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Abstract. Our goal of the paper is to investigate the Waring problem for up-

per triangular matrix algebras, which gives a complete solution of a conjecture

proposed by Panja and Prasad in 2023.

1. Introduction

The classical Waring problem proposed by Edward Waring in 1770 asserted
that for every positive integer k there exists a positive integer g(k) such that ev-
ery positive integer can be expressed as a sum of g(k) kth powers of nonnegative
integers. In 1909, David Hilbert solved the problem. Various extensions and varia-
tions of this problem have been studied by different groups of mathematicians (see
[2, 3, 4, 9, 10, 11, 14, 16, 18]).

In 2009 Shalev [18] proved that given a word w 6= 1, every element in any finite
non-abelian simple group G of sufficiently high order can be written as the product
of three elements from w(G), the image of the word map induced by w. In 2011
Larsen, Shalev, and Tiep [14] proved that, under the same assumptions, every
element in G is the product of two elements from w(G), which gave a definitive
solution of the Waring problem for finite simple groups.

Let n ≥ 2 be an integer. Let K be a field and let K〈X〉 be the free associa-
tive algebra over K, freely generated by the countable set X = {x1, x2, . . .} of
noncommutative variables. We refer to the elements of K〈X〉 as polynomials.

Let p(x1, . . . , xm) ∈ K〈X〉. Let A be an algebra over K. The set

p(A) = {p(a1, . . . , am) | a1, . . . , am ∈ A}
is called the image of p (on A).

In 2020 Brešar [2] initiated the study of various Waring’s problems for matrix
algebras. He proved that if A = Mn(K), where n ≥ 2 and K is an algebraically
closed field with characteristic 0, and f is a noncommutative polynomial which is
neither an identity nor a central polynomial of A, then every trace zero matrix
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2 THE WARING PROBLEM FOR UPPER TRIANGULAR MATRIX ALGEBRAS

in A is a sum of four matrices from f(A) − f(A) [2, Corollary 3.19]. In 2023
Brešar and Šemrl [3] proved that any traceless matrix can be written as sum of two
matrices from f(Mn(C))− f(Mn(C)), where C is the complex field and f is neither
an identity nor a central polynomial for Mn(C). Recently, they [4] have proved that
if α1, α2, α3 ∈ C \ {0} and α1 + α2 + α3 = 0, then any traceless matrix over C can
be written as α1A1 + α2A2 + α3A3, where Ai ∈ f(Mn(C)).

By Tn(K) we denote the set of all n× n upper triangular matrices over K. By
Tn(K)(0) we denote the set of all n × n strictly upper triangular matrices over
K. More generally, if t ≥ 0, the set of all upper triangular matrices whose entries
(i, j) are zero, for j − i ≤ t, will be denoted by Tn(K)(t). It is easy to check that
J t = Tn(K)(t−1), where t ≥ 1 and J is the Jacobson radical of Tn(K) (see [1,
Example 5.58]).

Let p(x1, . . . , xm) be a noncommutative polynomial with zero constant term over
K. We define its order as the least positive integer r such that p(Tr(K)) = {0}
but p(Tr+1(K)) 6= {0}. Note that T1(K) = K. We say that p has order 0 if
p(K) 6= {0}. We denote the order of p by ord(p). For a detailed introduction of
the order of polynomials we refer the reader to the book [7, Chapter 5].

In 2023 Panja and Prasad [16] discussed the image of polynomials with zero
constant term and Waring type problems on upper triangular matrix algebras over
an algebraically closed field, which generalized two results in [6, 19]. More precisely,
they obtained the following main result:

Theorem 1.1. [16, Theorem 5.18] Let n ≥ 2 and m ≥ 1 be integers. Let p(x1, . . . , xm)
be a polynomial with zero constant term in non-commutative variables over an al-
gebraically closed field K. Set r =ord(p). Then one of the following statements
holds.

(i) Suppose that r = 0. We have that p(Tn(K)) is a dense subset of Tn(K)
(with respect to the Zariski topology);

(ii) Suppose that r = 1. We have that p(Tn(K)) = Tn(K)(0);
(iii) Suppose that 1 < r < n − 1. We have that p(Tn(K)) ⊆ Tn(K)(r−1), and

equality might not hold in general. Furthermore, for every n and r there
exists d such that each element of Tn(K)(r−1) can be written as a sum of d
many elements from p(Tn(K));

(iv) Suppose that r = n− 1. We have that p(Tn(K)) = Tn(K)(n−2);
(v) Suppose that r ≥ n. We have that p(Tn(K)) = {0}.

They proposed the following conjecture:

Conjecture 1.1. [16, Conjecture] Let p(x1, . . . , xm) be a polynomial with zero
constant term in non-commutative variables over an algebraically closed field K.
Suppose ord(p) = r, where 1 < r < n−1. Then p(Tn(K))+p(Tn(K)) = Tn(K)(r−1).

We note that if p is a multilinear polynomial and K is an infinite field, then
p(Tn(K)) = Tn(K)(r−1) (see [8, 12, 15]).

In the present paper, we shall prove the following main result of the paper, which
gives a complete solution of Conjecture 1.1.

Theorem 1.2. Let n ≥ 2 and m ≥ 1 be integers. Let p(x1, . . . , xm) be a polynomial
with zero constant term in non-commutative variables over an infinite field K.
Suppose ord(p) = r, where 1 < r < n − 1. We have that p(Tn(K)) + p(Tn(K)) =
Tn(K)(r−1). Furthermore, if r = n− 2, we have that p(Tn(K)) = Tn(K)(n−3).
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We organize the paper as follows: In Section 2 we shall give some preliminaries.
We shall modify some results in [5, 8, 13], which will be used in the proof of
Theorem 1.2. In Section 3 we shall give the proof of Theorem 1.2 by using some
new arguments (for example, compatible variables in polynomials and recursive
polynomials).

2. preliminaries

Let N be the set of all positive integers. Let m ∈ N . Let K be a field. Set
K∗ = K \ {0}. For any k ∈ N we set

T k
m =

{
(i1, . . . , ik) ∈ N k | 1 ≤ i1, . . . , ik ≤ m

}
.

Let p(x1, . . . , xm) be a polynomial with zero constant term in non-commutative
variables over K. We can write

p(x1, . . . , xm) =

d∑
k=1

 ∑
(i1,i2,...,ik)∈Tk

m

λi1i2···ikxi1xi2 · · ·xik

 , (1)

where λi1i2···ik ∈ K and d is the degree of p.
We begin with the following result, which is slightly different from [5, Lemma

3.2]. We give its proof for completeness.

Lemma 2.1. For any ui = (a
(i)
jk ) ∈ Tn(K), i = 1, . . . ,m, we set

ājj = (a
(1)
jj , . . . , a

(m)
jj ),

where j = 1, . . . , n. We have that

p(u1, . . . , um) =


p(ā11) p12 . . . p1n

0 p(ā22) . . . p2n
...

...
. . .

...
0 0 . . . p(ānn)

 , (2)

where

pst =

t−s∑
k=1

 ∑
s=j1<j2<···<jk+1=t

(i1,...,ik)∈Tk
m

pi1···ik(āj1j1 , . . . , ājk+1jk+1
)a

(i1)
j1j2
· · · a(ik)jkjk+1


for all 1 ≤ s < t ≤ n, where pi1,...,ik(z1, . . . , zm(k+1)), 1 ≤ i1, i2, . . . , ik ≤ m,
k = 1, . . . , n− 1, is a polynomial in commutative variables over K.

Proof. Let ui = (a
(i)
jk ) ∈ Tn(K), where i = 1, . . . ,m. For any 1 ≤ i1, . . . , ik ≤ m,

we easily check that

ui1 · · ·uik =


m11 m12 . . . m1n

0 m22 . . . m2n

...
...

. . .
...

0 0 . . . mnn

 ,

where
mst =

∑
s=j1≤j2≤···≤jk+1=t

a
(i1)
j1j2
· · · a(ik)jkjk+1
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for all 1 ≤ s ≤ t ≤ n. It follows from (1) that

p(u1, . . . , um) =

d∑
k=1

 ∑
(i1,...,ik)∈Tk

m

λi1···ikui1 · · ·uik



=

d∑
k=1

 ∑
(i1,...,ik)∈Tk

m

λi1···ik


m11 m12 . . . m1n

0 m22 . . . m2n

...
...

. . .
...

0 0 . . . mnn




=


p11 p12 . . . p1n
0 p22 . . . p2n
...

...
. . .

...
0 0 . . . pnn


where

pst =

d∑
k=1

 ∑
(i1,...,ik)∈Tk

m

λi1···ikmst


=

d∑
k=1

 ∑
(i1,...,ik)∈Tk

m

λi1···ik

 ∑
s=j1≤j2≤···≤jk+1=t

a
(i1)
j1j2
· · · a(ik)jkjk+1



=

d∑
k=1

 ∑
s=j1≤j2≤···≤jk+1=t

(i1,...,ik)∈Tk
m

λi1i2···ika
(i1)
j1j2
· · · a(ik)jkjk+1

 ,

where 1 ≤ s ≤ t ≤ n. In particular

pss =

d∑
k=1

 ∑
(i1,...,ik)∈Tk

m

λi1i2···ika
(i1)
ss · · · a(ik)ss


= p(āss)

for all s = 1, . . . , n, and

pst =

d∑
k=1

 ∑
s=j1≤j2≤···≤jk+1=t

(i1,...,ik)∈Tk
m

λi1i2···ika
(i1)
j1j2
· · · a(ik)jkjk+1



=

t−s∑
k=1

 ∑
s=j1<j2<···<jk+1=t

(i1,...,ik)∈Tk
m

pi1i2···ik(āj1j1 , . . . , ājk+1jk+1
)a

(i1)
j1j2
· · · a(ik)jkjk+1


for all 1 ≤ s < t ≤ n, where pi1,...,ik(z1, . . . , zm(k+1)) is a polynomial in commutative
variables over K. This proves the result. �

The following result will be used in the proof of our main result.
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Lemma 2.2. Let m ≥ 1 be an integer. Let p(x1, . . . , xm) be a polynomial with zero
constant term in non-commutative variables over K. Let pi1,...,ik(z1, . . . , zm(k+1))
be a polynomial in commutative variables over K in (2), where 1 ≤ i1, . . . , ik ≤ m,
1 ≤ k ≤ n− 1. Suppose that ord(p) = r, 1 < r < n− 1. We have that

(i) p(K) = {0};
(ii) pi1,...,ik(K) = {0} for all 1 ≤ i1, . . . , ik ≤ m, where k = 1, . . . , r − 1;

(iii) pi′1,...,i′r (K) 6= {0} for some 1 ≤ i′1, . . . , i′r ≤ m.

Proof. The statement (i) is clear. We now claim that the statement (ii) holds true.
Suppose on the contrary that

pi′1···i′s(K) 6= {0}

for some 1 ≤ i′1, . . . , i′s ≤ m, where 1 ≤ s ≤ r− 1. Then there exist b̄j ∈ Km, where
j = 1, . . . , s+ 1 such that

pi′1···i′s(b̄1, . . . , b̄s+1) 6= 0.

We take ui = (a
(i)
jk ) ∈ Ts+1(K), i = 1, . . . ,m, where

ājj = b̄j , j = 1, . . . , s+ 1;

a
(i′k)
k,k+1 = 1, k = 1, . . . , s;

a
(i)
jk = 0, otherwise.

It follows from (2) that

p1,s+1 = pi′1···i′s(b̄1, . . . , b̄s+1) 6= 0.

This implies that p(Ts+1(K)) 6= {0}, a contradiction. This proves the statement
(ii).

We finally claim that the statement (iii) holds true. Note that p(T1+r(K)) 6= {0}.
Thus, we have that there exist ui = (a

(i)
jk ) ∈ T1+r(K), i = 1, . . . ,m, such that

p(u1, . . . , um) = (pst) 6= 0.

In view of the statement (ii) we get that

p1,r+1 =
∑

1=j1<j2<···<jr+1=r+1
(i1,...,ir)∈T r

m

pi1i2···ir (āj1j1 , . . . , ājr+1jr+1)a
(i1)
j1j2
· · · a(ir)jrjr+1

6= 0.

This implies that pi′1,...,i′r (K) 6= {0} for some 1 ≤ i′1, . . . , i
′
r ≤ m. This proves the

statement (iii). The proof of the result is complete. �

The following well-known result will be used in the proof of the rest results.

Lemma 2.3. [13, Theorem 2.19] Let K be an infinite field. Let f(x1, . . . , xm) be a
nonzero polynomial in commutative variables over K. Then there exist a1, . . . , am ∈
K such that f(a1, . . . , am) 6= 0.

Lemma 2.4. Let n, s be integers with 1 ≤ s ≤ n. Let p(x1, . . . , xs) be a nonzero
polynomial in commutative variables over an infinite field K. We have that there
exist a1, . . . , an ∈ K such that

p(ai1 , . . . , ais) 6= 0

for all 1 ≤ i1 < · · · < is ≤ n.
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6 THE WARING PROBLEM FOR UPPER TRIANGULAR MATRIX ALGEBRAS

Proof. We set

f(x1, . . . , xn) =
∏

1≤i1<···<is≤n

p(xi1 , . . . , xis).

It is clear that f 6= 0. In view of Lemma 2.3 we have that there exist a1, . . . , an ∈ K
such that

f(a1, . . . , an) 6= 0.

This implies that

p(ai1 , . . . , ais) 6= 0

for all 1 ≤ i1 < · · · < is ≤ n. This proves the result. �

The following technical result is a generalized form of [8, Lemma 2.11], which
discusses compatible variables in polynomials.

Lemma 2.5. Let t ≥ 1. Let Ui = {i1, . . . , is} ⊆ N , i = 1, . . . , t. Let pi(xi1 , . . . , xis)
be a nonzero polynomial in commutative variables over an infinite field K, where
i = 1, . . . , t. Then there exist ak ∈ K with k ∈

⋃t
i=1 Ui such that

pi(ai1 , . . . , ais) 6= 0

for all i = 1, . . . , t.

Proof. Without loss of generality we assume that

{1, 2, . . . , n} =

t⋃
i=1

Ui.

We set

f(x1, . . . , xn) =

t∏
i=1

pi(xi1 , . . . , xis).

It is clear that f 6= 0. In view of Lemma 2.3 we have that there exist a1, . . . , an ∈ K
such that

f(a1, . . . , an) 6= 0.

This implies that

pi(ai1 , . . . , ais) 6= 0

for all i = 1, . . . , t. This proves the result. �

The following technical result will be used in the proof of the main result of the
paper.

Lemma 2.6. Let s ≥ 1 and t ≥ 2 be integers. Let K be an infinite field. Let
aij ∈ K, where 1 ≤ i ≤ t, 1 ≤ j ≤ s with a11 ∈ K∗ and b ∈ K∗. For any
2 ≤ i ≤ t, there exists a nonzero element in {ai1, . . . , ais}. Then there exist ci ∈ K,
i = 1, . . . , s, such that {

a11c1 + · · ·+ a1scs = b;

ai1c1 + · · ·+ aiscs 6= 0

for all i = 2, . . . , t.
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Proof. Suppose first that s = 1. Note that ai1 ∈ K∗, i = 1, . . . , t. Take c1 = a−111 b.
It is clear {

a11c1 = b;

ai1c1 6= 0

for all 2 ≤ i ≤ t. Suppose next that s ≥ 2. Suppose first that ai1 6= 0 for all
i = 2, . . . , t. We define the following polynomials.{

f1(x2, . . . , xs) = b− a12x2 − · · · − a1sxs;
fi(x2, . . . , xs) = ai1a

−1
11 b+ (ai2 − ai1a−111 a12)x2 + · · ·+ (ais − ai1a−111 a1s)xs

for all 2 ≤ i ≤ t. Since b, ai1 ∈ K∗, i = 1, . . . , t, we note that fi 6= 0 for all
i = 1, . . . , t. In view of Lemma 2.5 we get that there exist c2, . . . , cs ∈ K such that

fi(c2, . . . , cs) 6= 0

for all i = 1, . . . , t. This implies that{
b− a12c2 − · · · − a1scs 6= 0;

ai1a
−1
11 b+ (ai2 − ai1a−111 a12)c2 + · · ·+ (ais − ai1a−111 a1s)cs 6= 0

(3)

for all 2 ≤ i ≤ t. We set

c1 = a−111 (b− a12c2 − · · · − a1scs).

It follows from (3) that {
a11c1 + · · ·+ a1scs = b;

ai1c1 + · · ·+ aiscs 6= 0

for all 2 ≤ i ≤ t, as desired.
Suppose next that ai1 = 0, i = 2, . . . , t. Note that ail(i) 6= 0, for some 2 ≤ l(i) ≤ s

for all i = 2, . . . , t. We define the following polynomials:{
f1(x2, . . . , xs) = a12x2 + · · ·+ a1sxs − b;
fi(x2, . . . , xs) = ai2x2 + · · ·+ aisxs

for all 2 ≤ i ≤ t. Note that fi 6= 0 for all i = 1, . . . , t. In view of Lemma 2.5 we get
that there exist ci ∈ K, i = 2, . . . , s, such that

fi(c2, . . . , cs) 6= 0

for all i = 1, . . . , t. That is{
a12c2 + · · ·+ a1scs − b 6= 0;

ai2c2 + · · ·+ aiscs 6= 0

for all 2 ≤ i ≤ t. Since a11 6= 0 we get that there exists c1 ∈ K such that

a11c1 = b− a12c2 − · · · − a1scs.

This implies that {
a11c1+a12c2 + · · ·+ a1scs = b;

ai2c2 + · · ·+ aiscs 6= 0

for all 2 ≤ i ≤ t, as desired.
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We finally assume that there exist ai1 6= 0 and aj1 = 0 for some i, j ∈ {2, . . . , t}.
Without loss of generality we assume that ai1 6= 0 for all i = 2, . . . , t1 and ai1 = 0
for all i = t1 + 1, . . . , t. We define the following polynomials:

f1(x2, . . . , xs) = b− a12x2 − · · · − a1sxs;
fi(x2, . . . , xs) = ai1a

−1
11 b+ (ai2 − ai1a−111 a12)x2 + · · ·+ (ais − ai1a−111 a1s)xs;

fj(x2, . . . , xs) = aj2x2 + · · ·+ ajsxs

for all 2 ≤ i ≤ t1 and t1 + 1 ≤ j ≤ t. Note that b, ai1 ∈ K∗, i = 1, . . . , t1, ajl(j) 6= 0
where 2 ≤ l(j) ≤ s for all j = t1 + 1, . . . t. It is clear that fi 6= 0 for all i = 1, . . . , t.
In view of Lemma 2.5 we get that there exist ci ∈ K, i = 2, . . . , s, such that

fi(c2, . . . , cs) 6= 0,

where i = 1, . . . , t. This implies that
b− a12c2 − · · · − a1scs 6= 0;

ai1a
−1
11 b+ (ai2 − ai1a−111 a12)c2 + · · ·+ (ais − ai1a−111 a1s)cs 6= 0;

aj2c2 + · · ·+ ajscs 6= 0

(4)

for all 2 ≤ i ≤ t1 and t1 + 1 ≤ j ≤ t. We set

c1 = a−111 (b− a12c2 − · · · − a1scs).
It follows from (4) that 

a11c1 + · · ·+ a1scs = b;

ai1c1 + · · ·+ aiscs 6= 0;

aj1c2 + · · ·+ ajscs 6= 0

for all 2 ≤ i ≤ t1 and t1 + 1 ≤ j ≤ t, as desired. The proof of the result is now
complete. �

3. The proof of Theorem 1.2

Let n ≥ 2 and m ≥ 1 be integers. Let p(x1, . . . , xm) be a polynomial with zero
constant term in non-commutative variables over an infinite field K. Suppose that
1 < r < n− 1, where r = ord(p).

Take any ui = (a
(i)
jk ) ∈ Tn(K), i = 1, . . . ,m. In view of both Lemma 2.1 and

Lemma 2.2 we have that

p(u1, . . . , um) = (ps,r+s+t) (5)

where

ps,r+s+t =

r+t∑
k=r

 ∑
s=j1<···<jk+1=r+s+t

(i1,...,ik)∈Tk
m

pi1···ik(āj1j1 , . . . , ājk+1jk+1
)a

(i1)
j1j2
· · · a(ik)jkjk+1


for all 1 ≤ s < r + s+ t ≤ n and

pi′1···i′r (K) 6= {0}

for some 1 ≤ i′1, . . . , i′r ≤ m. It follows from Lemma 2.4 that there exist c̄1, . . . , c̄n ∈
Km such that

pi′1···i′r (c̄j1 , . . . , c̄jr+1
) 6= 0 (6)
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for all 1 ≤ j1 < . . . < jr+1 ≤ n. We set

ājj = c̄j , j = 1, . . . , n;

a
(k)
i,i+1 = a

(k)
i,i+1, i = 1, . . . , r − 1 and k = 1, . . . ,m;

a
(i′k)
r+s−1,r+s+t = x

(i′k)
r+s−1,r+s+t, 1 ≤ s < r + s+ t ≤ n, k = 1, . . . , r;

a
(k)
ij = 0, otherwise.

For any 1 ≤ s < r + s+ t ≤ n, we set

Us,r+s+t =
{

(r + u− 1, r + u+ w, i′k) | x(i
′
k)

r+u−1,r+u+w in ps,r+s+t

}
and

Us,r+s+t = {(r + u− 1, r + u, i′k) | (r + u− 1, r + u, i′k) ∈ Us,r+s+t} .
We define an order on the set

{(s, r + s+ t) | 1 ≤ s < r + s+ t ≤ n}
as follows:

(i) (s, r + s+ t) < (s1, r + s1 + t1) if t < t1;
(ii) (s, r + s+ t) < (s1, r + s1 + t1) if t = t1 and s < s1.

That is

(1, r + 1) < · · · < (n− r, n) < (1, r + 2) < · · · < (n− r − 1, n) < · · · < (1, n). (7)

For any 1 ≤ s < r + s+ t ≤ n, we set

Ws,r+s+t =
⋃

(1,r+1)≤(i,r+i+j)≤(s,r+s+t)

Ui,r+i+j ,

and
W s,r+s+t =

⋃
(1,r+1)≤(i,r+i+j)≤(s,r+s+t)

U i,r+i+j .

We begin with the following lemmas, which will be used in the proof of our main
result.

Lemma 3.1. Let 1 ≤ s < r+ s ≤ n. Suppose that (s, r+ s) 6= (1, r+ 1). We claim
that

W s,r+s \ {(r + s− 1, r + s, i′k) | 1 ≤ k ≤ r} = W s−1,r+s−1. (8)

Proof. We first claim that

W s,r+s \ {(r + s− 1, r + s, i′k) | 1 ≤ k ≤ r} ⊆W s−1,r+s−1.

Take any (r + i− 1, r + i, i′k) ∈ W s,r+s \ {(r + s− 1, r + s, i′k) | 1 ≤ k ≤ r}. We
have that

(r + i− 1, r + i, i′k) ∈ Us2,r+s2

for some (1, r + 1) ≤ (s2, r + s2) ≤ (s, r + s). This implies that

r + i ≤ r + s2 ≤ r + s.

We get that i ≤ s. Suppose that i = s. It follows that

(r + i− 1, r + i, i′k) ∈ {(r + s− 1, r + s, i′k) | 1 ≤ k ≤ r} ,
a contradiction. Hence i ≤ s− 1. It is clear that

(r + i− 1, r + i, i′k) ∈ U i,r+i,
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where (1, r + 1) ≤ (i, r + i) ≤ (s− 1, r + s− 1). It follows that

(r + i− 1, r + i, i′k) ∈W s−1,r+s−1.

We obtain that

W s,r+s \ {(r + s− 1, r + s, i′k) | 1 ≤ k ≤ r} ⊆W s−1,r+s−1,

as desired. We next claim that

W s−1,r+s−1 ⊆W s,r+s \ {(r + s− 1, r + s, i′k) | 1 ≤ k ≤ r} .

If (r + s− 1, r + s, i′k) ∈W s−1,r+s−1 for 1 ≤ k ≤ r, we have that

r + s ≤ r + s− 1,

a contradiction. Hence

{(r + s− 1, r + s, i′k) | 1 ≤ k ≤ r}
⋂
W s−1,r+s−1 = ∅.

Since W s−1,r+s−1 ⊆W s,r+s we get that

W s−1,r+s−1 ⊆W s,r+s \ {(r + s− 1, r + s, i′k) | 1 ≤ k ≤ r} ,
as desired. We obtain that

W s−1,r+s−1 = W s,r+s \ {(r + s− 1, r + s, i′k) | 1 ≤ k ≤ r} .
This proves the result. �

Lemma 3.2. Let 1 ≤ s < r + s+ t ≤ n. Suppose that t > 0. We claim that

W s1,r+s1+t1 = W s,r+s+t,

where

(s1, r + s1 + t1) = max{(i, r + i+ j) | (1, r + 1) ≤ (i, r + i+ j) < (s, r + s+ t)}.

Proof. We first claim that

W s,r+s+t = Wn−r,n.

Since t > 0, we note that

(s, r + s+ t) > (n− r, n).

This implies that W s,r+s+t ⊇ Wn−r,n. Take any (r + u− 1, r + u, i′k) ∈ W s,r+s+t.
It is clear that

(r + u− 1, r + u, i′k) ∈ Uu,r+u ⊆Wn−r,n.

This implies that W s,r+s+t ⊆Wn−r,n. Hence, W s,r+s+t = Wn−r,n as desired.
Since (n− r, n) < (s, r + s+ t) we get that

(n− r, n) ≤ (s1, r + s1 + t1) < (s, r + s+ t).

This implies that

Wn−r,n ⊆W s1,r+s1+t1 ⊆W s,r+s+t.

Since W s,r+s+t = Wn−r,n we obtain that W s1,r+s1+t1 = W s,r+s+t. This proves
the result. �

The following technical result will be used in the proof of the next result.

Lemma 3.3. Let 1 ≤ s < r + s+ t ≤ n. If (r + i− 1, r + i+ j, i′k) ∈ Us,r+s+t, we
have that j ≤ t.

https://doi.org/10.4153/S0008414X24000385 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000385


THE WARING PROBLEM FOR UPPER TRIANGULAR MATRIX ALGEBRAS 11

Proof. Suppose that (r+i−1, r+i+j, i′k) ∈ Us,r+s+t. That is, x
(i′k)
r+i−1,r+i+j appears

in ps,r+s+t. In view of (5) we note that every monomial in ps,r+s+t is made up of
at least r elements multiplied together. This implies that

((r + s+ t)− s)− ((r + i+ j)− (r + i− 1)) ≥ r − 1.

We obtain that j ≤ t. This proves the result. �

Lemma 3.4. Let 1 ≤ s < r + s+ t ≤ n and t > 0. We claim that

Ws1,r+s1+t1 = Ws,r+s+t \ {(r + s− 1, r + s+ t, i′k) | 1 ≤ k ≤ r},

where

(s1, r + s1 + t1) = max{(i, r + i+ j) | (1, r + 1) ≤ (i, r + i+ j) < (s, r + s+ t)}.

Proof. We first claim that

Ws1,r+s1+t1 ⊆Ws,r+s+t \ {(r + s− 1, r + s+ t, i′k) | 1 ≤ k ≤ r}.

If (r + s− 1, r + s+ t, i′k) ∈Ws1,r+s1+t1 for some 1 ≤ k ≤ r, we get that

(r + s− 1, r + s+ t, i′k) ∈ Us2,r+s2+t2 (9)

for some (1, r + 1) ≤ (s2, r + s2 + t2) ≤ (s1, r + s1 + t1). It is clear that

t2 ≤ t1 ≤ t.

In view of Lemma 3.3 we get that t ≤ t2. It follows that

t1 = t2 = t.

Since (s1, r + s1 + t1) < (s, r + s+ t) we get that s1 < s. Since (s2, r + s2 + t2) ≤
(s1, r + s1 + t1) we get that s2 ≤ s1. Thus, we obtain that s2 < s. It follows from
(9) that

r + s+ t ≤ r + s2 + t2.

This implies that s ≤ s2, a contradiction. Hence, we have that

(r + s− 1, r + s+ t, i′k) 6∈Ws1,r+s1+t1

for all 1 ≤ k ≤ r. It is clear that Ws1,r+s1+t1 ⊆Ws,r+s+t. We obtain that

Ws1,r+s1+t1 ⊆Ws,r+s+t \ {(r + s− 1, r + s+ t, i′k) | 1 ≤ k ≤ r},

as desired. We next claim that

Ws,r+s+t \ {(r + s− 1, r + s+ t, i′k) | 1 ≤ k ≤ r} ⊆Ws1,r+s1+t1 .

For any (r + i− 1, r + i+ j, i′k) ∈Ws,r+s+t \ {(r + s− 1, r + s+ t, i′k) | 1 ≤ k ≤ r},
we have

(r + i− 1, r + i+ j, i′k) ∈ Us2,r+s2+t2

for some (1, r + 1) ≤ (s2, r + s2 + t2) ≤ (s, r + s + t). This implies that t2 ≤ t. In
view of Lemma 3.3 we note that j ≤ t2. We have that j ≤ t. It is clear that

(r + i− 1, r + i+ j, i′k) ∈ Ui,r+i+j

where (1, r + 1) ≤ (i, r + i+ j) ≤ (s, r + s+ t). Note that

(r + i− 1, r + i+ j, i′k) 6∈ {(r + s− 1, r + s+ t, i′k) | 1 ≤ k ≤ r}.

We get that

(i, r + i+ j) 6= (s, r + s+ t).
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This implies that

(1, r + 1) ≤ (i, r + i+ j) ≤ (s1, r + s1 + t1) ≤ (s, r + s+ t).

It follows that Ui,r+i+j ⊆Ws1,r+s1+t1 . We have that

(r + i− 1, r + i+ j, i′k) ∈Ws1,r+s1+t1 .

We obtain that

Ws,r+s+t \ {(r + s− 1, r + s+ t, i′k) | 1 ≤ k ≤ r} ⊆Ws1,r+s1+t1 ,

as desired. Thus, we obtain that

Ws1,r+s1+t1 = Ws,r+s+t \ {(r + s− 1, r + s+ t, i′k) | 1 ≤ k ≤ r}.

This proves the result. �

We set

ĉs,t = (c̄s, c̄s+1, . . . , c̄r+s−1, c̄r+s+t).

It follows from (6) that

pi′1···i′r (ĉs,t) 6= 0. (10)

For any 1 ≤ s < r + s ≤ n and s ≤ r − 1, we set

fs,r =
∑

(i1,...,ir−s)∈T r−s
m

pi1···ir−si′r−s+1···i′r (ĉs,t)a
(i1)
s,s+1 · · · a

(ir−s)
r−1,r .

We set

Vs,r = {(i, i+ 1, k) | i = s, . . . , r − 1, k = 1, . . . ,m},
where 1 ≤ s < r + s ≤ n and s ≤ r − 1. It is clear that fs,r is a polynomial on
commutative variables indexed by elements from Vs,r.

For any 1 ≤ s < r + s ≤ n and s ≥ r, we set

fs,r = pi′1···i′r (ĉs,t).

We claim that fs,r(K) 6= {0} for all 1 ≤ s < r+s ≤ n. In view of (10), it suffices
to prove that fs,r(K) 6= 0, where 1 ≤ s < r + s ≤ n and s ≤ r − 1.

We take a
(k)
i,i+1 ∈ K, (i, i+ 1, k) ∈ Vs,r such that a

(i′i+1)

s+i,s+i+1 = 1 i = 0, . . . , r − s− 1;

a
(k)
i,i+1 = 0 otherwise.

It follows from (10) that

fs,r(a
(k)
i,i+1) = pi′1···i′r (ĉs,t) 6= 0,

as desired. In view of Lemma 2.5 we get that there exist a
(k)
i,i+1 ∈ K, (i, i+ 1, k) ∈⋃min{n−r,r−1}

s=1 Vs,r such that

fs,r(a
(k)
i,i+1) 6= 0

for all 1 ≤ s < r + s ≤ n and s ≤ r − 1.
For any 2 ≤ s ≤ r + s ≤ n, we define

fs,r+s−i =
∑

(i1,...,ir−i)∈T r−i
m

pi1···ir−ii′r−i+1···i′r (ĉs,t)a
(i1)
s,s+1 · · · a

(ir−i)
r+s−i−1,r+s−i (11)
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for all 1 ≤ i ≤ min{s − 1, r − 1}. It is clear that fs,r+s−i is a polynomial over

K on commutative variables indexed by elements from W s−i,r+s−i, where 1 ≤ i ≤
min{s− 1, r − 1}.

The following result implies that fs,r+s−i, where 1 ≤ i ≤ min{s− 1, r − 1}, is a
recursive polynomial.

Lemma 3.5. For any 2 ≤ s < r + s ≤ n, we claim that

fs,r+s−i = fs,r+s−i−1x
(i′r−i)

r+s−i−1,r+s−i +
∑

1≤k≤r
i′k 6=i′r−i

αs,r+s−i−1,kx
(i′k)
r+s−i−1,r+s−i

for all 1 ≤ i ≤ min{s−1, r−1}, where both fs,r+s−i−1 and αs,r+s−i−1,k are polyno-

mials over K on commutative variables indexed by elements from W s−i−1,r+s−i−1.

Proof. We get from (11) that

fs,r+s−i =

 ∑
(i1,...,ir−i−1)∈T r−i−1

m

pi1···ir−i−1i′r−i···i′r (ĉs,t)a
(i1)
s,s+1 · · · a

(ir−i−1)
r+s−i−2,r+s−i−1

x
(i′r−i)

r+s−i−1,r+s−i

+
∑

1≤k≤r
i′k 6=i′r−i

 ∑
(i1,...,ir−i−1)∈T r−i−1

m

pi1···ir−i−1i′ki
′
r−i+1···i′r (ĉs,t)a

(i1)
s,s+1 · · · a

(ir−i−1)
r+s−i−2,r+s−i−1

x
(i′k)
r+s−i−1,r+s−i

(12)

for all 1 ≤ i ≤ min{s− 1, r − 1}. It follows from (11) that

fs,r+s−i−1 =
∑

(i1,...,ir−i−1)∈T r−i−1
m

pi1···ir−i−1i′r−i···i′r (ĉs,t)a
(i1)
s,s+1 · · · a

(ir−i−1)
r+s−i−2,r+s−i−1.

We set

αs,r+s−i−1,k =
∑

(i1,...,ir−i−1)∈T r−i−1
m

pi1···ir−i−1i′ki
′
r−i+1···i′r (ĉs,t)a

(i1)
s,s+1 · · · a

(ir−i−1)
r+s−i−2,r+s−i−1

for all 1 ≤ i ≤ min{s − 1, r − 1} and k = 1, . . . , r. It follows from both (11) and
(12) that

fs,r+s−i = fs,r+s−i−1x
(i′r−i)

r+s−i−1,r+s−i +
∑

1≤k≤r
i′k 6=i′r−i

αs,r+s−i−1,kx
(i′k)
r+s−i−1,r+s−i

for all 1 ≤ i ≤ min{s− 1, r − 1}. It is clear that both fs,r+s−i−1 and αs,r+s−i−1,k
are polynomials over K on commutative variables indexed by elements from

W s−i,r+s−i \ {(r + s− i− 1, r + s− i, i′k) | k = 1, . . . r}.

In view of Lemma 3.1 we note that

W s−i−1,r+s−i−1 = W s−i,r+s−i \ {(r + s− i− 1, r + s− i, i′k) | k = 1, . . . r}.

We have that both fs,r+s−i−1 and αs,r+s−i−1,k are polynomials over K on com-

mutative variables indexed by elements from W s−i−1,r+s−i−1. This proves the
result. �
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Lemma 3.6. For any 1 ≤ s < r + s ≤ n, we have that

ps,r+s+t = fs,r+s−1x
(i′r)
r+s−1,r+s+t +

∑
1≤k≤r
i′k 6=i′r

βs,r+s−1,kx
(i′k)
r+s−1,r+s+t + βs,r+s+t,

where f1,r ∈ K∗, β1,r,k ∈ K, k = 1, . . . , r with i′k 6= i′r, fs,r+s−1, βs,r+s−1,k, s ≥
2, 1 ≤ k ≤ r with i′k 6= i′r are polynomials on some commutative variables in

W s1,r+s1+t1 and βs,r+s+t, where t > 0, is a polynomial over K in some commutative
variables in Ws1,r+s1+t1 , where

(s1, r + s1 + t1) = max{(i, r + i+ j) | (1, r + 1) ≤ (i, r + i+ j) < (s, r + s+ t)}.

Moreover, βs,r+s = 0.

Proof. It follows from (5) that

ps,r+s+t =

 ∑
(i1,...,ir−1)∈T r−1

m

pi1···ir−1i′r
(ĉs,t)a

(i1)
s,s+1 · · · a

(ir−1)
r+s−2,r+s−1

x
(i′r)
r+s−1,r+s+t

+
∑

1≤k≤r
i′k 6=i′r

 ∑
(i1,...,ir−1)∈T r−1

m

pi1···ir−1i′k
(ĉs,t)a

(i1)
s,s+1 · · · a

(ir−1)
r+s−2,r+s−1

x
(i′k)
r+s−1,r+s+t

+

r+t∑
k=r


∑

s=j1<···<jk+1=r+s+t
(jk,jk+1)6=(r+s−1,r+s+t)

(i1,...,ik)∈Tk
m

pi1···ik(c̄j1 , . . . , c̄jk+1
)a

(i1)
j1j2
· · · a(ik)jkjk+1

 .

(13)

It follows from (11) that

fs,r+s−1 =
∑

(i1,...,ir−1)∈T r−1
m

pi1···ir−1i′r
(ĉs,t)a

(i1)
s,s+1 · · · a

(ir−1)
r+s−2,r+s−1.

We set

βs,r+s−1,k =
∑

(i1,...,ir−1)∈T r−1
m

pi1···ir−1i′k
(ĉs,t)a

(i1)
s,s+1 · · · a

(ir−1)
r+s−2,r+s−1

for k = 1, . . . , r with i′k 6= i′r, and

βs,r+s+t =

r+t∑
k=r


∑

s=j1<···<jk+1=r+s+t
(jk,jk+1)6=(r+s−1,r+s+t)

(i1,...,ik)∈Tk
m

pi1···ik(c̄j1 , . . . , c̄jk+1
)a

(i1)
j1j2
· · · a(ik)jkjk+1

 .

It follows from (13) that

ps,r+s+t = fs,r+s−1x
(i′r)
r+s−1,r+s+t +

∑
1≤k≤r
i′k 6=i′r

βs,r+s−1,kx
(i′k)
r+s−1,r+s+t + βs,r+s+t, (14)
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where f1,r ∈ K∗, β1,r,k ∈ K, k = 1, . . . , r with i′k 6= i′r, fs,r+s−1, βs,r+s+t,k, where
s ≥ 2, 1 ≤ k ≤ r with i′k 6= i′r, are polynomials on some commutative variables
indexed by elements from

W s,r+s+t \ {(r + s− 1, r + s+ t, i′k), k = 1, . . . , r} (15)

and βs,r+s+t, where t > 0, is a polynomial over K in some commutative variables
indexed by elements from

Ws,r+s+t \ {(r + s− 1, r + s+ t, i′k), k = 1, . . . , r} . (16)

Suppose first that t = 0. In view of Lemma 3.1 we note that

W s−1,r+s−1 = W s,r+s+t \ {(r + s− 1, r + s, i′k), k = 1, . . . , r} .

We get from (15) that fs,r+s−1, βs,r+s+t,k, where s ≥ 2, 1 ≤ k ≤ r with i′k 6= i′r, are

polynomials on some commutative variables indexed by elements from W s−1,r+s−1.
It is clear that βs,r+s = 0. Suppose next that t > 0. In view of Lemma 3.2 we note
that

W s1,r+s1+t1 = W s,r+s+t.

We get from (15) that fs,r+s−1, βs,r+s+t,k, where s ≥ 2, 1 ≤ k ≤ r with i′k 6= i′r, are

polynomials on some commutative variables indexed by elements from W s1,r+s1+t1 .
In view of Lemma 3.4 we note that

Ws1,r+s1+t1 = Ws,r+s+t \ {(r + s− 1, r + s+ t, i′k), k = 1, . . . , r} .

We get from (16) that βs,r+s+t is a polynomial over K in some commutative vari-
ables indexed by elements from Ws1,r+s1+t1 . This proves the result. �

The following result is crucial for the proof of the main result.

Lemma 3.7. Let p(x1, . . . , xm) be a polynomial with zero constant term in non-
commutative variables over an infinite field K. Suppose ord(p) = r, where 1 <
r < n − 1. For any A′ = (a′s,r+s+t) ∈ Tn(K)(r−1), where a′s,r+s 6= 0 for all
1 ≤ s < r + s+ t ≤ n, we have that A′ ∈ p(Tn(K)).

Proof. Take any A′ = (a′s,r+s+t) ∈ Tn(K)(r−1), where a′s,r+s 6= 0 for all 1 ≤ s <

r+s ≤ n. For any 1 ≤ s < r+s+t ≤ n, we claim that there exist c
(i′k)
r+u−1,r+u+w ∈ K

with

(r + u− 1, r + u+ w, k) ∈Ws,r+s+t

such that

pi,r+i+j(c
(i′k)
r+u−1,r+u+w) = ai,r+i+j

for all (1, r + 1) ≤ (i, r + i+ j) ≤ (s, r + s+ t) and

fs′,r+s′−v(c
(i′k)
r+u−1,r+u) 6= 0

for all fs′,r+s′−v on commutative variables in W s,r+s+t, where s′ ≥ 2 and 1 ≤ v ≤
min{s′ − 1, r − 1}.

We prove the claim by induction on (s, r+s+t). Suppose first that (s, r+s+t) =
(1, r + 1). Note that

W1,r+1 = W 1,r+1 = {(r, r + 1, i′k) | k = 1, . . . , r}.
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In view of Lemma 3.6 we get that

p1,r+1 = f1,rx
(i′r)
r,r+1 +

∑
1≤k≤r
ik 6=i′r

β1,r,kx
(i′k)
r,r+1, (17)

where f1,r ∈ K∗, β1,r,k ∈ K, k = 1, . . . , r with i′k 6= i′r.

Take any fs′,r+s′−v on x
(i′k)
r,r+1, where k = 1, . . . , r, s′ ≥ 2, and 1 ≤ v ≤ min{s′ −

1, r − 1}, we get from Lemma 3.5 that

r + s′ − v − 1 = r

and so v = s′ − 1. It follows that

fs′,r+s′−v = fs′,rx
(i′r−v)

r,r+1 +
∑

1≤k≤r
i′k 6=i′r−v

αs′,r,kx
(i′k)
r,r+1. (18)

Note that fs′,r ∈ K∗ and αs′,r,k ∈ K, k = 1, . . . , r with i′k 6= ir−v. Note that
a′1,r+1 ∈ K∗. In view of Lemma 2.6, we get from both (17) and (18) that there

exist c
(i′k)
r,r+1 ∈ K, k = 1, . . . , r, such that p1,r+1(c

(i′k)
r,r+1) = a′1,r+1;

fs′,r+s′−v(c
(i′k)
r,r+1) 6= 0

where 2 ≤ s′ ≤ r and v = s′ − 1, as desired.
Suppose next that (s, r + s+ t) 6= (1, r + 1). We rewrite (7) as follows.

(1, r + 1) < · · · < (s1, r + s1 + t1) < (s, r + s+ t) < · · · < (1, n),

where

(s1, r + s1 + t1) = max{(i, r + i+ j) | (1, r + 1) ≤ (i, r + i+ j) < (s, r + s+ t)}.

By induction on (s1, r + s1 + t1) we have that there exist c
(i′k)
r+u−1,r+u+w ∈ K with

(r + u− 1, r + u+ w, k) ∈Ws1,r+s1+t1

such that

pi,r+i+j(c
(i′k)
r+u−1,r+u+w) = a′i,r+i+j

for all (1, r + 1) ≤ (i, r + i+ j) ≤ (s1, r + s1 + t1) and

fs′,r+s′−v(c
(i′k)
r+u−1,r+u) 6= 0

for any fs′,r+s′−v with commutative variables in W s1,r+s1+t1 , where s′ ≥ 2, and
1 ≤ v ≤ min{s′ − 1, r − 1}. We now divide the proof into the following two cases.

Suppose first that t = 0. Note that

(s1, r + s1 + t1) = (s− 1, r + s− 1).

That is, s1 = s− 1 and t1 = 0. In view of Lemma 3.6 we get that

ps,r+s = fs,r+s−1x
(i′r)
r+s−1,r+s +

∑
1≤k≤r
i′k 6=i′r

βs,r+s−1,kx
(i′k)
r+s−1,r+s, (19)

where fs,r+s−1, βs,r+s−1,k, where k = 1, . . . , r with i′k 6= i′r, are polynomials in

commutative variables in W s1,r+s1 . By induction hypothesis we get that fs,r+s−1 ∈
K∗ and βs,r+s−1,k ∈ K.
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Take any fs′,r+s′−v on commutative variables indexed by elements from W s,r+s,
where s′ ≥ 2 and 1 ≤ v ≤ min{s′ − 1, r − 1}. Suppose first that fs′,r+s′−v is

a polynomial on commutative variables indexed by elements from W s1,r+s1 . By
induction hypothesis we have that fs′,r+s′−v ∈ K∗. Suppose next that fs′,r+s′−v
is not a polynomial on commutative variables indexed by elements from W s1,r+s1 .
In view of Lemma 3.1 we note that

W s,r+s \W s−1,r+s−1 = {(r + s− 1, r + s, i′k) | k = 1, . . . , r} .

This implies that x
(i′k)
r+s−1,r+s appears in fs′,r+s′−v for k = 1, . . . , r. In view of

Lemma 3.5 we get that

(r + s′ − v − 1, r + s′ − v) = (r + s− 1, r + s)

and so v = s′ − s. We get that

fs′,r+s′−v = fs′,r+s′−v−1x
(i′r−v)

r+s−1,r+s +
∑

1≤k≤r
i′k 6=i′r−v

αs′,r+s′−v−1,kx
(i′k)
r+s−1,r+s, (20)

where fs′,r+s′−v−1 and αs′,r+s′−v−1,k, k = 1, . . . , r with i′k 6= i′r−v, are polynomials

over K on commutative variables indexed by elements from W s1,r+s1 . By induction
hypothesis we have that fs′,r+s′−v−1 ∈ K∗ and αs′,r+s′−v−1,k ∈ K, where k =
1, . . . , r with i′k 6= i′r−v.

Note that a′s,r+s ∈ K∗. In view of Lemma 2.6, we get from both (19) and (20)

that there exist c
(i′k)
r+s−1,r+s ∈ K, k = 1, . . . , r, such that ps,r+s(c

(i′k)
r+s−1,r+s) = a′s,r+s;

fs′,r+s′−v(c
(i′k)
r+s−1,r+s) 6= 0,

as desired.
Suppose next that t > 0. It follows from Lemma 3.6 that

ps,r+s+t = fs,r+s−1x
(i′r)
r+s−1,r+s+t +

∑
1≤k≤r
i′k 6=i′r

βs,r+s−1,kx
(i′k)
r+s−1,r+s+t + βs,r+s+t, (21)

where fs,r+s−1, βs,r+s−1,k, where k = 1, . . . , r with i′k 6= i′r, are polynomials over

K in commutative variables indexed by elements from W r+s1+t1 , and βs,r+s+t is a
polynomial over K in commutative variables indexed by elements from Ws1,r+s1+t1 .
By induction hypothesis we have that fs,r+s−1 ∈ K∗, βs,r+s−1,k ∈ K for all k =
1, . . . , r with i′k 6= i′r, and βs,r+s+t ∈ K.

Take c
(i′k)
r+s−1,r+s+t ∈ K, where k = 1, . . . , r in (21) such that c

(i′r)
r+s−1,r+s+t = f−1s,r+s−1(a′s,r+s+t − βs,r+s+t);

c
(i′k)
r+s−1,r+s+t = 0 for all 1 ≤ k ≤ r with i′k 6= i′r.

We get that

ps,r+s+t(c
(i′k)
r+s−1,r+s+t) = a′s,r+s+t.

Take any fs′,r+s′−v on commutative variables indexed by elements fromW s,r+s+t,
where s′ ≥ 2 and 1 ≤ v ≤ min{s′ − 1, r − 1}. In view of Lemma 3.2 we note that

W s,r+s+t = W s1,r+s1+t1 .
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This implies that fs′,r+s′−v is a commutative polynomial over K on some commu-

tative variables indexed by elements from W s1,r+s1+t1 . By induction hypothesis
we get that

fs′,r+s′−v ∈ K∗

where s′ ≥ 2 and 1 ≤ v ≤ min{s′ − 1, r − 1}, as desired. This proves the claim.

Let (s, r + s + t) = (1, n). We have that there exist c
(i′k)
r+u−1,r+u+w ∈ K, k =

1, . . . , r, with

(r + u− 1, r + u+ w, k) ∈W1,n,

such that

pi,r+i+j(c
(i′k)
r+u−1,r+u+w) = a′i,r+i+j (22)

for all (1, r + 1) ≤ (i, r + i+ j) ≤ (1, n) and

fs′,r+s′−v(c
(i′k)
r+u−1,r+u) 6= 0

for all fs′,r+s′−v on commutative variables indexed by elements from W 1,n, where
s′ ≥ 2 and 1 ≤ v ≤ min{s′ − 1, r − 1}. It follows from both (5) and (22) that

p(u1, . . . , um) = (ps,r+s+t) = (a′s,r+s+t) = A′.

This implies that A′ ∈ p(Tn(K)). The proof of the result is complete. �

Lemma 3.8. Let n ≥ 4 and m ≥ 1 be integers. Let p(x1, . . . , xm) be a polynomial
with zero constant term in non-commutative variables over an infinite field K.
Suppose that ord(p) = n− 2. We have that p(Tn(K)) = Tn(K)(n−3).

Proof. In view of Lemma 2.2(ii) we note that p(Tn(K)) ⊆ Tn(K)(n−3). It suffices
to prove that Tn(K)(n−3) ⊆ p(Tn(K)).

For any ui = (a
(i)
jk ) ∈ Tn(K), i = 1, . . . ,m, in view of Lemma 2.2(ii) we get from

(2) that

p(u1, . . . , um) =


0 0 . . . p1,n−1 p1n
0 0 . . . 0 p2n
...

...
. . .

...
...

0 0 . . . 0 0

 , (23)

where

p1,n−1 =
∑

(i1,...,in−2)∈Tn−2
m

pi1···in−2(ā11, . . . , ān−1,n−1)a
(i1)
12 · · · a

(in−2)
n−2,n−1;

p2n =
∑

(i1,...,in−2)∈Tn−2
m

pi1···in−2
(ā22, . . . , ān,n)a

(i1)
23 · · · a

(in−2)
n−1,n;

p1n =
∑

(i1,...,in−1)∈Tn−1
m

pi1···in−1(ā11, . . . , ānn)a
(i1)
12 · · · a

(in−1)
n−1,n

+
∑

1=j1<···<jn−1=n

(i1,...,in−2)∈Tn−2
m

pi1···in−2
(āj1j1 , . . . , ājn−1jn−1

)a
(i1)
j1j2
· · · a(in−2)

jn−2jn−1
.

In view of Lemma 2.2(iii) we have that

pi′1,...,i′n−2
(K) 6= {0},
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for some i′1, . . . , i
′
n−2 ∈ {1, . . . ,m}. It follows from Lemma 2.4 that there exist

b̄1, . . . , b̄n ∈ Km such that

pi′1,...,i′n−2
(b̄j1 , . . . , b̄jn−1

) 6= 0

for all 1 ≤ j1 < · · · < jn−1 ≤ n.
For any A′ = (a′s,n−2+s+t) ∈ Tn(K)(n−3), where 1 ≤ s < n − 2 + s + t ≤ n, we

claim that there exist ui = (a
(i)
jk ) ∈ Tn(K), i = 1, . . . ,m, such that

p(u1, . . . , um) = (ps,n−2+s+t) = A′.

That is 
p1,n−1 = a′1,n−1;

p2n = a′2n;

p1n = a′1n.

We prove the claim by the following two cases:

Case 1. Suppose that a′1,n−1 6= 0. We take

ājj = b̄j , for all j = 1, . . . , n;

a
(i′1)
12 = x

(i′1)
12 ;

a
(k)
12 = 0 for all k = 1, . . . ,m with k 6= i′1;

a
(i′n−2)

n−1,n = x
(i′n−2)

n−1,n;

a
(k)
n−1,n = 0 for all k = 1, . . . ,m with k 6= i′n−2;

a
(i′n−2)

n−2,n = x
(i′n−2)

n−2,n;

a
(i)
j,j+2 = 0 for all 1 ≤ i ≤ m, 3 ≤ j + 2 ≤ n with (j, j + 2, i) 6= (n− 2, n, i′n−2).

It follows from (23) that



p1,n−1 =

 ∑
(i2,...,in−2)∈Tn−3

m

pi′1i2···in−2
(b̄1, . . . , b̄n−1)a

(i2)
23 · · · a

(in−2)
n−2,n−1

x
(i′1)
12 ;

p2n =

 ∑
(i1,...,in−3)∈Tn−3

m

pi1···in−3i′n−2
(b̄2, . . . , b̄n)a

(i1)
23 · · · a

(in−3)
n−2,n−1

x
(i′n−2)

n−1,n;

p1n =

 ∑
(i2,...,in−2)∈Tn−3

m

pi′1i2···in−2i′n−2
(b̄1, . . . , b̄n)a

(i2)
23 · · · a

(in−2)
n−2,n−1

x
(i′1)
12 x

(i′n−2)

n−1,n ∑
(i2,...,in−3)∈Tn−4

m

pi′1i2···in−3i′n−2
(b̄1, . . . , b̄n−2, b̄n)a

(i2)
23 · · · a

(in−3)
n−3,n−2

x
(i′1)
12 x

(i′n−2)

n−2,n.

(24)

https://doi.org/10.4153/S0008414X24000385 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000385
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We set

f1,n−1 =
∑

(i2,...,in−2)∈Tn−3
m

pi′1i2···in−2
(b̄1, . . . , b̄n−1)a

(i2)
23 · · · a

(in−2)
n−2,n−1

f2n =
∑

(i1,...,in−3)∈Tn−3
m

pi1···in−3i′n−2
(b̄2, . . . , b̄n)a

(i1)
23 · · · a

(in−3)
n−2,n−1

f1n =
∑

(i2,...,in−3)∈Tn−4
m

pi′1i2···in−3i′n−2
(b̄1, . . . , b̄n−2, b̄n)a

(i2)
23 · · · a

(in−3)
n−3,n−2

(25)

and

V1,n−1 = {(i, i+ 1, k) | i = 2, . . . , n− 2, k = 1, . . . ,m};
V2n = V1,n−1;

V1n = {(i, i+ 1, k) | i = 2, . . . , n− 3, k = 1, . . . ,m}.

Note that f1,n−1, f2n, f1n are polynomials over K on commutative variables in-
dexed by elements from V1,n−1, V2n, V1n, respectively.

We claim that f1,n−1, f2n, f1n 6= 0. Indeed, we take a
(i)
jk ∈ K, (j, k, i) ∈ V1,n−1

such that  a
(i′s)
s,s+1 = 1 for all s = 2, . . . , n− 2;

a
(i)
jk = 0 otherwise.

It follows from (25) that

f1,n−1(a
(i)
jk ) = pi′1···i′n−2

(b̄1, . . . , b̄n−1) 6= 0

as desired. Next, we take a
(i)
jk ∈ K, (j, k, i) ∈ V2n such that a

(i′s−1)

s,s+1 = 1 for all s = 2, . . . , n− 2;

a
(i)
jk = 0 otherwise.

It follows from (25) that

f2n(a
(i)
jk ) = pi′1···i′n−2

(b̄2, . . . , b̄n) 6= 0

as desired. Finally, we take a
(i)
jk ∈ K, (j, k, i) ∈ V1n such that a

(i′s)
s,s+1 = 1 for all s = 2, . . . , n− 3;

a
(i)
jk = 0 otherwise.

It follows from (25) that

f1n(a
(i)
jk ) = pi′1···i′n−2

(b̄1, . . . , b̄n−2, b̄n) 6= 0

as desired. In view of Lemma 2.5 we get that there exist a
(i)
jk ∈ K, where (j, k, i) ∈

V1,n−1 ∪ V2n ∪ V1n such that 
f1,n−1(a

(i)
jk ) 6= 0;

f2n(a
(i)
jk ) 6= 0;

f1n(a
(i)
jk ) 6= 0.
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We set

α =
∑

(i2,...,in−2)∈Tn−3

pi′1i2···in−2i′n−2
(b̄1, . . . , b̄n)a

(i2)
23 · · · a

(in−2)
n−2,n−1.

It follows from (24) that
p1,n−1 = f1,n−1x

(i′1)
12 ;

p2n = f2nx
(i′n−2)

n−1,n;

p1n = f1nx
(i′1)
12 x

(i′n−2)

n−2,n + αx
(i′1)
12 x

(i′n−2)

n−1,n.

(26)

We take
x
(i′1)
12 = f−11,n−1a

′
1,n−1;

x
(i′n−2)

n−1,n = f−12n a
′
2n;

x
(i′n−2)

n−2,n = f−11n f1,n−1(a′1,n−1)−1
(
a′1n − αf−11,n−1a

′
1,n−1f

−1
2n a

′
2n

)
.

It follows from (26) that 
p1,n−1 = a′1,n−1;

p2n = a′2n;

p1n = a′1n,

as desired.

Case 2. Suppose that a′1,n−1 = 0. We take

ājj = b̄j , for all j = 1, . . . , n;

a
(k)
12 = 0 for all k = 1, . . . ,m;

a
(i′1)
23 = x

(i′1)
23 ;

a
(k)
23 = 0 for all k = 1, . . . ,m with k 6= i′1;

a
(i′1)
13 = x

(i′1)
13 ;

a
(k)
j,j+2 = 0 for all 1 ≤ j < j + 2 ≤ n with (j, j + 2, k) 6= (1, 3, i′1).

It follows from (23) that

p1,n−1 = 0;

p2n =

 ∑
(i2,...,in−2)∈Tn−3

m

pi′1i2···in−2
(b̄2, . . . , b̄n)a

(i2)
34 · · · a

(in−2)
n−1,n

x
(i′1)
23 ;

p1n =

 ∑
(i2,...,in−2)∈Tn−3

m

pi′1i2···in−2
(b̄1, b̄3, . . . , b̄n)a

(i2)
34 · · · a

(in−2)
n−1,n

x
(i′1)
13 .

(27)
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We set
g2n =

∑
(i2,...,in−2)∈Tn−3

m

pi′1i2···in−2
(b̄2, . . . , b̄n)a

(i2)
34 · · · a

(in−2)
n−1,n;

g1n =
∑

(i2,...,in−2)∈Tn−3
m

pi′1i2···in−2
(b̄1, b̄3, . . . , b̄n)a

(i2)
34 · · · a

(in−2)
n−1,n

(28)

and

V = {(i, i+ 1, k) | i = 3, . . . , n− 1, k = 1, . . . ,m}.
Note that both g2n and g1n are polynomials over K on some commutative vari-

ables indexed by elements from V . We claim that g2n, g1n 6= 0. Indeed, we take

a
(i)
jk ∈ K, (j, k, i) ∈ V such that a

(i′s−1)

s,s+1 = 1 for all s = 3, . . . , n− 1;

a
(i)
jk = 0 otherwise.

It follows from (28) that

g2n = pi′1···i′n−2
(b̄2, . . . , b̄n) 6= 0;

g1n = pi′1···i′n−2
(b̄1, b̄3, . . . , b̄n) 6= 0.

as desired. It follows from (27) that
p1,n−1 = 0;

p2n = g2nx
(i′1)
23 ;

p1n = g1nx
(i′1)
13 .

(29)

We take x
(i′1)
23 = g−12n a

′
2n;

x
(i′1)
13 = g−11n a

′
1n.

It follows from (29) that 
p1,n−1 = 0;

p2n = a′2,n;

p1n = a′1n,

as desired. We obtain that

p(u1, . . . , um) = (ps,n−2+s+t) = (a′s,n−2+s+t) = A′.

This implies that Tn(K)(n−3) ⊆ p(Tn(K)). Hence p(Tn(K)) = Tn(K)(n−3). �

We are ready to give the proof of the main result of the paper.

The proof of Theorem 1.2. For any A = (as,r+s+t) ∈ Tn(K)(r−1), we set{
fs,r+s(xs,r+s) = as,r+s − xs,r+s;

gs,r+s(xs,r+s) = xs,r+s
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for all 1 ≤ s < r + s ≤ n. It is clear that both fs,r+s and gs,r+s are nonzero
polynomials in commutative variables over K, where 1 ≤ s < r + s ≤ n. It follows
from Lemma 2.5 that there exist bs,r+s ∈ K, 1 ≤ s < r + s ≤ n, such that{

fs,r+s(bs,r+s) 6= 0;

gs,r+s(bs,r+s) 6= 0

for all 1 ≤ s < r + s ≤ n. That is{
as,r+s − bs,r+s 6= 0;

bs,r+s 6= 0

for all 1 ≤ s < r + s ≤ n. We set

bs,r+s+t = as,r+s+t

for all 1 ≤ s < r + s+ t ≤ n and t > 0 and{
cs,r+s = as,r+s − bs,r+s for all 1 ≤ s < r + s ≤ n;

cs,r+s+t = 0 for all 1 ≤ s < r + s+ t ≤ n and t > 0.

We set

B = (bs,r+s+t) and C = (cs,r+s+t).

It is clear that

A = B + C

where B,C ∈ Tn(K)(r−1) with bs,r+s, cs,r+s ∈ K∗ for all 1 ≤ s < r + s ≤ n. In
view of Lemma 3.7, we get that there exist ui, vi ∈ Tn(K), i = 1, . . . ,m, such that

p(u1, . . . , um) = B and p(v1, . . . , vm) = C.

It follows that

p(u1, . . . , um) + p(v1, . . . , vm) = A.

This implies that

Tn(K)(r−1) ⊆ p(Tn(K)) + p(Tn(K)).

In view of Lemma 2.2(ii) we note that p(Tn(K)) ⊆ Tn(K)(r−1). Since Tn(K)(r−1)

is a subspace of Tn(K) we get that

p(Tn(K)) + p(Tn(K)) ⊆ Tn(K)(r−1).

We obtain that

p(Tn(K)) + p(Tn(K)) = Tn(K)(r−1).

In particular, if r = n− 2 we get from Lemma 3.8 that

p(Tn(K)) = Tn(K)(n−3).

The proof of the result is complete. �

We conclude the paper with following example.

Example 3.1. Let n ≥ 5 and 1 < r < n− 2 be integers. Let K be an infinite field.
Let

p(x, y) = [x, y]r.

We have that ord(p) = r and p(Tn(K)) 6= Tn(K)(r−1).
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Proof. It is easy to check that p(Tr(K)) = {0}. Set

f(x, y) = [x, y].

Note that f is a multilinear polynomial over K. It is clear that ord(f) = 1. In view
of [12, Theorem 4.3] or [15, Theorem 1.1] we have that

f(Tr+1(K)) = Tr+1(K)(0).

It implies that there exist A,B ∈ Tr+1(K) such that

[A,B] = e12 + e23 + · · ·+ er,r+1.

We get that

p(A,B) = [A,B]r = e1,r+1 6= 0.

This implies that p(Tr+1(K)) 6= {0}. We obtain that ord(p) = r.
Suppose on contrary that p(Tn(K)) = Tn(K)(r−1) for some n ≥ 5 and 1 < r <

n − 2. For e1,r+1 + e3,r+3 ∈ Tn(K)(r−1), we get that there exists B,C ∈ Tn(K)
such that

p(B,C) = [B,C]r = e1,r+1 + e3,r+3.

It is clear that [B,C] ∈ Tn(K)(0). We set

[B,C] = (as,1+s+t).

It follows that

[B,C]r = e1,r+1 + e3,r+3.

We get from the last relation that
(a12a23 · · · ar,r+1)e1,r+1 = e1,r+1;

(a23a34 · · · ar+1,r+2)e2,r+2 = 0;

(a34a45 · · · ar+2,r+3)e3,r+3 = e3,r+3.

This is a contradiction. We obtain that p(Tn(K)) 6= Tn(K)(r−1) for all n ≥ 5 and
1 < r < n− 2. This proves the result. �

We remark that [16, Example 5.7] is a special case of Example 3.1 (r = 2 and
n = 5).
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