# THE WARING PROBLEM FOR UPPER TRIANGULAR MATRIX ALGEBRAS 

Qian Chen<br>Department of Mathematics, Shanghai Normal University, Shanghai 200234, China.<br>Email address: qianchen0505@163.com<br>Yu Wang*<br>Department of Mathematics, Shanghai Normal University, Shanghai 200234, China.<br>Email address: ywang2004@126.com


#### Abstract

Our goal of the paper is to investigate the Waring problem for upper triangular matrix algebras, which gives a complete solution of a conjecture proposed by Panja and Prasad in 2023.


## 1. Introduction

The classical Waring problem proposed by Edward Waring in 1770 asserted that for every positive integer $k$ there exists a positive integer $g(k)$ such that every positive integer can be expressed as a sum of $g(k) k$ th powers of nonnegative integers. In 1909, David Hilbert solved the problem. Various extensions and variations of this problem have been studied by different groups of mathematicians (see $[2,3,4,9,10,11,14,16,18])$.

In 2009 Shalev [18] proved that given a word $w \neq 1$, every element in any finite non-abelian simple group $G$ of sufficiently high order can be written as the product of three elements from $w(G)$, the image of the word map induced by $w$. In 2011 Larsen, Shalev, and Tiep [14] proved that, under the same assumptions, every element in $G$ is the product of two elements from $w(G)$, which gave a definitive solution of the Waring problem for finite simple groups.

Let $n \geq 2$ be an integer. Let $K$ be a field and let $K\langle X\rangle$ be the free associative algebra over $K$, freely generated by the countable set $X=\left\{x_{1}, x_{2}, \ldots\right\}$ of noncommutative variables. We refer to the elements of $K\langle X\rangle$ as polynomials.

Let $p\left(x_{1}, \ldots, x_{m}\right) \in K\langle X\rangle$. Let $\mathcal{A}$ be an algebra over $K$. The set

$$
p(\mathcal{A})=\left\{p\left(a_{1}, \ldots, a_{m}\right) \mid a_{1}, \ldots, a_{m} \in \mathcal{A}\right\}
$$

is called the image of $p($ on $\mathcal{A})$.
In 2020 Brešar [2] initiated the study of various Waring's problems for matrix algebras. He proved that if $\mathcal{A}=M_{n}(K)$, where $n \geq 2$ and $K$ is an algebraically closed field with characteristic 0 , and $f$ is a noncommutative polynomial which is neither an identity nor a central polynomial of $\mathcal{A}$, then every trace zero matrix

[^0]in $\mathcal{A}$ is a sum of four matrices from $f(\mathcal{A})-f(\mathcal{A})$ [2, Corollary 3.19]. In 2023 Brešar and Šemrl [3] proved that any traceless matrix can be written as sum of two matrices from $f\left(M_{n}(\mathcal{C})\right)-f\left(M_{n}(\mathcal{C})\right)$, where $\mathcal{C}$ is the complex field and $f$ is neither an identity nor a central polynomial for $M_{n}(\mathcal{C})$. Recently, they [4] have proved that if $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathcal{C} \backslash\{0\}$ and $\alpha_{1}+\alpha_{2}+\alpha_{3}=0$, then any traceless matrix over $\mathcal{C}$ can be written as $\alpha_{1} A_{1}+\alpha_{2} A_{2}+\alpha_{3} A_{3}$, where $A_{i} \in f\left(M_{n}(\mathcal{C})\right)$.

By $T_{n}(K)$ we denote the set of all $n \times n$ upper triangular matrices over $K$. By $T_{n}(K)^{(0)}$ we denote the set of all $n \times n$ strictly upper triangular matrices over $K$. More generally, if $t \geq 0$, the set of all upper triangular matrices whose entries $(i, j)$ are zero, for $j-i \leq t$, will be denoted by $T_{n}(K)^{(t)}$. It is easy to check that $J^{t}=T_{n}(K)^{(t-1)}$, where $t \geq 1$ and $J$ is the Jacobson radical of $T_{n}(K)$ (see [1, Example 5.58]).

Let $p\left(x_{1}, \ldots, x_{m}\right)$ be a noncommutative polynomial with zero constant term over $K$. We define its order as the least positive integer $r$ such that $p\left(T_{r}(K)\right)=\{0\}$ but $p\left(T_{r+1}(K)\right) \neq\{0\}$. Note that $T_{1}(K)=K$. We say that $p$ has order 0 if $p(K) \neq\{0\}$. We denote the order of $p$ by ord $(p)$. For a detailed introduction of the order of polynomials we refer the reader to the book [7, Chapter 5].

In 2023 Panja and Prasad [16] discussed the image of polynomials with zero constant term and Waring type problems on upper triangular matrix algebras over an algebraically closed field, which generalized two results in $[6,19]$. More precisely, they obtained the following main result:

Theorem 1.1. [16, Theorem 5.18] Let $n \geq 2$ and $m \geq 1$ be integers. Let $p\left(x_{1}, \ldots, x_{m}\right)$ be a polynomial with zero constant term in non-commutative variables over an algebraically closed field $K$. Set $r=\operatorname{ord}(p)$. Then one of the following statements holds.
(i) Suppose that $r=0$. We have that $p\left(T_{n}(K)\right)$ is a dense subset of $T_{n}(K)$ (with respect to the Zariski topology);
(ii) Suppose that $r=1$. We have that $p\left(T_{n}(K)\right)=T_{n}(K)^{(0)}$;
(iii) Suppose that $1<r<n-1$. We have that $p\left(T_{n}(K)\right) \subseteq T_{n}(K)^{(r-1)}$, and equality might not hold in general. Furthermore, for every $n$ and $r$ there exists $d$ such that each element of $T_{n}(K)^{(r-1)}$ can be written as a sum of $d$ many elements from $p\left(T_{n}(K)\right)$;
(iv) Suppose that $r=n-1$. We have that $p\left(T_{n}(K)\right)=T_{n}(K)^{(n-2)}$;
(v) Suppose that $r \geq n$. We have that $p\left(T_{n}(K)\right)=\{0\}$.

They proposed the following conjecture:
Conjecture 1.1. [16, Conjecture] Let $p\left(x_{1}, \ldots, x_{m}\right)$ be a polynomial with zero constant term in non-commutative variables over an algebraically closed field $K$. Suppose $\operatorname{ord}(p)=r$, where $1<r<n-1$. Then $p\left(T_{n}(K)\right)+p\left(T_{n}(K)\right)=T_{n}(K)^{(r-1)}$.

We note that if $p$ is a multilinear polynomial and $K$ is an infinite field, then $p\left(T_{n}(K)\right)=T_{n}(K)^{(r-1)}($ see $[8,12,15])$.

In the present paper, we shall prove the following main result of the paper, which gives a complete solution of Conjecture 1.1.
Theorem 1.2. Let $n \geq 2$ and $m \geq 1$ be integers. Let $p\left(x_{1}, \ldots, x_{m}\right)$ be a polynomial with zero constant term in non-commutative variables over an infinite field $K$. Suppose $\operatorname{ord}(p)=r$, where $1<r<n-1$. We have that $p\left(T_{n}(K)\right)+p\left(T_{n}(K)\right)=$ $T_{n}(K)^{(r-1)}$. Furthermore, if $r=n-2$, we have that $p\left(T_{n}(K)\right)=T_{n}(K)^{(n-3)}$.

We organize the paper as follows: In Section 2 we shall give some preliminaries. We shall modify some results in $[5,8,13]$, which will be used in the proof of Theorem 1.2. In Section 3 we shall give the proof of Theorem 1.2 by using some new arguments (for example, compatible variables in polynomials and recursive polynomials).

## 2. PRELIMINARIES

Let $\mathcal{N}$ be the set of all positive integers. Let $m \in \mathcal{N}$. Let $K$ be a field. Set $K^{*}=K \backslash\{0\}$. For any $k \in \mathcal{N}$ we set

$$
T_{m}^{k}=\left\{\left(i_{1}, \ldots, i_{k}\right) \in \mathcal{N}^{k} \mid 1 \leq i_{1}, \ldots, i_{k} \leq m\right\}
$$

Let $p\left(x_{1}, \ldots, x_{m}\right)$ be a polynomial with zero constant term in non-commutative variables over $K$. We can write

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{m}\right)=\sum_{k=1}^{d}\left(\sum_{\left(i_{1}, i_{2}, \ldots, i_{k}\right) \in T_{m}^{k}} \lambda_{i_{1} i_{2} \cdots i_{k}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}\right) \tag{1}
\end{equation*}
$$

where $\lambda_{i_{1} i_{2} \cdots i_{k}} \in K$ and $d$ is the degree of $p$.
We begin with the following result, which is slightly different from [5, Lemma 3.2]. We give its proof for completeness.

Lemma 2.1. For any $u_{i}=\left(a_{j k}^{(i)}\right) \in T_{n}(K), i=1, \ldots, m$, we set

$$
\bar{a}_{j j}=\left(a_{j j}^{(1)}, \ldots, a_{j j}^{(m)}\right),
$$

where $j=1, \ldots, n$. We have that

$$
p\left(u_{1}, \ldots, u_{m}\right)=\left(\begin{array}{cccc}
p\left(\bar{a}_{11}\right) & p_{12} & \ldots & p_{1 n}  \tag{2}\\
0 & p\left(\bar{a}_{22}\right) & \ldots & p_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & p\left(\bar{a}_{n n}\right)
\end{array}\right)
$$

where

$$
p_{s t}=\sum_{k=1}^{t-s}\left(\sum_{\substack{s=j_{1}<j_{2}<\cdots<j_{k+1}=t \\\left(i_{1}, \ldots, i_{k}\right) \in T_{m}^{k}}} p_{i_{1} \cdots i_{k}}\left(\bar{a}_{j_{1} j_{1}}, \ldots, \bar{a}_{j_{k+1} j_{k+1}}\right) a_{j_{1} j_{2}}^{\left(i_{1}\right)} \cdots a_{j_{k} j_{k+1}}^{\left(i_{k}\right)}\right)
$$

for all $1 \leq s<t \leq n$, where $p_{i_{1}, \ldots, i_{k}}\left(z_{1}, \ldots, z_{m(k+1)}\right), 1 \leq i_{1}, i_{2}, \ldots, i_{k} \leq m$, $k=1, \ldots, n-1$, is a polynomial in commutative variables over $K$.
Proof. Let $u_{i}=\left(a_{j k}^{(i)}\right) \in T_{n}(K)$, where $i=1, \ldots, m$. For any $1 \leq i_{1}, \ldots, i_{k} \leq m$, we easily check that

$$
u_{i_{1}} \cdots u_{i_{k}}=\left(\begin{array}{cccc}
m_{11} & m_{12} & \ldots & m_{1 n} \\
0 & m_{22} & \ldots & m_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & m_{n n}
\end{array}\right)
$$

where

$$
m_{s t}=\sum_{s=j_{1} \leq j_{2} \leq \cdots \leq j_{k+1}=t} a_{j_{1} j_{2}}^{\left(i_{1}\right)} \cdots a_{j_{k} j_{k+1}}^{\left(i_{k}\right)}
$$

for all $1 \leq s \leq t \leq n$. It follows from (1) that

$$
\begin{aligned}
p\left(u_{1}, \ldots, u_{m}\right) & =\sum_{k=1}^{d}\left(\sum_{\left(i_{1}, \ldots, i_{k}\right) \in T_{m}^{k}} \lambda_{i_{1} \cdots i_{k}} u_{i_{1}} \cdots u_{i_{k}}\right) \\
& =\sum_{k=1}^{d}\left(\sum_{\left(i_{1}, \ldots, i_{k}\right) \in T_{m}^{k}} \lambda_{i_{1} \cdots i_{k}}\left(\begin{array}{cccc}
m_{11} & m_{12} & \ldots & m_{1 n} \\
0 & m_{22} & \ldots & m_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & m_{n n}
\end{array}\right)\right) \\
& =\left(\begin{array}{ccccc}
p_{11} & p_{12} & \ldots & p_{1 n} \\
0 & p_{22} & \ldots & p_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & p_{n n}
\end{array}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
p_{s t} & =\sum_{k=1}^{d}\left(\sum_{\left(i_{1}, \ldots, i_{k}\right) \in T_{m}^{k}} \lambda_{i_{1} \cdots i_{k}} m_{s t}\right) \\
& =\sum_{k=1}^{d}\left(\sum_{\substack{\left(i_{1}, \ldots, i_{k}\right) \in T_{m}^{k}}} \lambda_{i_{1} \cdots i_{k}}\left(\sum_{s=j_{1} \leq j_{2} \leq \cdots \leq j_{k+1}=t} a_{j_{1} j_{2}}^{\left(i_{1}\right)} \cdots a_{j_{k} j_{k+1}}^{\left(i_{k}\right)}\right)\right) \\
& =\sum_{k=1}^{d}\left(\sum_{\substack{s=j_{1} \leq j_{2} \leq \cdots \leq j_{k+1}=t \\
\left(i_{1}, \ldots, i_{k}\right) \in T_{m}^{k}}} \lambda_{i_{1} i_{2} \cdots i_{k}} a_{j_{1} j_{2}}^{\left(i_{1}\right)} \cdots a_{j_{k} j_{k+1}}^{\left(i_{k}\right)}\right)
\end{aligned}
$$

where $1 \leq s \leq t \leq n$. In particular

$$
\begin{aligned}
p_{s s} & =\sum_{k=1}^{d}\left(\sum_{\left(i_{1}, \ldots, i_{k}\right) \in T_{m}^{k}} \lambda_{i_{1} i_{2} \cdots i_{k}} a_{s s}^{\left(i_{1}\right)} \cdots a_{s s}^{\left(i_{k}\right)}\right) \\
& =p\left(\bar{a}_{s s}\right)
\end{aligned}
$$

for all $s=1, \ldots, n$, and

$$
\begin{aligned}
p_{s t} & =\sum_{k=1}^{d}\left(\sum_{\substack{s=j_{1} \leq j_{2} \leq \cdots \leq j_{k+1}=t \\
\left(i_{1}, \ldots, i_{k}\right) \in T_{m}^{k}}} \lambda_{i_{1} i_{2} \cdots i_{k}} a_{j_{1} j_{2}}^{\left(i_{1}\right)} \cdots a_{j_{k} j_{k+1}}^{\left(i_{k}\right)}\right) \\
& =\sum_{k=1}^{t-s}\left(\sum_{\substack{s=j_{1}<j_{2}<\cdots<j_{k+1}=t \\
\left(i_{1}, \ldots, i_{k}\right) \in T_{m}^{k}}} p_{i_{1} i_{2} \cdots i_{k}}\left(\bar{a}_{j_{1} j_{1}}, \ldots, \bar{a}_{j_{k+1} j_{k+1}}\right) a_{j_{1} j_{2}}^{\left(i_{1}\right)} \cdots a_{j_{k} j_{k+1}}^{\left(i_{k}\right)}\right)
\end{aligned}
$$

for all $1 \leq s<t \leq n$, where $p_{i_{1}, \ldots, i_{k}}\left(z_{1}, \ldots, z_{m(k+1)}\right)$ is a polynomial in commutative variables over $K$. This proves the result.

The following result will be used in the proof of our main result.

Lemma 2.2. Let $m \geq 1$ be an integer. Let $p\left(x_{1}, \ldots, x_{m}\right)$ be a polynomial with zero constant term in non-commutative variables over $K$. Let $p_{i_{1}, \ldots, i_{k}}\left(z_{1}, \ldots, z_{m(k+1)}\right)$ be a polynomial in commutative variables over $K$ in (2), where $1 \leq i_{1}, \ldots, i_{k} \leq m$, $1 \leq k \leq n-1$. Suppose that $\operatorname{ord}(p)=r, 1<r<n-1$. We have that
(i) $p(K)=\{0\}$;
(ii) $p_{i_{1}, \ldots, i_{k}}(K)=\{0\}$ for all $1 \leq i_{1}, \ldots, i_{k} \leq m$, where $k=1, \ldots, r-1$;
(iii) $p_{i_{1}^{\prime}, \ldots, i_{r}^{\prime}}(K) \neq\{0\}$ for some $1 \leq i_{1}^{\prime}, \ldots, i_{r}^{\prime} \leq m$.

Proof. The statement (i) is clear. We now claim that the statement (ii) holds true. Suppose on the contrary that

$$
p_{i_{1}^{\prime} \cdots i_{s}^{\prime}}(K) \neq\{0\}
$$

for some $1 \leq i_{1}^{\prime}, \ldots, i_{s}^{\prime} \leq m$, where $1 \leq s \leq r-1$. Then there exist $\bar{b}_{j} \in K^{m}$, where $j=1, \ldots, s+1$ such that

$$
p_{i_{1}^{\prime} \cdots i_{s}^{\prime}}\left(\bar{b}_{1}, \ldots, \bar{b}_{s+1}\right) \neq 0
$$

We take $u_{i}=\left(a_{j k}^{(i)}\right) \in T_{s+1}(K), i=1, \ldots, m$, where

$$
\left\{\begin{aligned}
& \bar{a}_{j j}=\bar{b}_{j}, \quad \\
& j=1, \ldots, s+1 \\
& a_{k, k+1}^{\left(i_{k}^{\prime}\right)}=1, \\
& \\
& a_{j k}^{(i)}=0, \\
& \\
& \text { otherwise }
\end{aligned}\right.
$$

It follows from (2) that

$$
p_{1, s+1}=p_{i_{1}^{\prime} \cdots i_{s}^{\prime}}\left(\bar{b}_{1}, \ldots, \bar{b}_{s+1}\right) \neq 0
$$

This implies that $p\left(T_{s+1}(K)\right) \neq\{0\}$, a contradiction. This proves the statement (ii).

We finally claim that the statement (iii) holds true. Note that $p\left(T_{1+r}(K)\right) \neq\{0\}$. Thus, we have that there exist $u_{i}=\left(a_{j k}^{(i)}\right) \in T_{1+r}(K), i=1, \ldots, m$, such that

$$
p\left(u_{1}, \ldots, u_{m}\right)=\left(p_{s t}\right) \neq 0
$$

In view of the statement (ii) we get that

$$
p_{1, r+1}=\sum_{\substack{1=j_{1}<j_{2}<\cdots<j_{r+1}=r+1 \\\left(i_{1}, \ldots, i_{r}\right) \in T_{m}^{r}}} p_{i_{1} i_{2} \cdots i_{r}}\left(\bar{a}_{j_{1} j_{1}}, \ldots, \bar{a}_{j_{r+1} j_{r+1}}\right) a_{j_{1} j_{2}}^{\left(i_{1}\right)} \cdots a_{j_{r} j_{r+1}}^{\left(i_{r}\right)} \neq 0 .
$$

This implies that $p_{i_{1}^{\prime}, \ldots, i_{r}^{\prime}}(K) \neq\{0\}$ for some $1 \leq i_{1}^{\prime}, \ldots, i_{r}^{\prime} \leq m$. This proves the statement (iii). The proof of the result is complete.

The following well-known result will be used in the proof of the rest results.
Lemma 2.3. [13, Theorem 2.19] Let $K$ be an infinite field. Let $f\left(x_{1}, \ldots, x_{m}\right)$ be a nonzero polynomial in commutative variables over $K$. Then there exist $a_{1}, \ldots, a_{m} \in$ $K$ such that $f\left(a_{1}, \ldots, a_{m}\right) \neq 0$.
Lemma 2.4. Let $n, s$ be integers with $1 \leq s \leq n$. Let $p\left(x_{1}, \ldots, x_{s}\right)$ be a nonzero polynomial in commutative variables over an infinite field $K$. We have that there exist $a_{1}, \ldots, a_{n} \in K$ such that

$$
p\left(a_{i_{1}}, \ldots, a_{i_{s}}\right) \neq 0
$$

for all $1 \leq i_{1}<\cdots<i_{s} \leq n$.

Proof. We set

$$
f\left(x_{1}, \ldots, x_{n}\right)=\prod_{1 \leq i_{1}<\cdots<i_{s} \leq n} p\left(x_{i_{1}}, \ldots, x_{i_{s}}\right) .
$$

It is clear that $f \neq 0$. In view of Lemma 2.3 we have that there exist $a_{1}, \ldots, a_{n} \in K$ such that

$$
f\left(a_{1}, \ldots, a_{n}\right) \neq 0
$$

This implies that

$$
p\left(a_{i_{1}}, \ldots, a_{i_{s}}\right) \neq 0
$$

for all $1 \leq i_{1}<\cdots<i_{s} \leq n$. This proves the result.
The following technical result is a generalized form of [8, Lemma 2.11], which discusses compatible variables in polynomials.

Lemma 2.5. Let $t \geq 1$. Let $U_{i}=\left\{i_{1}, \ldots, i_{s}\right\} \subseteq \mathcal{N}, i=1, \ldots, t$. Let $p_{i}\left(x_{i_{1}}, \ldots, x_{i_{s}}\right)$ be a nonzero polynomial in commutative variables over an infinite field $K$, where $i=1, \ldots, t$. Then there exist $a_{k} \in K$ with $k \in \bigcup_{i=1}^{t} U_{i}$ such that

$$
p_{i}\left(a_{i_{1}}, \ldots, a_{i_{s}}\right) \neq 0
$$

for all $i=1, \ldots, t$.
Proof. Without loss of generality we assume that

$$
\{1,2, \ldots, n\}=\bigcup_{i=1}^{t} U_{i}
$$

We set

$$
f\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{t} p_{i}\left(x_{i_{1}}, \ldots, x_{i_{s}}\right)
$$

It is clear that $f \neq 0$. In view of Lemma 2.3 we have that there exist $a_{1}, \ldots, a_{n} \in K$ such that

$$
f\left(a_{1}, \ldots, a_{n}\right) \neq 0
$$

This implies that

$$
p_{i}\left(a_{i_{1}}, \ldots, a_{i_{s}}\right) \neq 0
$$

for all $i=1, \ldots, t$. This proves the result.
The following technical result will be used in the proof of the main result of the paper.

Lemma 2.6. Let $s \geq 1$ and $t \geq 2$ be integers. Let $K$ be an infinite field. Let $a_{i j} \in K$, where $1 \leq i \leq t, 1 \leq j \leq s$ with $a_{11} \in K^{*}$ and $b \in K^{*}$. For any $2 \leq i \leq t$, there exists a nonzero element in $\left\{a_{i 1}, \ldots, a_{i s}\right\}$. Then there exist $c_{i} \in K$, $i=1, \ldots, s$, such that

$$
\left\{\begin{array}{c}
a_{11} c_{1}+\cdots+a_{1 s} c_{s}=b ; \\
a_{i 1} c_{1}+\cdots+a_{i s} c_{s} \neq 0
\end{array}\right.
$$

for all $i=2, \ldots, t$.

Proof. Suppose first that $s=1$. Note that $a_{i 1} \in K^{*}, i=1, \ldots, t$. Take $c_{1}=a_{11}^{-1} b$. It is clear

$$
\left\{\begin{array}{l}
a_{11} c_{1}=b ; \\
a_{i 1} c_{1} \neq 0
\end{array}\right.
$$

for all $2 \leq i \leq t$. Suppose next that $s \geq 2$. Suppose first that $a_{i 1} \neq 0$ for all $i=2, \ldots, t$. We define the following polynomials.

$$
\left\{\begin{array}{l}
f_{1}\left(x_{2}, \ldots, x_{s}\right)=b-a_{12} x_{2}-\cdots-a_{1 s} x_{s} \\
f_{i}\left(x_{2}, \ldots, x_{s}\right)=a_{i 1} a_{11}^{-1} b+\left(a_{i 2}-a_{i 1} a_{11}^{-1} a_{12}\right) x_{2}+\cdots+\left(a_{i s}-a_{i 1} a_{11}^{-1} a_{1 s}\right) x_{s}
\end{array}\right.
$$

for all $2 \leq i \leq t$. Since $b, a_{i 1} \in K^{*}, i=1, \ldots, t$, we note that $f_{i} \neq 0$ for all $i=1, \ldots, t$. In view of Lemma 2.5 we get that there exist $c_{2}, \ldots, c_{s} \in K$ such that

$$
f_{i}\left(c_{2}, \ldots, c_{s}\right) \neq 0
$$

for all $i=1, \ldots, t$. This implies that

$$
\left\{\begin{array}{r}
b-a_{12} c_{2}-\cdots-a_{1 s} c_{s} \neq 0  \tag{3}\\
a_{i 1} a_{11}^{-1} b+\left(a_{i 2}-a_{i 1} a_{11}^{-1} a_{12}\right) c_{2}+\cdots+\left(a_{i s}-a_{i 1} a_{11}^{-1} a_{1 s}\right) c_{s} \neq 0
\end{array}\right.
$$

for all $2 \leq i \leq t$. We set

$$
c_{1}=a_{11}^{-1}\left(b-a_{12} c_{2}-\cdots-a_{1 s} c_{s}\right) .
$$

It follows from (3) that

$$
\left\{\begin{array}{c}
a_{11} c_{1}+\cdots+a_{1 s} c_{s}=b ; \\
a_{i 1} c_{1}+\cdots+a_{i s} c_{s} \neq 0
\end{array}\right.
$$

for all $2 \leq i \leq t$, as desired.
Suppose next that $a_{i 1}=0, i=2, \ldots, t$. Note that $a_{i l(i)} \neq 0$, for some $2 \leq l(i) \leq s$ for all $i=2, \ldots, t$. We define the following polynomials:

$$
\left\{\begin{aligned}
f_{1}\left(x_{2}, \ldots, x_{s}\right) & =a_{12} x_{2}+\cdots+a_{1 s} x_{s}-b ; \\
f_{i}\left(x_{2}, \ldots, x_{s}\right) & =a_{i 2} x_{2}+\cdots+a_{i s} x_{s}
\end{aligned}\right.
$$

for all $2 \leq i \leq t$. Note that $f_{i} \neq 0$ for all $i=1, \ldots, t$. In view of Lemma 2.5 we get that there exist $c_{i} \in K, i=2, \ldots, s$, such that

$$
f_{i}\left(c_{2}, \ldots, c_{s}\right) \neq 0
$$

for all $i=1, \ldots, t$. That is

$$
\left\{\begin{array}{l}
a_{12} c_{2}+\cdots+a_{1 s} c_{s}-b \neq 0 \\
a_{i 2} c_{2}+\cdots+a_{i s} c_{s} \neq 0
\end{array}\right.
$$

for all $2 \leq i \leq t$. Since $a_{11} \neq 0$ we get that there exists $c_{1} \in K$ such that

$$
a_{11} c_{1}=b-a_{12} c_{2}-\cdots-a_{1 s} c_{s}
$$

This implies that

$$
\left\{\begin{array}{r}
a_{11} c_{1}+a_{12} c_{2}+\cdots+a_{1 s} c_{s}=b ; \\
a_{i 2} c_{2}+\cdots+a_{i s} c_{s} \neq 0
\end{array}\right.
$$

for all $2 \leq i \leq t$, as desired.

We finally assume that there exist $a_{i 1} \neq 0$ and $a_{j 1}=0$ for some $i, j \in\{2, \ldots, t\}$. Without loss of generality we assume that $a_{i 1} \neq 0$ for all $i=2, \ldots, t_{1}$ and $a_{i 1}=0$ for all $i=t_{1}+1, \ldots, t$. We define the following polynomials:

$$
\left\{\begin{array}{l}
f_{1}\left(x_{2}, \ldots, x_{s}\right)=b-a_{12} x_{2}-\cdots-a_{1 s} x_{s} \\
f_{i}\left(x_{2}, \ldots, x_{s}\right)=a_{i 1} a_{11}^{-1} b+\left(a_{i 2}-a_{i 1} a_{11}^{-1} a_{12}\right) x_{2}+\cdots+\left(a_{i s}-a_{i 1} a_{11}^{-1} a_{1 s}\right) x_{s} \\
f_{j}\left(x_{2}, \ldots, x_{s}\right)=a_{j 2} x_{2}+\cdots+a_{j s} x_{s}
\end{array}\right.
$$

for all $2 \leq i \leq t_{1}$ and $t_{1}+1 \leq j \leq t$. Note that $b, a_{i 1} \in K^{*}, i=1, \ldots, t_{1}, a_{j l(j)} \neq 0$ where $2 \leq l(j) \leq s$ for all $j=t_{1}+1, \ldots t$. It is clear that $f_{i} \neq 0$ for all $i=1, \ldots, t$. In view of Lemma 2.5 we get that there exist $c_{i} \in K, i=2, \ldots, s$, such that

$$
f_{i}\left(c_{2}, \ldots, c_{s}\right) \neq 0
$$

where $i=1, \ldots, t$. This implies that

$$
\left\{\begin{align*}
b-a_{12} c_{2}-\cdots-a_{1 s} c_{s} & \neq 0  \tag{4}\\
a_{i 1} a_{11}^{-1} b+\left(a_{i 2}-a_{i 1} a_{11}^{-1} a_{12}\right) c_{2}+\cdots+\left(a_{i s}-a_{i 1} a_{11}^{-1} a_{1 s}\right) c_{s} & \neq 0 \\
a_{j 2} c_{2}+\cdots+a_{j s} c_{s} & \neq 0
\end{align*}\right.
$$

for all $2 \leq i \leq t_{1}$ and $t_{1}+1 \leq j \leq t$. We set

$$
c_{1}=a_{11}^{-1}\left(b-a_{12} c_{2}-\cdots-a_{1 s} c_{s}\right)
$$

It follows from (4) that

$$
\left\{\begin{array}{c}
a_{11} c_{1}+\cdots+a_{1 s} c_{s}=b \\
a_{i 1} c_{1}+\cdots+a_{i s} c_{s} \neq 0 \\
a_{j 1} c_{2}+\cdots+a_{j s} c_{s} \neq 0
\end{array}\right.
$$

for all $2 \leq i \leq t_{1}$ and $t_{1}+1 \leq j \leq t$, as desired. The proof of the result is now complete.

## 3. The proof of Theorem 1.2

Let $n \geq 2$ and $m \geq 1$ be integers. Let $p\left(x_{1}, \ldots, x_{m}\right)$ be a polynomial with zero constant term in non-commutative variables over an infinite field $K$. Suppose that $1<r<n-1$, where $r=\operatorname{ord}(p)$.

Take any $u_{i}=\left(a_{j k}^{(i)}\right) \in T_{n}(K), i=1, \ldots, m$. In view of both Lemma 2.1 and Lemma 2.2 we have that

$$
\begin{equation*}
p\left(u_{1}, \ldots, u_{m}\right)=\left(p_{s, r+s+t}\right) \tag{5}
\end{equation*}
$$

where

$$
p_{s, r+s+t}=\sum_{k=r}^{r+t}\left(\sum_{\substack{s=j_{1}<\cdots<j_{k+1}=r+s+t \\\left(i_{1}, \ldots, i_{k}\right) \in T_{m}^{k}}} p_{i_{1} \cdots i_{k}}\left(\bar{a}_{j_{1} j_{1}}, \ldots, \bar{a}_{j_{k+1} j_{k+1}}\right) a_{j_{1} j_{2}}^{\left(i_{1}\right)} \cdots a_{j_{k} j_{k+1}}^{\left(i_{k}\right)}\right)
$$

for all $1 \leq s<r+s+t \leq n$ and

$$
p_{i_{1}^{\prime} \cdots i_{r}^{\prime}}(K) \neq\{0\}
$$

for some $1 \leq i_{1}^{\prime}, \ldots, i_{r}^{\prime} \leq m$. It follows from Lemma 2.4 that there exist $\bar{c}_{1}, \ldots, \bar{c}_{n} \in$ $K^{m}$ such that

$$
\begin{equation*}
p_{i_{1}^{\prime} \cdots i_{r}^{\prime}}\left(\bar{c}_{j_{1}}, \ldots, \bar{c}_{j_{r+1}}\right) \neq 0 \tag{6}
\end{equation*}
$$

for all $1 \leq j_{1}<\ldots<j_{r+1} \leq n$. We set

$$
\left\{\begin{aligned}
\bar{a}_{j j} & =\bar{c}_{j}, \quad j=1, \ldots, n \\
a_{i, i+1}^{(k)} & =a_{i, i+1}^{(k)}, \quad i=1, \ldots, r-1 \text { and } k=1, \ldots, m \\
a_{r+s-1, r+s+t}^{\left(i_{k}^{\prime}\right)} & =x_{r+s-1, r+s+t}^{\left(i_{k}^{\prime}\right)}, \quad 1 \leq s<r+s+t \leq n, k=1, \ldots, r \\
a_{i j}^{(k)} & =0, \quad \text { otherwise }
\end{aligned}\right.
$$

For any $1 \leq s<r+s+t \leq n$, we set

$$
U_{s, r+s+t}=\left\{\left(r+u-1, r+u+w, i_{k}^{\prime}\right) \mid x_{r+u-1, r+u+w}^{\left(i_{k}^{\prime}\right)} \quad \text { in } p_{s, r+s+t}\right\}
$$

and

$$
\bar{U}_{s, r+s+t}=\left\{\left(r+u-1, r+u, i_{k}^{\prime}\right) \mid\left(r+u-1, r+u, i_{k}^{\prime}\right) \in U_{s, r+s+t}\right\} .
$$

We define an order on the set

$$
\{(s, r+s+t) \mid 1 \leq s<r+s+t \leq n\}
$$

as follows:
(i) $(s, r+s+t)<\left(s_{1}, r+s_{1}+t_{1}\right)$ if $t<t_{1}$;
(ii) $(s, r+s+t)<\left(s_{1}, r+s_{1}+t_{1}\right)$ if $t=t_{1}$ and $s<s_{1}$.

## That is

$$
\begin{equation*}
(1, r+1)<\cdots<(n-r, n)<(1, r+2)<\cdots<(n-r-1, n)<\cdots<(1, n) . \tag{7}
\end{equation*}
$$

For any $1 \leq s<r+s+t \leq n$, we set

$$
W_{s, r+s+t}=\bigcup_{(1, r+1) \leq(i, r+i+j) \leq(s, r+s+t)} U_{i, r+i+j}
$$

and

$$
\bar{W}_{s, r+s+t}=\bigcup_{(1, r+1) \leq(i, r+i+j) \leq(s, r+s+t)} \bar{U}_{i, r+i+j} .
$$

We begin with the following lemmas, which will be used in the proof of our main result.

Lemma 3.1. Let $1 \leq s<r+s \leq n$. Suppose that $(s, r+s) \neq(1, r+1)$. We claim that

$$
\begin{equation*}
\bar{W}_{s, r+s} \backslash\left\{\left(r+s-1, r+s, i_{k}^{\prime}\right) \mid 1 \leq k \leq r\right\}=\bar{W}_{s-1, r+s-1} . \tag{8}
\end{equation*}
$$

Proof. We first claim that

$$
\bar{W}_{s, r+s} \backslash\left\{\left(r+s-1, r+s, i_{k}^{\prime}\right) \mid 1 \leq k \leq r\right\} \subseteq \bar{W}_{s-1, r+s-1} .
$$

Take any $\left(r+i-1, r+i, i_{k}^{\prime}\right) \in \bar{W}_{s, r+s} \backslash\left\{\left(r+s-1, r+s, i_{k}^{\prime}\right) \mid 1 \leq k \leq r\right\}$. We have that

$$
\left(r+i-1, r+i, i_{k}^{\prime}\right) \in \bar{U}_{s_{2}, r+s_{2}}
$$

for some $(1, r+1) \leq\left(s_{2}, r+s_{2}\right) \leq(s, r+s)$. This implies that

$$
r+i \leq r+s_{2} \leq r+s
$$

We get that $i \leq s$. Suppose that $i=s$. It follows that

$$
\left(r+i-1, r+i, i_{k}^{\prime}\right) \in\left\{\left(r+s-1, r+s, i_{k}^{\prime}\right) \mid 1 \leq k \leq r\right\},
$$

a contradiction. Hence $i \leq s-1$. It is clear that

$$
\left(r+i-1, r+i, i_{k}^{\prime}\right) \in \bar{U}_{i, r+i},
$$

where $(1, r+1) \leq(i, r+i) \leq(s-1, r+s-1)$. It follows that

$$
\left(r+i-1, r+i, i_{k}^{\prime}\right) \in \bar{W}_{s-1, r+s-1} .
$$

We obtain that

$$
\bar{W}_{s, r+s} \backslash\left\{\left(r+s-1, r+s, i_{k}^{\prime}\right) \mid 1 \leq k \leq r\right\} \subseteq \bar{W}_{s-1, r+s-1},
$$

as desired. We next claim that

$$
\bar{W}_{s-1, r+s-1} \subseteq \bar{W}_{s, r+s} \backslash\left\{\left(r+s-1, r+s, i_{k}^{\prime}\right) \mid 1 \leq k \leq r\right\}
$$

If $\left(r+s-1, r+s, i_{k}^{\prime}\right) \in \bar{W}_{s-1, r+s-1}$ for $1 \leq k \leq r$, we have that

$$
r+s \leq r+s-1
$$

a contradiction. Hence

$$
\left\{\left(r+s-1, r+s, i_{k}^{\prime}\right) \mid 1 \leq k \leq r\right\} \bigcap \bar{W}_{s-1, r+s-1}=\emptyset
$$

Since $\bar{W}_{s-1, r+s-1} \subseteq \bar{W}_{s, r+s}$ we get that

$$
\bar{W}_{s-1, r+s-1} \subseteq \bar{W}_{s, r+s} \backslash\left\{\left(r+s-1, r+s, i_{k}^{\prime}\right) \mid 1 \leq k \leq r\right\},
$$

as desired. We obtain that

$$
\bar{W}_{s-1, r+s-1}=\bar{W}_{s, r+s} \backslash\left\{\left(r+s-1, r+s, i_{k}^{\prime}\right) \mid 1 \leq k \leq r\right\} .
$$

This proves the result.
Lemma 3.2. Let $1 \leq s<r+s+t \leq n$. Suppose that $t>0$. We claim that

$$
\bar{W}_{s_{1}, r+s_{1}+t_{1}}=\bar{W}_{s, r+s+t},
$$

where

$$
\left(s_{1}, r+s_{1}+t_{1}\right)=\max \{(i, r+i+j) \mid(1, r+1) \leq(i, r+i+j)<(s, r+s+t)\} .
$$

Proof. We first claim that

$$
\bar{W}_{s, r+s+t}=\bar{W}_{n-r, n}
$$

Since $t>0$, we note that

$$
(s, r+s+t)>(n-r, n) .
$$

This implies that $\bar{W}_{s, r+s+t} \supseteq \bar{W}_{n-r, n}$. Take any $\left(r+u-1, r+u, i_{k}^{\prime}\right) \in \bar{W}_{s, r+s+t}$. It is clear that

$$
\left(r+u-1, r+u, i_{k}^{\prime}\right) \in \bar{U}_{u, r+u} \subseteq \bar{W}_{n-r, n}
$$

This implies that $\bar{W}_{s, r+s+t} \subseteq \bar{W}_{n-r, n}$. Hence, $\bar{W}_{s, r+s+t}=\bar{W}_{n-r, n}$ as desired.
Since $(n-r, n)<(s, r+s+t)$ we get that

$$
(n-r, n) \leq\left(s_{1}, r+s_{1}+t_{1}\right)<(s, r+s+t)
$$

This implies that

$$
\bar{W}_{n-r, n} \subseteq \bar{W}_{s_{1}, r+s_{1}+t_{1}} \subseteq \bar{W}_{s, r+s+t}
$$

Since $\bar{W}_{s, r+s+t}=\bar{W}_{n-r, n}$ we obtain that $\bar{W}_{s_{1}, r+s_{1}+t_{1}}=\bar{W}_{s, r+s+t}$. This proves the result.

The following technical result will be used in the proof of the next result.
Lemma 3.3. Let $1 \leq s<r+s+t \leq n$. If $\left(r+i-1, r+i+j, i_{k}^{\prime}\right) \in U_{s, r+s+t}$, we have that $j \leq t$.

Proof. Suppose that $\left(r+i-1, r+i+j, i_{k}^{\prime}\right) \in U_{s, r+s+t}$. That is, $x_{r+i-1, r+i+j}^{\left(i_{k}^{\prime}\right)}$ appears in $p_{s, r+s+t}$. In view of (5) we note that every monomial in $p_{s, r+s+t}$ is made up of at least $r$ elements multiplied together. This implies that

$$
((r+s+t)-s)-((r+i+j)-(r+i-1)) \geq r-1
$$

We obtain that $j \leq t$. This proves the result.
Lemma 3.4. Let $1 \leq s<r+s+t \leq n$ and $t>0$. We claim that

$$
W_{s_{1}, r+s_{1}+t_{1}}=W_{s, r+s+t} \backslash\left\{\left(r+s-1, r+s+t, i_{k}^{\prime}\right) \mid 1 \leq k \leq r\right\}
$$

where

$$
\left(s_{1}, r+s_{1}+t_{1}\right)=\max \{(i, r+i+j) \mid(1, r+1) \leq(i, r+i+j)<(s, r+s+t)\} .
$$

Proof. We first claim that

$$
W_{s_{1}, r+s_{1}+t_{1}} \subseteq W_{s, r+s+t} \backslash\left\{\left(r+s-1, r+s+t, i_{k}^{\prime}\right) \mid 1 \leq k \leq r\right\}
$$

If $\left(r+s-1, r+s+t, i_{k}^{\prime}\right) \in W_{s_{1}, r+s_{1}+t_{1}}$ for some $1 \leq k \leq r$, we get that

$$
\begin{equation*}
\left(r+s-1, r+s+t, i_{k}^{\prime}\right) \in U_{s_{2}, r+s_{2}+t_{2}} \tag{9}
\end{equation*}
$$

for some $(1, r+1) \leq\left(s_{2}, r+s_{2}+t_{2}\right) \leq\left(s_{1}, r+s_{1}+t_{1}\right)$. It is clear that

$$
t_{2} \leq t_{1} \leq t
$$

In view of Lemma 3.3 we get that $t \leq t_{2}$. It follows that

$$
t_{1}=t_{2}=t
$$

Since $\left(s_{1}, r+s_{1}+t_{1}\right)<(s, r+s+t)$ we get that $s_{1}<s$. Since $\left(s_{2}, r+s_{2}+t_{2}\right) \leq$ $\left(s_{1}, r+s_{1}+t_{1}\right)$ we get that $s_{2} \leq s_{1}$. Thus, we obtain that $s_{2}<s$. It follows from (9) that

$$
r+s+t \leq r+s_{2}+t_{2}
$$

This implies that $s \leq s_{2}$, a contradiction. Hence, we have that

$$
\left(r+s-1, r+s+t, i_{k}^{\prime}\right) \notin W_{s_{1}, r+s_{1}+t_{1}}
$$

for all $1 \leq k \leq r$. It is clear that $W_{s_{1}, r+s_{1}+t_{1}} \subseteq W_{s, r+s+t}$. We obtain that

$$
W_{s_{1}, r+s_{1}+t_{1}} \subseteq W_{s, r+s+t} \backslash\left\{\left(r+s-1, r+s+t, i_{k}^{\prime}\right) \mid 1 \leq k \leq r\right\}
$$

as desired. We next claim that

$$
W_{s, r+s+t} \backslash\left\{\left(r+s-1, r+s+t, i_{k}^{\prime}\right) \mid 1 \leq k \leq r\right\} \subseteq W_{s_{1}, r+s_{1}+t_{1}}
$$

For any $\left(r+i-1, r+i+j, i_{k}^{\prime}\right) \in W_{s, r+s+t} \backslash\left\{\left(r+s-1, r+s+t, i_{k}^{\prime}\right) \mid 1 \leq k \leq r\right\}$, we have

$$
\left(r+i-1, r+i+j, i_{k}^{\prime}\right) \in U_{s_{2}, r+s_{2}+t_{2}}
$$

for some $(1, r+1) \leq\left(s_{2}, r+s_{2}+t_{2}\right) \leq(s, r+s+t)$. This implies that $t_{2} \leq t$. In view of Lemma 3.3 we note that $j \leq t_{2}$. We have that $j \leq t$. It is clear that

$$
\left(r+i-1, r+i+j, i_{k}^{\prime}\right) \in U_{i, r+i+j}
$$

where $(1, r+1) \leq(i, r+i+j) \leq(s, r+s+t)$. Note that

$$
\left(r+i-1, r+i+j, i_{k}^{\prime}\right) \notin\left\{\left(r+s-1, r+s+t, i_{k}^{\prime}\right) \mid 1 \leq k \leq r\right\}
$$

We get that

$$
(i, r+i+j) \neq(s, r+s+t)
$$

This implies that

$$
(1, r+1) \leq(i, r+i+j) \leq\left(s_{1}, r+s_{1}+t_{1}\right) \leq(s, r+s+t)
$$

It follows that $U_{i, r+i+j} \subseteq W_{s_{1}, r+s_{1}+t_{1}}$. We have that

$$
\left(r+i-1, r+i+j, i_{k}^{\prime}\right) \in W_{s_{1}, r+s_{1}+t_{1}} .
$$

We obtain that

$$
W_{s, r+s+t} \backslash\left\{\left(r+s-1, r+s+t, i_{k}^{\prime}\right) \mid 1 \leq k \leq r\right\} \subseteq W_{s_{1}, r+s_{1}+t_{1}}
$$

as desired. Thus, we obtain that

$$
W_{s_{1}, r+s_{1}+t_{1}}=W_{s, r+s+t} \backslash\left\{\left(r+s-1, r+s+t, i_{k}^{\prime}\right) \mid 1 \leq k \leq r\right\}
$$

This proves the result.
We set

$$
\hat{c}_{s, t}=\left(\bar{c}_{s}, \bar{c}_{s+1}, \ldots, \bar{c}_{r+s-1}, \bar{c}_{r+s+t}\right) .
$$

It follows from (6) that

$$
\begin{equation*}
p_{i_{1}^{\prime} \cdots i_{r}^{\prime}}\left(\hat{c}_{s, t}\right) \neq 0 . \tag{10}
\end{equation*}
$$

For any $1 \leq s<r+s \leq n$ and $s \leq r-1$, we set

$$
f_{s, r}=\sum_{\left(i_{1}, \ldots, i_{r-s}\right) \in T_{m}^{r-s}} p_{i_{1} \cdots i_{r-s} i_{r-s+1}^{\prime} \cdots i_{r}^{\prime}}\left(\hat{c}_{s, t}\right) a_{s, s+1}^{\left(i_{1}\right)} \cdots a_{r-1, r}^{\left(i_{r-s}\right)}
$$

We set

$$
V_{s, r}=\{(i, i+1, k) \mid i=s, \ldots, r-1, \quad k=1, \ldots, m\}
$$

where $1 \leq s<r+s \leq n$ and $s \leq r-1$. It is clear that $f_{s, r}$ is a polynomial on commutative variables indexed by elements from $V_{s, r}$.

For any $1 \leq s<r+s \leq n$ and $s \geq r$, we set

$$
f_{s, r}=p_{i_{1}^{\prime} \cdots i_{r}^{\prime}}\left(\hat{c}_{s, t}\right)
$$

We claim that $f_{s, r}(K) \neq\{0\}$ for all $1 \leq s<r+s \leq n$. In view of (10), it suffices to prove that $f_{s, r}(K) \neq 0$, where $1 \leq s<r+s \leq n$ and $s \leq r-1$.

We take $a_{i, i+1}^{(k)} \in K,(i, i+1, k) \in V_{s, r}$ such that

$$
\left\{\begin{array}{rl}
a_{s+i, s+i+1}^{\left(i_{i+1}^{\prime}\right)}=1 & i=0, \ldots, r-s-1 \\
a_{i, i+1}^{(k)}=0 & \text { otherwise }
\end{array}\right.
$$

It follows from (10) that

$$
f_{s, r}\left(a_{i, i+1}^{(k)}\right)=p_{i_{1}^{\prime} \cdots i_{r}^{\prime}}\left(\hat{c}_{s, t}\right) \neq 0
$$

as desired. In view of Lemma 2.5 we get that there exist $a_{i, i+1}^{(k)} \in K,(i, i+1, k) \in$ $\bigcup_{s=1}^{\min \{n-r, r-1\}} V_{s, r}$ such that

$$
f_{s, r}\left(a_{i, i+1}^{(k)}\right) \neq 0
$$

for all $1 \leq s<r+s \leq n$ and $s \leq r-1$.
For any $2 \leq s \leq r+s \leq n$, we define

$$
\begin{equation*}
f_{s, r+s-i}=\sum_{\left(i_{1}, \ldots, i_{r-i}\right) \in T_{m}^{r-i}} p_{i_{1} \cdots i_{r-i} i_{r-i+1}^{\prime} \cdots i_{r}^{\prime}}\left(\hat{c}_{s, t}\right) a_{s, s+1}^{\left(i_{1}\right)} \cdots a_{r+s-i-1, r+s-i}^{\left(i_{r-i}\right)} \tag{11}
\end{equation*}
$$

for all $1 \leq i \leq \min \{s-1, r-1\}$. It is clear that $f_{s, r+s-i}$ is a polynomial over $K$ on commutative variables indexed by elements from $\bar{W}_{s-i, r+s-i}$, where $1 \leq i \leq$ $\min \{s-1, r-1\}$.

The following result implies that $f_{s, r+s-i}$, where $1 \leq i \leq \min \{s-1, r-1\}$, is a recursive polynomial.

Lemma 3.5. For any $2 \leq s<r+s \leq n$, we claim that

$$
f_{s, r+s-i}=f_{s, r+s-i-1} x_{r+s-i-1, r+s-i}^{\left(i_{r-i}^{\prime}\right)}+\sum_{\substack{1 \leq k \leq r \\ i_{k}^{\prime} \neq i_{r-i}^{\prime}}} \alpha_{s, r+s-i-1, k} x_{r+s-i-1, r+s-i}^{\left(i_{r}^{\prime}\right)}
$$

for all $1 \leq i \leq \min \{s-1, r-1\}$, where both $f_{s, r+s-i-1}$ and $\alpha_{s, r+s-i-1, k}$ are polynomials over $K$ on commutative variables indexed by elements from $\bar{W}_{s-i-1, r+s-i-1}$.
Proof. We get from (11) that

$$
\begin{aligned}
& f_{s, r+s-i}=\left(\sum_{\substack{\left.i_{1}, \ldots, i_{r-i-1}\\
\right) \in T_{m}^{r-i-1}}} p_{i_{1} \cdots i_{r-i-1} i_{r-i}^{\prime} \cdots i_{r}^{\prime}}\left(\hat{c}_{s, t}\right) a_{s, s+1}^{\left(i_{1}\right)} \cdots a_{r+s-i-2, r+s-i-1}^{\left(i_{r-i-1}^{i}\right)}\right) x_{r+s-i-1, r+s-i}^{\left(i_{r-i}^{\prime}\right)} \\
& \quad+\sum_{\substack{1 \leq k \leq r \\
i_{k}^{\prime} \neq i_{r-i}^{\prime}}}\left(\sum_{\substack{\left(i_{1}, \ldots, i_{r-i-1}\right) \in T_{m}^{r-i-1}}} p_{i_{1} \cdots i_{r-i-1} i_{k}^{\prime} i_{r-i+1}^{\prime} \cdots i_{r}^{\prime}}\left(\hat{c}_{s, t}\right) a_{s, s+1}^{\left(i_{1}\right)} \cdots a_{r+s-i-2, r+s-i-1}^{\left(i_{r-i-1}\right)}\right) x_{r+s-i-1, r+s-i}^{\left(i_{k}^{\prime}\right)}
\end{aligned}
$$

for all $1 \leq i \leq \min \{s-1, r-1\}$. It follows from (11) that

$$
f_{s, r+s-i-1}=\sum_{\left(i_{1}, \ldots, i_{r-i-1}\right) \in T_{m}^{r-i-1}} p_{i_{1} \cdots i_{r-i-1} i_{r-i}^{\prime} \cdots i_{r}^{\prime}}\left(\hat{c}_{s, t}\right) a_{s, s+1}^{\left(i_{1}\right)} \cdots a_{r+s-i-2, r+s-i-1}^{\left(i_{r-i-1}\right)}
$$

We set
$\alpha_{s, r+s-i-1, k} \sum_{\left(i_{1}, \ldots, i_{r-i-1}\right) \in T_{m}^{r-i-1}} p_{i_{1} \cdots i_{r-i-1} i_{k}^{\prime} i_{r-i+1}^{\prime} \cdots i_{r}^{\prime}}\left(\hat{c}_{s, t}\right) a_{s, s+1}^{\left(i_{1}\right)} \cdots a_{r+s-i-2, r+s-i-1}^{\left(i_{r-i-1}\right)}$
for all $1 \leq i \leq \min \{s-1, r-1\}$ and $k=1, \ldots, r$. It follows from both (11) and (12) that

$$
f_{s, r+s-i}=f_{s, r+s-i-1} x_{r+s-i-1, r+s-i}^{\left(i_{r-i}^{\prime}\right)}+\sum_{\substack{1 \leq k \leq r \\ i_{k}^{\prime} \neq i_{r-i}^{\prime}}} \alpha_{s, r+s-i-1, k} x_{r+s-i-1, r+s-i}^{\left(i_{k}^{\prime}\right)}
$$

for all $1 \leq i \leq \min \{s-1, r-1\}$. It is clear that both $f_{s, r+s-i-1}$ and $\alpha_{s, r+s-i-1, k}$ are polynomials over $K$ on commutative variables indexed by elements from

$$
\bar{W}_{s-i, r+s-i} \backslash\left\{\left(r+s-i-1, r+s-i, i_{k}^{\prime}\right) \mid k=1, \ldots r\right\}
$$

In view of Lemma 3.1 we note that

$$
\bar{W}_{s-i-1, r+s-i-1}=\bar{W}_{s-i, r+s-i} \backslash\left\{\left(r+s-i-1, r+s-i, i_{k}^{\prime}\right) \mid k=1, \ldots r\right\}
$$

We have that both $f_{s, r+s-i-1}$ and $\alpha_{s, r+s-i-1, k}$ are polynomials over $K$ on commutative variables indexed by elements from $\bar{W}_{s-i-1, r+s-i-1}$. This proves the result.

Lemma 3.6. For any $1 \leq s<r+s \leq n$, we have that

$$
p_{s, r+s+t}=f_{s, r+s-1} x_{r+s-1, r+s+t}^{\left(i_{r}^{\prime}\right)}+\sum_{\substack{1 \leq k \leq r \\ i_{k}^{\prime} \neq i_{r}^{\prime}}} \beta_{s, r+s-1, k} x_{r+s-1, r+s+t}^{\left(i_{k}^{\prime}\right)}+\beta_{s, r+s+t}
$$

where $f_{1, r} \in K^{*}, \beta_{1, r, k} \in K, k=1, \ldots, r$ with $i_{k}^{\prime} \neq i_{r}^{\prime}, f_{s, r+s-1}, \beta_{s, r+s-1, k}, s \geq$ 2 , $1 \leq k \leq r$ with $i_{k}^{\prime} \neq i_{r}^{\prime}$ are polynomials on some commutative variables in $\bar{W}_{s_{1}, r+s_{1}+t_{1}}$ and $\beta_{s, r+s+t}$, where $t>0$, is a polynomial over $K$ in some commutative variables in $W_{s_{1}, r+s_{1}+t_{1}}$, where

$$
\left(s_{1}, r+s_{1}+t_{1}\right)=\max \{(i, r+i+j) \mid(1, r+1) \leq(i, r+i+j)<(s, r+s+t)\} .
$$

Moreover, $\beta_{s, r+s}=0$.
Proof. It follows from (5) that

$$
\begin{align*}
& p_{s, r+s+t}=\left(\sum_{\substack{\left(i_{1}, \ldots, i_{r-1}\right) \in T_{m}^{r-1}}} p_{i_{1} \cdots i_{r-1} i_{r}^{\prime}}\left(\hat{c}_{s, t}\right) a_{s, s+1}^{\left(i_{1}\right)} \cdots a_{r+s-2, r+s-1}^{\left(i_{r-1}\right)}\right) x_{r+s-1, r+s+t}^{\left(i_{r}^{\prime}\right)} \\
& \quad+\sum_{\substack{1 \leq k \leq r \\
i_{k}^{\prime} \neq i_{r}^{\prime}}}\left(\sum_{\substack{\left(i_{1}, \ldots, i_{r-1}\right) \in T_{m}^{r-1}}} p_{i_{1} \cdots i_{r-1} i_{k}^{\prime}}\left(\hat{c}_{s, t}\right) a_{s, s+1}^{\left(i_{1}\right)} \cdots a_{r+s-2, r+s-1}^{\left(i_{r-1}\right)}\right) x_{r+s-1, r+s+t}^{\left(i_{k}^{\prime}\right)}  \tag{13}\\
& \quad+\sum_{k=r}^{r+t}\left(\begin{array}{c}
\substack{s=j_{1}<\cdots<j_{k+1}=r+s+t \\
\left(j_{k}, j_{k+1}\right) \neq(r+s-1, r+s+t) \\
\left(i_{1}, \ldots, i_{k}\right) \in T_{m}^{k}}
\end{array} p_{i_{1} \cdots i_{k}}\left(\bar{c}_{j_{1}}, \ldots, \bar{c}_{j_{k+1}}\right) a_{j_{1} j_{2}}^{\left(i_{1}\right)} \cdots a_{j_{k} j_{k+1}}^{\left(i_{k}\right)}\right) \\
&
\end{align*}
$$

It follows from (11) that

$$
f_{s, r+s-1}=\sum_{\left(i_{1}, \ldots, i_{r-1}\right) \in T_{m}^{r-1}} p_{i_{1} \cdots i_{r-1} i_{r}^{\prime}}\left(\hat{c}_{s, t}\right) a_{s, s+1}^{\left(i_{1}\right)} \cdots a_{r+s-2, r+s-1}^{\left(i_{r-1}\right)}
$$

We set

$$
\beta_{s, r+s-1, k}=\sum_{\left(i_{1}, \ldots, i_{r-1}\right) \in T_{m}^{r-1}} p_{i_{1} \cdots i_{r-1} i_{k}^{\prime}}\left(\hat{c}_{s, t}\right) a_{s, s+1}^{\left(i_{1}\right)} \cdots a_{r+s-2, r+s-1}^{\left(i_{r-1}\right)}
$$

for $k=1, \ldots, r$ with $i_{k}^{\prime} \neq i_{r}^{\prime}$, and

$$
\beta_{s, r+s+t}=\sum_{k=r}^{r+t}\left(\sum_{\substack{s=j_{1}<\cdots<j_{k+1}=r+s+t \\\left(j_{k}, j_{k+1}\right) \neq(r+s-1, r+s+t) \\\left(i_{1}, \ldots, i_{k}\right) \in T_{m}^{k}}} p_{i_{1} \cdots i_{k}}\left(\bar{c}_{j_{1}}, \ldots, \bar{c}_{j_{k+1}}\right) a_{j_{1} j_{2}}^{\left(i_{1}\right)} \cdots a_{j_{k} j_{k+1}}^{\left(i_{k}\right)}\right)
$$

It follows from (13) that

$$
\begin{equation*}
p_{s, r+s+t}=f_{s, r+s-1} x_{r+s-1, r+s+t}^{\left(i_{r}^{\prime}\right)}+\sum_{\substack{1 \leq k \leq r \\ i_{k}^{\prime} \neq i_{r}^{\prime}}} \beta_{s, r+s-1, k} x_{r+s-1, r+s+t}^{\left(i_{k}^{\prime}\right)}+\beta_{s, r+s+t} \tag{14}
\end{equation*}
$$

where $f_{1, r} \in K^{*}, \beta_{1, r, k} \in K, k=1, \ldots, r$ with $i_{k}^{\prime} \neq i_{r}^{\prime}, f_{s, r+s-1}, \beta_{s, r+s+t, k}$, where $s \geq 2,1 \leq k \leq r$ with $i_{k}^{\prime} \neq i_{r}^{\prime}$, are polynomials on some commutative variables indexed by elements from

$$
\begin{equation*}
\bar{W}_{s, r+s+t} \backslash\left\{\left(r+s-1, r+s+t, i_{k}^{\prime}\right), \quad k=1, \ldots, r\right\} \tag{15}
\end{equation*}
$$

and $\beta_{s, r+s+t}$, where $t>0$, is a polynomial over $K$ in some commutative variables indexed by elements from

$$
\begin{equation*}
W_{s, r+s+t} \backslash\left\{\left(r+s-1, r+s+t, i_{k}^{\prime}\right), \quad k=1, \ldots, r\right\} . \tag{16}
\end{equation*}
$$

Suppose first that $t=0$. In view of Lemma 3.1 we note that

$$
\bar{W}_{s-1, r+s-1}=\bar{W}_{s, r+s+t} \backslash\left\{\left(r+s-1, r+s, i_{k}^{\prime}\right), \quad k=1, \ldots, r\right\} .
$$

We get from (15) that $f_{s, r+s-1}, \beta_{s, r+s+t, k}$, where $s \geq 2,1 \leq k \leq r$ with $i_{k}^{\prime} \neq i_{r}^{\prime}$, are polynomials on some commutative variables indexed by elements from $\bar{W}_{s-1, r+s-1}$. It is clear that $\beta_{s, r+s}=0$. Suppose next that $t>0$. In view of Lemma 3.2 we note that

$$
\bar{W}_{s_{1}, r+s_{1}+t_{1}}=\bar{W}_{s, r+s+t} .
$$

We get from (15) that $f_{s, r+s-1}, \beta_{s, r+s+t, k}$, where $s \geq 2,1 \leq k \leq r$ with $i_{k}^{\prime} \neq i_{r}^{\prime}$, are polynomials on some commutative variables indexed by elements from $\bar{W}_{s_{1}, r+s_{1}+t_{1}}$. In view of Lemma 3.4 we note that

$$
W_{s_{1}, r+s_{1}+t_{1}}=W_{s, r+s+t} \backslash\left\{\left(r+s-1, r+s+t, i_{k}^{\prime}\right), \quad k=1, \ldots, r\right\} .
$$

We get from (16) that $\beta_{s, r+s+t}$ is a polynomial over $K$ in some commutative variables indexed by elements from $W_{s_{1}, r+s_{1}+t_{1}}$. This proves the result.

The following result is crucial for the proof of the main result.
Lemma 3.7. Let $p\left(x_{1}, \ldots, x_{m}\right)$ be a polynomial with zero constant term in noncommutative variables over an infinite field $K$. Suppose ord $(p)=r$, where $1<$ $r<n-1$. For any $A^{\prime}=\left(a_{s, r+s+t}^{\prime}\right) \in T_{n}(K)^{(r-1)}$, where $a_{s, r+s}^{\prime} \neq 0$ for all $1 \leq s<r+s+t \leq n$, we have that $A^{\prime} \in p\left(T_{n}(K)\right)$.
Proof. Take any $A^{\prime}=\left(a_{s, r+s+t}^{\prime}\right) \in T_{n}(K)^{(r-1)}$, where $a_{s, r+s}^{\prime} \neq 0$ for all $1 \leq s<$ $r+s \leq n$. For any $1 \leq s<r+s+t \leq n$, we claim that there exist $c_{r+u-1, r+u+w}^{\left(i_{k}^{\prime}\right)} \in K$ with

$$
(r+u-1, r+u+w, k) \in W_{s, r+s+t}
$$

such that

$$
p_{i, r+i+j}\left(c_{r+u-1, r+u+w}^{\left(i_{k}^{\prime}\right)}\right)=a_{i, r+i+j}
$$

for all $(1, r+1) \leq(i, r+i+j) \leq(s, r+s+t)$ and

$$
f_{s^{\prime}, r+s^{\prime}-v}\left(c_{r+u-1, r+u}^{\left(i_{k}^{\prime}\right)}\right) \neq 0
$$

for all $f_{s^{\prime}, r+s^{\prime}-v}$ on commutative variables in $\bar{W}_{s, r+s+t}$, where $s^{\prime} \geq 2$ and $1 \leq v \leq$ $\min \left\{s^{\prime}-1, r-1\right\}$.

We prove the claim by induction on $(s, r+s+t)$. Suppose first that $(s, r+s+t)=$ $(1, r+1)$. Note that

$$
W_{1, r+1}=\bar{W}_{1, r+1}=\left\{\left(r, r+1, i_{k}^{\prime}\right) \mid k=1, \ldots, r\right\}
$$

In view of Lemma 3.6 we get that

$$
\begin{equation*}
p_{1, r+1}=f_{1, r} x_{r, r+1}^{\left(i_{r}^{\prime}\right)}+\sum_{\substack{1 \leq k \leq r \\ i_{k} \neq i_{r}^{\prime}}} \beta_{1, r, k} x_{r, r+1}^{\left(i_{k}^{\prime}\right)} \tag{17}
\end{equation*}
$$

where $f_{1, r} \in K^{*}, \beta_{1, r, k} \in K, k=1, \ldots, r$ with $i_{k}^{\prime} \neq i_{r}^{\prime}$.
Take any $f_{s^{\prime}, r+s^{\prime}-v}$ on $x_{r, r+1}^{\left(i_{k}^{\prime}\right)}$, where $k=1, \ldots, r, s^{\prime} \geq 2$, and $1 \leq v \leq \min \left\{s^{\prime}-\right.$ $1, r-1\}$, we get from Lemma 3.5 that

$$
r+s^{\prime}-v-1=r
$$

and so $v=s^{\prime}-1$. It follows that

$$
\begin{equation*}
f_{s^{\prime}, r+s^{\prime}-v}=f_{s^{\prime}, r} x_{r, r+1}^{\left(i_{r-v}^{\prime}\right)}+\sum_{\substack{1 \leq k \leq r \\ i_{k}^{\prime} \neq i_{r-v}^{\prime}}} \alpha_{s^{\prime}, r, k} x_{r, r+1}^{\left(i_{k}^{\prime}\right)} \tag{18}
\end{equation*}
$$

Note that $f_{s^{\prime}, r} \in K^{*}$ and $\alpha_{s^{\prime}, r, k} \in K, k=1, \ldots, r$ with $i_{k}^{\prime} \neq i_{r-v}$. Note that $a_{1, r+1}^{\prime} \in K^{*}$. In view of Lemma 2.6, we get from both (17) and (18) that there exist $c_{r, r+1}^{\left(i_{k}^{\prime}\right)} \in K, k=1, \ldots, r$, such that

$$
\left\{\begin{aligned}
p_{1, r+1}\left(c_{r, r+1}^{\left(i_{k}^{\prime}\right)}\right) & =a_{1, r+1}^{\prime} \\
f_{s^{\prime}, r+s^{\prime}-v}\left(c_{r, r+1}^{\left(i_{k}^{\prime}\right)}\right) & \neq 0
\end{aligned}\right.
$$

where $2 \leq s^{\prime} \leq r$ and $v=s^{\prime}-1$, as desired.
Suppose next that $(s, r+s+t) \neq(1, r+1)$. We rewrite (7) as follows.

$$
(1, r+1)<\cdots<\left(s_{1}, r+s_{1}+t_{1}\right)<(s, r+s+t)<\cdots<(1, n)
$$

where

$$
\left(s_{1}, r+s_{1}+t_{1}\right)=\max \{(i, r+i+j) \mid(1, r+1) \leq(i, r+i+j)<(s, r+s+t)\} .
$$

By induction on $\left(s_{1}, r+s_{1}+t_{1}\right)$ we have that there exist $c_{r+u-1, r+u+w}^{\left(i_{k}^{\prime}\right)} \in K$ with

$$
(r+u-1, r+u+w, k) \in W_{s_{1}, r+s_{1}+t_{1}}
$$

such that

$$
p_{i, r+i+j}\left(c_{r+u-1, r+u+w}^{\left(i_{k}^{\prime}\right)}\right)=a_{i, r+i+j}^{\prime}
$$

for all $(1, r+1) \leq(i, r+i+j) \leq\left(s_{1}, r+s_{1}+t_{1}\right)$ and

$$
f_{s^{\prime}, r+s^{\prime}-v}\left(c_{r+u-1, r+u}^{\left(i_{k}^{\prime}\right)}\right) \neq 0
$$

for any $f_{s^{\prime}, r+s^{\prime}-v}$ with commutative variables in $\bar{W}_{s_{1}, r+s_{1}+t_{1}}$, where $s^{\prime} \geq 2$, and $1 \leq v \leq \min \left\{s^{\prime}-1, r-1\right\}$. We now divide the proof into the following two cases.

Suppose first that $t=0$. Note that

$$
\left(s_{1}, r+s_{1}+t_{1}\right)=(s-1, r+s-1)
$$

That is, $s_{1}=s-1$ and $t_{1}=0$. In view of Lemma 3.6 we get that

$$
\begin{equation*}
p_{s, r+s}=f_{s, r+s-1} x_{r+s-1, r+s}^{\left(i_{r}^{\prime}\right)}+\sum_{\substack{1 \leq k \leq r \\ i_{k}^{\prime} \neq i_{r}^{\prime}}} \beta_{s, r+s-1, k} x_{r+s-1, r+s}^{\left(i_{k}^{\prime}\right)}, \tag{19}
\end{equation*}
$$

where $f_{s, r+s-1}, \beta_{s, r+s-1, k}$, where $k=1, \ldots, r$ with $i_{k}^{\prime} \neq i_{r}^{\prime}$, are polynomials in commutative variables in $\bar{W}_{s_{1}, r+s_{1}}$. By induction hypothesis we get that $f_{s, r+s-1} \in$ $K^{*}$ and $\beta_{s, r+s-1, k} \in K$.

Take any $f_{s^{\prime}, r+s^{\prime}-v}$ on commutative variables indexed by elements from $\bar{W}_{s, r+s}$, where $s^{\prime} \geq 2$ and $1 \leq v \leq \min \left\{s^{\prime}-1, r-1\right\}$. Suppose first that $f_{s^{\prime}, r+s^{\prime}-v}$ is a polynomial on commutative variables indexed by elements from $\bar{W}_{s_{1}, r+s_{1}}$. By induction hypothesis we have that $f_{s^{\prime}, r+s^{\prime}-v} \in K^{*}$. Suppose next that $f_{s^{\prime}, r+s^{\prime}-v}$ is not a polynomial on commutative variables indexed by elements from $\bar{W}_{s_{1}, r+s_{1}}$. In view of Lemma 3.1 we note that

$$
\bar{W}_{s, r+s} \backslash \bar{W}_{s-1, r+s-1}=\left\{\left(r+s-1, r+s, i_{k}^{\prime}\right) \mid k=1, \ldots, r\right\} .
$$

This implies that $x_{r+s-1, r+s}^{\left(i_{k}^{\prime}\right)}$ appears in $f_{s^{\prime}, r+s^{\prime}-v}$ for $k=1, \ldots, r$. In view of Lemma 3.5 we get that

$$
\left(r+s^{\prime}-v-1, r+s^{\prime}-v\right)=(r+s-1, r+s)
$$

and so $v=s^{\prime}-s$. We get that

$$
\begin{equation*}
f_{s^{\prime}, r+s^{\prime}-v}=f_{s^{\prime}, r+s^{\prime}-v-1} x_{r+s-1, r+s}^{\left(i_{r-v}^{\prime}\right)}+\sum_{\substack{1 \leq k \leq r \\ i_{k}^{\prime} \neq i_{r-v}^{\prime}}} \alpha_{s^{\prime}, r+s^{\prime}-v-1, k} x_{r+s-1, r+s}^{\left(i_{k}^{\prime}\right)} \tag{20}
\end{equation*}
$$

where $f_{s^{\prime}, r+s^{\prime}-v-1}$ and $\alpha_{s^{\prime}, r+s^{\prime}-v-1, k}, k=1, \ldots, r$ with $i_{k}^{\prime} \neq i_{r-v}^{\prime}$, are polynomials over $K$ on commutative variables indexed by elements from $\bar{W}_{s_{1}, r+s_{1}}$. By induction hypothesis we have that $f_{s^{\prime}, r+s^{\prime}-v-1} \in K^{*}$ and $\alpha_{s^{\prime}, r+s^{\prime}-v-1, k} \in K$, where $k=$ $1, \ldots, r$ with $i_{k}^{\prime} \neq i_{r-v}^{\prime}$.

Note that $a_{s, r+s}^{\prime} \in K^{*}$. In view of Lemma 2.6, we get from both (19) and (20) that there exist $c_{r+s-1, r+s}^{\left(i^{\prime}\right)} \in K, k=1, \ldots, r$, such that

$$
\left\{\begin{aligned}
p_{s, r+s}\left(c_{r+s-1, r+s}^{\left(i_{k}^{\prime}\right)}\right) & =a_{s, r+s}^{\prime} \\
f_{s^{\prime}, r+s^{\prime}-v}\left(c_{r+s-1, r+s}^{\left(i_{k}^{\prime}\right)}\right) & \neq 0,
\end{aligned}\right.
$$

as desired.
Suppose next that $t>0$. It follows from Lemma 3.6 that

$$
\begin{equation*}
p_{s, r+s+t}=f_{s, r+s-1} x_{r+s-1, r+s+t}^{\left(i_{r}^{\prime}\right)}+\sum_{\substack{1 \leq k \leq r \\ i_{k}^{\prime} \neq i_{r}^{\prime}}} \beta_{s, r+s-1, k} x_{r+s-1, r+s+t}^{\left(i_{k}^{\prime}\right)}+\beta_{s, r+s+t} \tag{21}
\end{equation*}
$$

where $f_{s, r+s-1}, \beta_{s, r+s-1, k}$, where $k=1, \ldots, r$ with $i_{k}^{\prime} \neq i_{r}^{\prime}$, are polynomials over $K$ in commutative variables indexed by elements from $\bar{W}_{r+s_{1}+t_{1}}$, and $\beta_{s, r+s+t}$ is a polynomial over $K$ in commutative variables indexed by elements from $W_{s_{1}, r+s_{1}+t_{1}}$. By induction hypothesis we have that $f_{s, r+s-1} \in K^{*}, \beta_{s, r+s-1, k} \in K$ for all $k=$ $1, \ldots, r$ with $i_{k}^{\prime} \neq i_{r}^{\prime}$, and $\beta_{s, r+s+t} \in K$.

Take $c_{r+s-1, r+s+t}^{\left(i_{k}^{\prime}\right)} \in K$, where $k=1, \ldots, r$ in (21) such that

$$
\left\{\begin{array}{l}
c_{r+s-1, r+s+t}^{\left(i_{r}^{\prime}\right)}=f_{s, r+s-1}^{-1}\left(a_{s, r+s+t}^{\prime}-\beta_{s, r+s+t}\right) \\
c_{r+s-1, r+s+t}^{\left(i_{k}^{\prime}\right)}=0 \quad \text { for all } 1 \leq k \leq r \text { with } i_{k}^{\prime} \neq i_{r}^{\prime}
\end{array}\right.
$$

We get that

$$
p_{s, r+s+t}\left(c_{r+s-1, r+s+t}^{\left(i_{k}^{\prime}\right)}\right)=a_{s, r+s+t}^{\prime} .
$$

Take any $f_{s^{\prime}, r+s^{\prime}-v}$ on commutative variables indexed by elements from $\bar{W}_{s, r+s+t}$, where $s^{\prime} \geq 2$ and $1 \leq v \leq \min \left\{s^{\prime}-1, r-1\right\}$. In view of Lemma 3.2 we note that

$$
\bar{W}_{s, r+s+t}=\bar{W}_{s_{1}, r+s_{1}+t_{1}} .
$$

This implies that $f_{s^{\prime}, r+s^{\prime}-v}$ is a commutative polynomial over $K$ on some commutative variables indexed by elements from $\bar{W}_{s_{1}, r+s_{1}+t_{1}}$. By induction hypothesis we get that

$$
f_{s^{\prime}, r+s^{\prime}-v} \in K^{*}
$$

where $s^{\prime} \geq 2$ and $1 \leq v \leq \min \left\{s^{\prime}-1, r-1\right\}$, as desired. This proves the claim.
Let $(s, r+s+t)=(1, n)$. We have that there exist $c_{r+u-1, r+u+w}^{\left(i_{k}^{\prime}\right)} \in K, k=$ $1, \ldots, r$, with

$$
(r+u-1, r+u+w, k) \in W_{1, n}
$$

such that

$$
\begin{equation*}
p_{i, r+i+j}\left(c_{r+u-1, r+u+w}^{\left(i_{k}^{\prime}\right)}\right)=a_{i, r+i+j}^{\prime} \tag{22}
\end{equation*}
$$

for all $(1, r+1) \leq(i, r+i+j) \leq(1, n)$ and

$$
f_{s^{\prime}, r+s^{\prime}-v}\left(c_{r+u-1, r+u}^{\left(i_{k}^{\prime}\right)}\right) \neq 0
$$

for all $f_{s^{\prime}, r+s^{\prime}-v}$ on commutative variables indexed by elements from $\bar{W}_{1, n}$, where $s^{\prime} \geq 2$ and $1 \leq v \leq \min \left\{s^{\prime}-1, r-1\right\}$. It follows from both (5) and (22) that

$$
p\left(u_{1}, \ldots, u_{m}\right)=\left(p_{s, r+s+t}\right)=\left(a_{s, r+s+t}^{\prime}\right)=A^{\prime}
$$

This implies that $A^{\prime} \in p\left(T_{n}(K)\right)$. The proof of the result is complete.
Lemma 3.8. Let $n \geq 4$ and $m \geq 1$ be integers. Let $p\left(x_{1}, \ldots, x_{m}\right)$ be a polynomial with zero constant term in non-commutative variables over an infinite field $K$. Suppose that $\operatorname{ord}(p)=n-2$. We have that $p\left(T_{n}(K)\right)=T_{n}(K)^{(n-3)}$.

Proof. In view of Lemma 2.2(ii) we note that $p\left(T_{n}(K)\right) \subseteq T_{n}(K)^{(n-3)}$. It suffices to prove that $T_{n}(K)^{(n-3)} \subseteq p\left(T_{n}(K)\right)$.

For any $u_{i}=\left(a_{j k}^{(i)}\right) \in T_{n}(K), i=1, \ldots, m$, in view of Lemma 2.2(ii) we get from (2) that

$$
p\left(u_{1}, \ldots, u_{m}\right)=\left(\begin{array}{ccccc}
0 & 0 & \ldots & p_{1, n-1} & p_{1 n}  \tag{23}\\
0 & 0 & \ldots & 0 & p_{2 n} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 0
\end{array}\right)
$$

where

$$
\left\{\begin{aligned}
p_{1, n-1}= & \sum_{\left(i_{1}, \ldots, i_{n-2}\right) \in T_{m}^{n-2}} p_{i_{1} \cdots i_{n-2}}\left(\bar{a}_{11}, \ldots, \bar{a}_{n-1, n-1}\right) a_{12}^{\left(i_{1}\right)} \cdots a_{n-2, n-1}^{\left(i_{n-2}\right)} \\
p_{2 n}= & \sum_{\left(i_{1}, \ldots, i_{n-2}\right) \in T_{m}^{n-2}} p_{i_{1} \cdots i_{n-2}}\left(\bar{a}_{22}, \ldots, \bar{a}_{n, n}\right) a_{23}^{\left(i_{1}\right)} \cdots a_{n-1, n}^{\left(i_{n-1}\right)} \\
p_{1 n}= & \sum_{\substack{\left(i_{1}, \ldots, i_{n-1}\right) \in T_{m}^{n-1}}} p_{i_{1} \cdots i_{n-1}}\left(\bar{a}_{11}, \ldots, \bar{a}_{n n}\right) a_{12}^{\left(i_{1}\right)} \cdots a_{n-1, n}^{\left(i_{n-1}\right)} \\
& +\sum_{\substack{1=j_{1}<\cdots<j_{n-1}=n \\
\left(i_{1}, \ldots, i_{n-2}\right) \in T_{m}^{n-2}}} p_{i_{1} \cdots i_{n-2}}\left(\bar{a}_{j_{1} j_{1}}, \ldots, \bar{a}_{j_{n-1} j_{n-1}}\right) a_{j_{1} j_{2}}^{\left(i_{1}\right)} \cdots a_{j_{n-2} j_{n-1}}^{\left(i_{n-2}\right)}
\end{aligned}\right.
$$

In view of Lemma 2.2(iii) we have that

$$
p_{i_{1}^{\prime}, \ldots, i_{n-2}^{\prime}}(K) \neq\{0\}
$$

for some $i_{1}^{\prime}, \ldots, i_{n-2}^{\prime} \in\{1, \ldots, m\}$. It follows from Lemma 2.4 that there exist $\bar{b}_{1}, \ldots, \bar{b}_{n} \in K^{m}$ such that

$$
p_{i_{1}^{\prime}, \ldots, i_{n-2}^{\prime}}\left(\bar{b}_{j_{1}}, \ldots, \bar{b}_{j_{n-1}}\right) \neq 0
$$

for all $1 \leq j_{1}<\cdots<j_{n-1} \leq n$.
For any $A^{\prime}=\left(a_{s, n-2+s+t}^{\prime}\right) \in T_{n}(K)^{(n-3)}$, where $1 \leq s<n-2+s+t \leq n$, we claim that there exist $u_{i}=\left(a_{j k}^{(i)}\right) \in T_{n}(K), i=1, \ldots, m$, such that

$$
p\left(u_{1}, \ldots, u_{m}\right)=\left(p_{s, n-2+s+t}\right)=A^{\prime} .
$$

That is

$$
\left\{\begin{aligned}
p_{1, n-1} & =a_{1, n-1}^{\prime} \\
p_{2 n} & =a_{2 n}^{\prime} \\
p_{1 n} & =a_{1 n}^{\prime}
\end{aligned}\right.
$$

We prove the claim by the following two cases:
Case 1. Suppose that $a_{1, n-1}^{\prime} \neq 0$. We take

$$
\left\{\begin{aligned}
\bar{a}_{j j} & =\bar{b}_{j}, \quad \text { for all } j=1, \ldots, n ; \\
a_{12}^{\left(i_{1}^{\prime}\right)} & =x_{12}^{\left(i_{1}^{\prime}\right)} ; \\
a_{12}^{(k)} & =0 \quad \text { for all } k=1, \ldots, m \text { with } k \neq i_{1}^{\prime} ; \\
a_{n-1, n}^{\left(i_{n-2}^{\prime}\right)} & =x_{n-1, n}^{\left(i_{n-2}^{\prime}\right)} \\
a_{n-1, n}^{(k)} & =0 \quad \text { for all } k=1, \ldots, m \text { with } k \neq i_{n-2}^{\prime} ; \\
a_{n-2, n}^{\left(i_{n-2}^{\prime}\right)} & =x_{n-2, n}^{\left(i_{n-2}^{\prime}\right)} \\
a_{j, j+2}^{(i)} & =0 \quad \text { for all } 1 \leq i \leq m, 3 \leq j+2 \leq n \text { with }(j, j+2, i) \neq\left(n-2, n, i_{n-2}^{\prime}\right)
\end{aligned}\right.
$$

It follows from (23) that

$$
\left\{\begin{align*}
p_{1, n-1}= & \left(\sum_{\left(i_{2}, \ldots, i_{n-2}\right) \in T_{m}^{n-3}} p_{i_{1}^{\prime} i_{2} \cdots i_{n-2}}\left(\bar{b}_{1}, \ldots, \bar{b}_{n-1}\right) a_{23}^{\left(i_{2}\right)} \cdots a_{n-2, n-1}^{\left(i_{n-2}\right)}\right) x_{12}^{\left(i_{1}^{\prime}\right)} ;  \tag{24}\\
p_{2 n}= & \left(\sum_{\left(i_{1}, \ldots, i_{n-3}\right) \in T_{m}^{n-3}} p_{i_{1} \cdots i_{n-3} i_{n-2}^{\prime}}\left(\bar{b}_{2}, \ldots, \bar{b}_{n}\right) a_{23}^{\left(i_{1}\right)} \cdots a_{n-2, n-1}^{\left(i_{n-3}\right)}\right) x_{n-1, n}^{\left(i_{n}^{\prime}-2\right)} ; \\
p_{1 n}= & \left(\sum_{\left(i_{2}, \ldots, i_{n-2}\right) \in T_{m}^{n-3}} p_{i_{1}^{\prime} i_{2} \cdots i_{n-2} i_{n-2}^{\prime}}\left(\bar{b}_{1}, \ldots, \bar{b}_{n}\right) a_{23}^{\left(i_{2}\right)} \cdots a_{n-2, n-1}^{\left(i_{n-2}\right)}\right) x_{12}^{\left(i_{1}^{\prime}\right)} x_{n-1, n}^{\left(i_{n-2}^{\prime}\right)} \\
& \left(\sum_{\left(i_{2}, \ldots, i_{n-3}\right) \in T_{m}^{n-4}} p_{\left.i_{1}^{\prime} i_{2} \cdots i_{n-3} i_{n-2}^{\prime}\left(\bar{b}_{1}, \ldots, \bar{b}_{n-2}, \bar{b}_{n}\right) a_{23}^{\left(i_{2}\right)} \cdots a_{n-3, n-2}^{\left(i_{n-3}\right)}\right) x_{12}^{\left(i_{1}^{\prime}\right)} x_{n-2, n}^{\left(i_{n-2}^{\prime}\right)} .} .\right.
\end{align*}\right.
$$

We set

$$
\left\{\begin{align*}
f_{1, n-1} & =\sum_{\left(i_{2}, \ldots, i_{n-2}\right) \in T_{m}^{n-3}} p_{i_{1}^{\prime} i_{2} \cdots i_{n-2}}\left(\bar{b}_{1}, \ldots, \bar{b}_{n-1}\right) a_{23}^{\left(i_{2}\right)} \cdots a_{n-2, n-1}^{\left(i_{n-2}\right)}  \tag{25}\\
f_{2 n} & =\sum_{\left(i_{1}, \ldots, i_{n-3}\right) \in T_{m}^{n-3}} p_{i_{1} \cdots i_{n-3} i_{n-2}^{\prime}}\left(\bar{b}_{2}, \ldots, \bar{b}_{n}\right) a_{23}^{\left(i_{1}\right)} \cdots a_{n-2, n-1}^{\left(i_{n-3}\right)} \\
f_{1 n} & =\sum_{\left(i_{2}, \ldots, i_{n-3}\right) \in T_{m}^{n-4}} p_{i_{1}^{\prime} i_{2} \cdots i_{n-3} i_{n-2}^{\prime}}\left(\bar{b}_{1}, \ldots, \bar{b}_{n-2}, \bar{b}_{n}\right) a_{23}^{\left(i_{2}\right)} \cdots a_{n-3, n-2}^{\left(i_{n-3}\right)}
\end{align*}\right.
$$

and

$$
\begin{aligned}
V_{1, n-1} & =\{(i, i+1, k) \mid i=2, \ldots, n-2, k=1, \ldots, m\} \\
V_{2 n} & =V_{1, n-1} \\
V_{1 n} & =\{(i, i+1, k) \mid i=2, \ldots, n-3, k=1, \ldots, m\} .
\end{aligned}
$$

Note that $f_{1, n-1}, f_{2 n}, f_{1 n}$ are polynomials over $K$ on commutative variables indexed by elements from $V_{1, n-1}, V_{2 n}, V_{1 n}$, respectively.

We claim that $f_{1, n-1}, f_{2 n}, f_{1 n} \neq 0$. Indeed, we take $a_{j k}^{(i)} \in K,(j, k, i) \in V_{1, n-1}$ such that

$$
\left\{\begin{aligned}
a_{s, s+1}^{\left(i_{s}^{\prime}\right)}=1 & \text { for all } s=2, \ldots, n-2 \\
a_{j k}^{(i)}=0 & \text { otherwise }
\end{aligned}\right.
$$

It follows from (25) that

$$
f_{1, n-1}\left(a_{j k}^{(i)}\right)=p_{i_{1}^{\prime} \cdots i_{n-2}^{\prime}}\left(\bar{b}_{1}, \ldots, \bar{b}_{n-1}\right) \neq 0
$$

as desired. Next, we take $a_{j k}^{(i)} \in K,(j, k, i) \in V_{2 n}$ such that

$$
\left\{\begin{aligned}
a_{s, s+1}^{\left(i_{s-1}^{\prime}\right)}=1 & \text { for all } s=2, \ldots, n-2 \\
a_{j k}^{(i)}=0 & \text { otherwise }
\end{aligned}\right.
$$

It follows from (25) that

$$
f_{2 n}\left(a_{j k}^{(i)}\right)=p_{i_{1}^{\prime} \cdots i_{n-2}^{\prime}}\left(\bar{b}_{2}, \ldots, \bar{b}_{n}\right) \neq 0
$$

as desired. Finally, we take $a_{j k}^{(i)} \in K,(j, k, i) \in V_{1 n}$ such that

$$
\left\{\begin{aligned}
a_{s, s+1}^{\left(i_{s}^{\prime}\right)}=1 & \text { for all } s=2, \ldots, n-3 \\
a_{j k}^{(i)}=0 & \text { otherwise }
\end{aligned}\right.
$$

It follows from (25) that

$$
f_{1 n}\left(a_{j k}^{(i)}\right)=p_{i_{1}^{\prime} \cdots i_{n-2}^{\prime}}\left(\bar{b}_{1}, \ldots, \bar{b}_{n-2}, \bar{b}_{n}\right) \neq 0
$$

as desired. In view of Lemma 2.5 we get that there exist $a_{j k}^{(i)} \in K$, where $(j, k, i) \in$ $V_{1, n-1} \cup V_{2 n} \cup V_{1 n}$ such that

$$
\left\{\begin{array}{r}
f_{1, n-1}\left(a_{j k}^{(i)}\right) \neq 0 \\
f_{2 n}\left(a_{j k}^{(i)}\right) \neq 0 \\
f_{1 n}\left(a_{j k}^{(i)}\right) \neq 0
\end{array}\right.
$$

We set

$$
\alpha=\sum_{\left(i_{2}, \ldots, i_{n-2}\right) \in T_{n-3}} p_{i_{1}^{\prime} i_{2} \cdots i_{n-2} i_{n-2}^{\prime}}\left(\bar{b}_{1}, \ldots, \bar{b}_{n}\right) a_{23}^{\left(i_{2}\right)} \cdots a_{n-2, n-1}^{\left(i_{n-2}\right)} .
$$

It follows from (24) that

$$
\left\{\begin{align*}
p_{1, n-1} & =f_{1, n-1} x_{12}^{\left(i_{1}^{\prime}\right)}  \tag{26}\\
p_{2 n} & =f_{2 n} x_{n-1, n}^{\left(i_{n-2}^{\prime}\right)} \\
p_{1 n} & =f_{1 n} x_{12}^{\left(i_{1}^{\prime}\right)} x_{n-2, n}^{\left(i_{n-2}^{\prime}\right)}+\alpha x_{12}^{\left(i_{1}^{\prime}\right)} x_{n-1, n}^{\left(i_{n-2}^{\prime}\right)}
\end{align*}\right.
$$

We take

$$
\left\{\begin{aligned}
x_{12}^{\left(i_{1}^{\prime}\right)} & =f_{1, n-1}^{-1} a_{1, n-1}^{\prime} \\
x_{n-1, n}^{\left(i_{n-2}^{\prime}\right)} & =f_{2 n}^{-1} a_{2 n}^{\prime} \\
x_{n-2, n}^{\left(i_{n-2}^{\prime}\right)} & =f_{1 n}^{-1} f_{1, n-1}\left(a_{1, n-1}^{\prime}\right)^{-1}\left(a_{1 n}^{\prime}-\alpha f_{1, n-1}^{-1} a_{1, n-1}^{\prime} f_{2 n}^{-1} a_{2 n}^{\prime}\right)
\end{aligned}\right.
$$

It follows from (26) that

$$
\left\{\begin{aligned}
p_{1, n-1} & =a_{1, n-1}^{\prime} \\
p_{2 n} & =a_{2 n}^{\prime} \\
p_{1 n} & =a_{1 n}^{\prime}
\end{aligned}\right.
$$

as desired.
Case 2. Suppose that $a_{1, n-1}^{\prime}=0$. We take

$$
\left\{\begin{aligned}
\bar{a}_{j j} & =\bar{b}_{j}, \quad \text { for all } j=1, \ldots, n ; \\
a_{12}^{(k)} & =0 \quad \text { for all } k=1, \ldots, m \\
a_{23}^{\left(i_{1}^{\prime}\right)} & =x_{23}^{\left(i_{1}^{\prime}\right)} \\
a_{23}^{(k)} & =0 \quad \text { for all } k=1, \ldots, m \text { with } k \neq i_{1}^{\prime} \\
a_{13}^{\left(i_{1}^{\prime}\right)} & =x_{13}^{\left(i_{1}^{\prime}\right)} \\
a_{j, j+2}^{(k)} & =0 \quad \text { for all } 1 \leq j<j+2 \leq n \text { with }(j, j+2, k) \neq\left(1,3, i_{1}^{\prime}\right)
\end{aligned}\right.
$$

It follows from (23) that

$$
\left\{\begin{align*}
p_{1, n-1} & =0 ;  \tag{27}\\
p_{2 n} & =\left(\sum_{\left(i_{2}, \ldots, i_{n-2}\right) \in T_{m}^{n-3}} p_{i_{1}^{\prime} i_{2} \cdots i_{n-2}}\left(\bar{b}_{2}, \ldots, \bar{b}_{n}\right) a_{34}^{\left(i_{2}\right)} \cdots a_{n-1, n}^{\left(i_{n-2}\right)}\right) x_{23}^{\left(i_{1}^{\prime}\right)} ; \\
p_{1 n} & =\left(\sum_{\left(i_{2}, \ldots, i_{n-2}\right) \in T_{m}^{n-3}} p_{i_{1}^{\prime} i_{2} \cdots i_{n-2}}\left(\bar{b}_{1}, \bar{b}_{3}, \ldots, \bar{b}_{n}\right) a_{34}^{\left(i_{2}\right)} \cdots a_{n-1, n}^{\left(i_{n-2}\right)}\right) x_{13}^{\left(i_{1}^{\prime}\right) .} .
\end{align*}\right.
$$

We set

$$
\left\{\begin{array}{l}
g_{2 n}=\sum_{\left(i_{2}, \ldots, i_{n-2}\right) \in T_{m}^{n-3}} p_{i_{1}^{\prime} i_{2} \cdots i_{n-2}}\left(\bar{b}_{2}, \ldots, \bar{b}_{n}\right) a_{34}^{\left(i_{2}\right)} \cdots a_{n-1, n}^{\left(i_{n-2}\right)}  \tag{28}\\
g_{1 n}=\sum_{\left(i_{2}, \ldots, i_{n-2}\right) \in T_{m}^{n-3}} p_{i_{1}^{\prime} i_{2} \cdots i_{n-2}}\left(\bar{b}_{1}, \bar{b}_{3}, \ldots, \bar{b}_{n}\right) a_{34}^{\left(i_{2}\right)} \cdots a_{n-1, n}^{\left(i_{n-2}\right)}
\end{array}\right.
$$

and

$$
V=\{(i, i+1, k) \mid i=3, \ldots, n-1, k=1, \ldots, m\}
$$

Note that both $g_{2 n}$ and $g_{1 n}$ are polynomials over $K$ on some commutative variables indexed by elements from $V$. We claim that $g_{2 n}, g_{1 n} \neq 0$. Indeed, we take $a_{j k}^{(i)} \in K,(j, k, i) \in V$ such that

$$
\left\{\begin{aligned}
a_{s, s+1}^{\left(i_{s-1}^{\prime}\right)}=1 & \text { for all } s=3, \ldots, n-1 \\
a_{j k}^{(i)}=0 & \text { otherwise }
\end{aligned}\right.
$$

It follows from (28) that

$$
\begin{aligned}
g_{2 n} & =p_{i_{1}^{\prime} \cdots i_{n-2}^{\prime}}\left(\bar{b}_{2}, \ldots, \bar{b}_{n}\right) \neq 0 \\
g_{1 n} & =p_{i_{1}^{\prime} \cdots i_{n-2}^{\prime}}\left(\bar{b}_{1}, \bar{b}_{3}, \ldots, \bar{b}_{n}\right) \neq 0
\end{aligned}
$$

as desired. It follows from (27) that

$$
\left\{\begin{align*}
p_{1, n-1} & =0  \tag{29}\\
p_{2 n} & =g_{2 n} x_{23}^{\left(i_{1}^{\prime}\right)} \\
p_{1 n} & =g_{1 n} x_{13}^{\left(i_{1}^{\prime}\right)}
\end{align*}\right.
$$

We take

$$
\left\{\begin{array}{l}
x_{23}^{\left(i_{1}^{\prime}\right)}=g_{2 n}^{-1} a_{2 n}^{\prime} \\
x_{13}^{\left(i_{1}^{\prime}\right)}=g_{1 n}^{-1} a_{1 n}^{\prime}
\end{array}\right.
$$

It follows from (29) that

$$
\left\{\begin{aligned}
p_{1, n-1} & =0 \\
p_{2 n} & =a_{2, n}^{\prime} \\
p_{1 n} & =a_{1 n}^{\prime}
\end{aligned}\right.
$$

as desired. We obtain that

$$
p\left(u_{1}, \ldots, u_{m}\right)=\left(p_{s, n-2+s+t}\right)=\left(a_{s, n-2+s+t}^{\prime}\right)=A^{\prime}
$$

This implies that $T_{n}(K)^{(n-3)} \subseteq p\left(T_{n}(K)\right)$. Hence $p\left(T_{n}(K)\right)=T_{n}(K)^{(n-3)}$.
We are ready to give the proof of the main result of the paper.
The proof of Theorem 1.2. For any $A=\left(a_{s, r+s+t}\right) \in T_{n}(K)^{(r-1)}$, we set

$$
\left\{\begin{array}{l}
f_{s, r+s}\left(x_{s, r+s}\right)=a_{s, r+s}-x_{s, r+s} \\
g_{s, r+s}\left(x_{s, r+s}\right)=x_{s, r+s}
\end{array}\right.
$$

for all $1 \leq s<r+s \leq n$. It is clear that both $f_{s, r+s}$ and $g_{s, r+s}$ are nonzero polynomials in commutative variables over $K$, where $1 \leq s<r+s \leq n$. It follows from Lemma 2.5 that there exist $b_{s, r+s} \in K, 1 \leq s<r+s \leq n$, such that

$$
\left\{\begin{array}{l}
f_{s, r+s}\left(b_{s, r+s}\right) \neq 0 \\
g_{s, r+s}\left(b_{s, r+s}\right) \neq 0
\end{array}\right.
$$

for all $1 \leq s<r+s \leq n$. That is

$$
\left\{\begin{aligned}
a_{s, r+s}-b_{s, r+s} & \neq 0 \\
b_{s, r+s} & \neq 0
\end{aligned}\right.
$$

for all $1 \leq s<r+s \leq n$. We set

$$
b_{s, r+s+t}=a_{s, r+s+t}
$$

for all $1 \leq s<r+s+t \leq n$ and $t>0$ and

$$
\left\{\begin{aligned}
c_{s, r+s} & =a_{s, r+s}-b_{s, r+s} \quad \text { for all } 1 \leq s<r+s \leq n \\
c_{s, r+s+t} & =0 \quad \text { for all } 1 \leq s<r+s+t \leq n \text { and } t>0 .
\end{aligned}\right.
$$

We set

$$
B=\left(b_{s, r+s+t}\right) \quad \text { and } \quad C=\left(c_{s, r+s+t}\right)
$$

It is clear that

$$
A=B+C
$$

where $B, C \in T_{n}(K)^{(r-1)}$ with $b_{s, r+s}, c_{s, r+s} \in K^{*}$ for all $1 \leq s<r+s \leq n$. In view of Lemma 3.7, we get that there exist $u_{i}, v_{i} \in T_{n}(K), i=1, \ldots, m$, such that

$$
p\left(u_{1}, \ldots, u_{m}\right)=B \quad \text { and } \quad p\left(v_{1}, \ldots, v_{m}\right)=C
$$

It follows that

$$
p\left(u_{1}, \ldots, u_{m}\right)+p\left(v_{1}, \ldots, v_{m}\right)=A
$$

This implies that

$$
T_{n}(K)^{(r-1)} \subseteq p\left(T_{n}(K)\right)+p\left(T_{n}(K)\right)
$$

In view of Lemma 2.2(ii) we note that $p\left(T_{n}(K)\right) \subseteq T_{n}(K)^{(r-1)}$. Since $T_{n}(K)^{(r-1)}$ is a subspace of $T_{n}(K)$ we get that

$$
p\left(T_{n}(K)\right)+p\left(T_{n}(K)\right) \subseteq T_{n}(K)^{(r-1)}
$$

We obtain that

$$
p\left(T_{n}(K)\right)+p\left(T_{n}(K)\right)=T_{n}(K)^{(r-1)}
$$

In particular, if $r=n-2$ we get from Lemma 3.8 that

$$
p\left(T_{n}(K)\right)=T_{n}(K)^{(n-3)}
$$

The proof of the result is complete.
We conclude the paper with following example.
Example 3.1. Let $n \geq 5$ and $1<r<n-2$ be integers. Let $K$ be an infinite field. Let

$$
p(x, y)=[x, y]^{r} .
$$

We have that $\operatorname{ord}(p)=r$ and $p\left(T_{n}(K)\right) \neq T_{n}(K)^{(r-1)}$.

Proof. It is easy to check that $p\left(T_{r}(K)\right)=\{0\}$. Set

$$
f(x, y)=[x, y] .
$$

Note that $f$ is a multilinear polynomial over $K$. It is clear that $\operatorname{ord}(f)=1$. In view of [12, Theorem 4.3] or [15, Theorem 1.1] we have that

$$
f\left(T_{r+1}(K)\right)=T_{r+1}(K)^{(0)} .
$$

It implies that there exist $A, B \in T_{r+1}(K)$ such that

$$
[A, B]=e_{12}+e_{23}+\cdots+e_{r, r+1}
$$

We get that

$$
p(A, B)=[A, B]^{r}=e_{1, r+1} \neq 0
$$

This implies that $p\left(T_{r+1}(K)\right) \neq\{0\}$. We obtain that $\operatorname{ord}(p)=r$.
Suppose on contrary that $p\left(T_{n}(K)\right)=T_{n}(K)^{(r-1)}$ for some $n \geq 5$ and $1<r<$ $n-2$. For $e_{1, r+1}+e_{3, r+3} \in T_{n}(K)^{(r-1)}$, we get that there exists $B, C \in T_{n}(K)$ such that

$$
p(B, C)=[B, C]^{r}=e_{1, r+1}+e_{3, r+3}
$$

It is clear that $[B, C] \in T_{n}(K)^{(0)}$. We set

$$
[B, C]=\left(a_{s, 1+s+t}\right)
$$

It follows that

$$
[B, C]^{r}=e_{1, r+1}+e_{3, r+3} .
$$

We get from the last relation that

$$
\left\{\begin{aligned}
\left(a_{12} a_{23} \cdots a_{r, r+1}\right) e_{1, r+1} & =e_{1, r+1} \\
\left(a_{23} a_{34} \cdots a_{r+1, r+2}\right) e_{2, r+2} & =0 \\
\left(a_{34} a_{45} \cdots a_{r+2, r+3}\right) e_{3, r+3} & =e_{3, r+3}
\end{aligned}\right.
$$

This is a contradiction. We obtain that $p\left(T_{n}(K)\right) \neq T_{n}(K)^{(r-1)}$ for all $n \geq 5$ and $1<r<n-2$. This proves the result.

We remark that [16, Example 5.7] is a special case of Example 3.1 ( $r=2$ and $n=5$ ).

## Acknowledgement

The authors would like to express their sincere thanks to the referee for his/her careful reading of the manuscript.

## References

[1] M. Brešar, Introduction to noncommutative algebra, Springer, New York, 2014.
[2] M. Brešar, Commutators and images of noncommutative polynomials. Adv. Math. 374(2020), 107346, 21p.
[3] M. Brešar, P. Šemrl, The Waring problem for matrix algebras. Israel J. Math. 253(2023), 381-405.
[4] M. Brešar, P. Šemrl, The Waring problem for matrix algebras, II. Bull. London Math. Soc. 55(2023), no,4, 1880-1889.
[5] Q. Chen, A note on the image of polynomials and Waring type problems on upper triangular matrix algebras. arXiv:2305.11734.
[6] Q. Chen, Y. Y. Luo, Y. Wang, The image of polynomials on $3 \times 3$ upper triangular matrix algebras. Linear Algebra Appl. 648(2022), 254-269.
[7] V. Drensky, Free algebras and PI-algebras, Graduate Course in Algebras. Hong Kong, 1996, 1-197.
[8] P. S. Fagundes, P. Koshlukov, Images of multilinear graded polynomials on upper triangular matrix algebras. Canadian J. Math. 75(2023), no.5, 1540-1565.
[9] C. Fontanari, On Waring's problem for many forms and Grassmann defective varieties. Journal of Pure and Applied Algebra 174(2002), 243-247.
[10] U. Helmke, Waring's problem for binary forms. Journal of Pure and Applied Algebra 80(1992), 29-45.
[11] Y. D. Karabulut, Waring's problem in finite rings. Journal of Pure and Applied Algebra 223(2019), 3318-3329.
[12] I. G. Gargate, T. C. de Mello, Images of multilinear polynomials on $n \times n$ upper triangular matrices over infinite field. Israel J. Math. 252(2022), 337-354.
[13] N. Jacobson, Basic Algebra I, Second Edition, W. H. Freeman and Company, New York, 1985.
[14] M. Larsen, A. Shalev, P. H. Tiep, The Waring problem for finite simple groups. Ann. Math. 174(2011), 1885-1950.
[15] Y. Y. Luo, Y. Wang, On Fagundes-Mello conjecture. J. Algebra 592(2022), 118-152.
[16] S. Panja and S. Prasad, The image of polynomials and Waring type problems on upper triangular matrix algebras. J. Algebra 631(2023), 148-193.
[17] C. de Seguins Pazzis, A note on sums of three square-zero matrices. Linear and Multilinear Algebra 65(2017), 787-805.
[18] A. Shalev, Word maps, conjugacy classes, and a noncommutative Waring type theorem. Ann. Math. 170(2009), 1383-1416.
[19] Y. Wang, J. Zhou, Y. Y. Luo, The image of polynomials on $2 \times 2$ upper triangular matrix algebras. Linear Algebra Appl. 610(2021), 560-573.


[^0]:    1991 Mathematics Subject Classification. 16R10, 16S50.
    Key words and phrases. Waring's problem, polynomial, upper triangular matrix algebra, infinite field.
    *Corresponding author.

