is Rs-

Proof. See [5, Proposition 4.5]. 

COROLLARY Let R[X] be an OP-ring and p C R be a prime ideal. Then 
RP[X] is an OP-ring. 

Proof. The proof is clear from Lemma 2. 

In view of the corollary to Lemma 2 it is appropriate to begin considering 
OP-rings of the form R[X] in the case that R is local. 

The following lemma is probably well-known, but inasmuch as there appears 
no proof in the literature we shall include a proof here for completeness. 

We recall the following definition. 

Definition. Let (Rf m) be a local ring. The v-dimension (v-dim) of R is 
= dim R/mm/m2. 

It is well-known (see, e.g., [6, p. 189]) that the ^-dimension of R is equal to 
the minimal number of elements in a generating set for m. 

LEMMA 3. Let (R, m) be a local ring of v-dimension =s. Then there exists a 
maximal ideal in A = R[X], say p, such that Av has v-àim = 5 + 1 . 

Proof. We suppose m = (ui, . . . , us) and let p C A, p = {u\, . . . , us, X). 
It is clear that p is a maximal ideal of A. Let <j> : A —» Av be the canonical map, 
0 ( / (# ) ) = /O*0/l- Evidently 4>{p)Av is the maximal ideal of Av and is 
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generated by {ui/1, u2/l, . . . , us/l, x/1}. If we can show that this set of 
generators is minimal we will know that ^-dimension Ap = 5 + 1, since in a 
local ring all minimal generating sets have the same number of elements. 

Claim 1. x/1 (? (ui/1, u2/l, . . . , us/\) in Ap: Suppose 

1 gl 1 gs 1 

where/*, g* G i?|X], and g* g £. Then 

* = /lg2 . • . gsttl + glj^gs • • . gSU2 + » • . + glg2 . • . gs~lfSUs 

1 glg2 . . -gs 

From the definition of equality in Ap, there exists k 6 i^pT], k Q p, such that 

(*) &glg2 . • . gS0C = kfig2 • • • g8Ui + kgXf2gZ . . . gsU2 + • . . + kgig2 . . . gs-lfsUs. 

Since gz- $ £, the constant term of gt is not in m C R', similarly for k. Thus, 
on the left side of equation (*), the coefficient of x is (const, term of k) 'Y\i=i 
(const, term gt). Since all these factors are in R but not in m, and m is prime, 
the coefficient of x on the left side of (*) is an element of R not in m. Evidently 
all the coefficients on the right side of (*) are in m. This contradiction estab
lishes the claim. 

Claim 2. U\/l Q (u2/l} . . . , us/l, x/1): (We shall observe that the argument 
given here does not depend on Ui, but would work for any ut.) Suppose 
Ui/l G (u2/l, . . . , us/l, x /1) ; then 

^ _ & * + £ . * * + . . . + £ . * /,,«,€*[*] and gtçp. 
1 gl 1 g2 1 gs 1 

Thus , 

2£l = /lg2 . • . gSX + gl / 2g 3 . • . gsU2 + . . . + glg2 . . • gs-lfsUs 
1 glg2 • • • gs 

Again by the definition of equality in Ap, there exists k Ç R[X], k g p such 
that 

( t ) ^l&glg2 • • • gs = &/lg2 . . . gsX + &gl/2g3 • • • g8U2 + . . . + &glg2 • • • gs-lfsU*. 

As before, the constant term of kgi . . . gs is in R not in m, call it t0. Now 
£0^i 9e 0, since wi is part of a minimal generating set for m and /o $ ^ -

The constant term on the right side of (f) is ^ 0 and £0^i = (const, term of 
^gi/2g3 • • . g8) ' U2 + . . . + (const, term of &gig2 . . . gs-ifs) • u8. 

This equation contradicts the minimality of the generating set {ui, . . . , us) 
of m, and establishes Claim 2. 

Thus (j)(p)Ap needs 5 + 1 generators and so ^-dimension Ap = s + 1. 

PROPOSITION 1. If (R, m) is a local ring of v-dimension ^ 2, then R[X] is 
not an OP-ring. 
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Proof. If R[X] is an OP-ring, then for any prime ideal p C R[X], R[X]P is 
an OP-ring [5, Proposition 4.5]. By Lemma 3, there exists maximal ideal 
p C R[X] such that ^-dimension R[X]V = (y-dimension R) + 1 > 2. But 
local OP-rings must have v-d\m S 2 [13]. 

Thus, R[X] is not an OP-ring. 

PROPOSITION 2. If R is a ring of Krull dimension ^ 2, then R[X] is not an 
OP-ring. 

Proof. If Krull dimension R ^ 2 there exists a maximal ideal m in R such 
that Krull dimension Rm ^ 2. Since Krull dimension Rm ^ ^-dimension i?m, 
we see by Proposition 1 that Rm[X] is not an OP-ring. Thus, R[X] is not an 
OP-ring by Lemma 2. 

In view of Proposition 2 we need only consider rings R of Krull Dimension 

If Krull dimension R = 0 then all prime ideals in R are maximal and R is 
a finite direct sum of primary rings, i.e., rings with exactly one prime ideal, 
(finite because R is noetherian). We recall the following proposition. 

PROPOSITION 3. If R = i?i 0 . . . 0 Rs then, R is an OP-ring <=> Rt is an 
OP-ring for each i = 1, . . . , s. 

Proof. See [5, Theorem 5.4]. 

So, if R has Krull dimension = 0, R = Ri © . . . 0 Rs, wThere the Rt are 
all primary rings and R[X] = R^X] 0 . . . ® RS[X]. By Proposition 3, R[X] 
is an OP-ring if and only if Ri[X] is an OP-ring for each i = 1, 2, . . . , s. 

PROPOSITION 4. Let R be a primary ring with prime ideal p. R[X] is an 
OP-ring <=> Ris a special principal ideal ring or R is afield. (Recall that R is a 
special principal ideal ring if R has a unique prime ideal, p = (u), which is 
nilpotent.) 

Proof. => : Since R[X] is an OP-ring so is R, by Lemma 1. A primary ring 
is a local ring and so by Proposition 1, v-dim R < 2. If ^-dimension R = 0 
then R is a field. So we may assume that y-dimension R — 1. In that case 
p = (u) and p is nilpotent, i.e., R is a special principal ideal ring. 

<= : If R is a field then R[X] is a principal ideal domain and so is an OP-ring 
[3, Theorem 2.2]. If R is a special principal ideal ring then R is a complete 
local ring and hence by a theorem of I. S. Cohen [2], R is the homomorphic 
image of a regular local ring of Krull dimension equal to the ^-dimension of R. 
Let A be such a regular local ring of Krull dimension = 1, and <j> : A —> R the 
surjection provided by the theorem. Now A is a principal ideal domain and so 
A [X] is an OP-ring [4]. We extend 0 to a homomorphism, which we will also call 
<£, <j> : A[X] —> R[X]. This new <t> is also a surjection. Since A[X] is an OP-ring, 
soisR[X]. 
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Thus, if R has Krull dimension 0, R[X] is an OP-ring if and only if R is a 
finite direct sum of fields and principal ideal rings. 

It remains only to consider rings R of Krull dimension = 1. We may as 
well assume that the prime spectra of the rings considered are connected, for 
if not then R is a finite sum of rings of Krull dimension ^ 1, whose prime 
spectra are connected. We have already considered the case of Krull dimen
sion zero. Since the OP property is invariant under direct sums we are reduced 
to considering the problem in one summand. 

PROPOSITION 5. Let R be a ring with connected prime spectrum and Krull 
dimension one. 

R[X] is an OP-ring «=> R has global dimension one. 

Proof. <= : If R has global dimension one then R is a direct sum of Dedekind 
domains [1, Proposition 4.13]. Since the prime spectrum of R is connected, R 
is a Dedekind domain. That R[X] is an OP-ring follows from [12, Theorem 1.2]. 

=> : Let m be any maximal ideal of R. Suppose that m is also a minimal 
prime ideal of R. Since R is noetherian there are only finitely many minimal 
prime ideals of R, say m, pi, . . . , ps. In Spec(i^) we let 

F (21) = {prime g C R\% Q q] 

for any ideal SI. The F (SI) are all closed sets in Spec(i^) and Spec(R) = 
{{m))\J (UUiV(pt)). Clearly {m} H V(pt) = <t>, i = 1, . . . , s. Since \JtV(pt) 
is closed in Spec(i^) we have that {m} is open. Since \m\ = V(m) we also have 
that \m\ is closed. This is a contradiction since Spec(i^) is connected. Thus m 
is not a minimal prime of R and so the Krull dimension of Rm is 1. 

Since R[X] is an OP-ring so is Rm[X] by Lemma 2. Hence, by Proposition 1, 
^-dimension Rm < 2. Since in any event Krull dimension Rm ^ ^-dimension 
Rm, we have both dimensions = 1. Hence global dimension Rm = 1. Since 
this maximal ideal was arbitrarily chosen and since global dimension R = sup 
global dimension Rm, (m varying over the maximal ideals of R) we have global 
dimension R = 1. 

Thus, if R has Krull dimension 1 and R[X] is an OP-ring then R is a finite 
sum of rings of global dimension 1, special PIR's and fields. This, together 
with our previous results proves: 

THEOREM 1. Let R be a commutative noetherian ring with 1. R[X] is an 
OP-ring <=> R is a direct sum of rings of global dimension ^ 1 and special 
principal ideal rings. 

The following corollary is an immediate consequence. 

COROLLARY 1.1. If R is a domain the following are equivalent. 
(1) R is a Dedekind domain (possibly a field). 
(2) R[X] is an OP-ring. 
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(Note: The referee has brought to my attention a recent article by Kleiner 
in Mat. Sb. 84, No. 4 (1971), 526-536, in which he also obtains Corollary 1.1 
above. Our Theorem 1 then, generalizes his result.) 

2. Projective i?[X]-modules when R[X] is an OP-ring. In view of 
Theorem 1 of the previous section if one wishes to consider the structure of 
finitely generated projective R[X]-modules when R[X] is an OP-ring it suffices 
to consider the structure of finitely generated projective R[X] modules when R 
is a connected ring of global dimension ^ 1 and when R is a special principal 
ideal ring. 

In view of the theorem of Serre [8], we know precisely what the situation 
is when global dimension of R is 5j 1. If R is a field or a principal ideal domain 
then all finitely generated projectives are free; while if R is a Dedekind domain, 
not a field or a principal ideal domain, then all finitely generated projective 
R[X]-modules have the form (R[X])S © 7 where I is a projective ideal of 
R[X]. 

The only case left to consider is the case when R is a special principal ideal 
ring. 

THEOREM 2. Let R be a special principal ideal ring. Then finitely generated 
projective R[X]-modules are free. 

Proof. Let p = (u) C R be the unique prime ideal of R, and let p[X] = 
{a0 + aix + . . . + anx

n\at G p\. 
Then p is nilpotent, say pm = 0, so p[X]m = 0 also, and R[X] is therefore 

trivially complete with respect to the p[X]-topology. Proposition 2.29 of 
[11] then applies and 

Since 

it follows that K0(R[X]) = Z, i.e., every finitely generated projective R[X]-
module has a free complement. Since R[X] is an H-r'mg we have, by 
Proposition B, that every finitely generated projective R[X]-module is then 
free. 
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