
Part VIII
Dark Matter and no

https://doi.org/10.1017/S0074180900216355 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900216355


New Cosmological Data and the Values of the Fundamental Parameters
IAU Symposium, Vol. 201, 2005
Anthony Lasenby and Althea Wilkinson, eds.

0 0 Concordance

Masataka Fukugita

University of Tokyo, Institute for Cosmic Ray Research, Kashiwa,
2778582, Japan

Institute for Advanced Study, Princeton, NJ 08540, USA

Abstract. The determinations of the mass density parameter no are exam-
ined with a particular emphasis given to the new cosmic microwave background
(CMB) experiments. It is shown that the no and the Hubble constant Hi, from
CMB are quite consistent with those from other observations with the aid of the
hierarchical structure formation models based on cold dark matter dominance
with the cosmological constant that makes the universe flat. The concordance
value of no is 0.25-0.45.

1. Introduction

Among the three cosmological parameters that govern the evolution of the Fried-
mann universe, the density parameter no = piPcrit dominantly controls the
gravitational formation of cosmic structure. There are a number of methods
to determine no from observations, some of them without referring to specific
structure formation models and others based on the hierarchical clustering model
assuming the cold dark matter (CDM) dominance. The extraction of no in the
latter is necessarily model-dependent, but this very fact makes the determination
of no particularly useful in testing the validity of the structure formation modeL
Whether no's from various observations with and without models converge to
a unique value is an important cosmological test; an accurate test would even
'prove' the existence of dark matter even prior to its direct observations.

Table 1 gives a summary of no from various observations. This list points
to low value, yet there are variations from no ~ 0.1- 0.2 to 0.4 - 0.5, more than
by a factor of 2. In this talk we re-examine some of these determinations, with
a particular emphasis given to the information we can extract from the recent
cosmic microwave background (CMB) experiments of Boomerang (de Bernardis
2000) and MAXIMA (Hananyet aL 2000). The items which will be examined
in this article are denoted by asterisks in the table.

2. Constraints from CMB anisotropies

2.1. Parametric approach

The fluctuations imprinted on CMB are the result of integration over all infor-
mation concerning the evolution of the universe and the density perturbations.
Therefore, accurate measurements of the CMB harmonics are eligible to pro-
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Table 1. Summary of no (as of 1999). Asterisks indicate items examined
in this article

method no
model independent:
Ho vs to < 0.86 - 0.9
luminosity density +M/L 0.1-0.3 *
cluster baryon fraction 0.05-0.5 *
SNeIa Hubble diagram 0.13-0.47 (flat)

~ 0 (open)
small-scale velocity field (summary) 0.2 ± 0.15

(pairwise velocity) 0.15 ± 0.1
(Local Group kinematics) 0.15 ± 0.15
(Virgo centric flow) 0.2 ± 0.2 *

large-scale velocity field 0.2-1
gravitational lensing > 0.2 (flat)

no constraint (open)
model dependent:
cluster evolution (low n sol'n) o2+0.3

. -0.1
(high n sol'n) ",1

COBE-cluster matching (n == 1) 0.35-0.45 (if A== 0)
0.20-0.40 (if A i= 0) *

shape parameter r 0.15-0.30
CBR acoustic peak 1 - Ao (flat) *

> 0.5 (open)

summary 0.15-0.45 (if open)
0.2-0.4 (if flat)

vide us with a robust tool to study cosmological parameters. With the recent
experiments of Boomerang and MAXIMA this expectation has come closer to
being realised. A number of analyses have followed the data releases, reported
optimal cosmological parameters, mostly using maximum likelihood analyses in
multidimensional parameter space with a variety of prior assumptions (Lange
et al. 2000; Tegmark & Zaldarriaga 2000; Balbi et al. 2000; Jaffe et al.2000;
Bridle et al. 2000). While these analyses are complete and valuable, the high
dimension of parameter space makes it difficult to understand the physics that
characterises the derivation of specific constraints and the interplay of the prior
assumptions and the results. Therefore, we have taken a different approach to
this problem (Hu et al. 2000), the result of which I describe in this section.
The starting point is that the detailed behaviour of the harmonics is not very
important with the present accuracy, but they are characterised by a relatively
small number of parameters. We then study how these parameters depend on
the cosmological parameters to derive constraints.

We choose four parameters: the position of the first peak £1, the height
of the first peak relative to the large scale power taken at £ == 10, HI ==
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Figure 1. Constraints derived from the position of the first peak of CMB,
£1 < 218 and from H 3 . Allowed region is indicated by hatching. The
isochronal contour corresponding to 13.2 Gyr is also plotted.

(b:.Tfl/ ~TI0) 2
, the height of the second peak relative to the first H 2 == (b:.Tf2

/ b:.Tfl)2, and the height of the third relative to the second H 3 == (~Tf3/b:.Tfl)2,
where (b:.Tf)2 == £(f + 1)Cf/27f with Cf the power spectrum of the multipole
moments of the temperature field. We define the positions of the second and
third peaks as those expected from the first, since the higher harmonics peaks
are not conspicuous and the positions are empirically ambiguous. We combine
the Boomerang and MAXIMA data and use model CMB multipoles with a wide
variety of parameters as templets to determine the four parameters. The nor-
malisations of the observed Cf are shifted within the claimed uncertainties. We
obtain: £1 == 206±6, HI == 7.6± 1.4, H 2 == 0.38±0.04 and H 3 == 0.43±0.07. We
adopt one standard deviation when we quote errors, but consider all constraints
at two standard deviations.

We assume a flat (no + Ao == 1) geometry throughout our analysis, since
open geometry is inconsistent with the observations.

2.2. Constraints from the CMB data alone

The position of the first peak is determined by the ratio of the comoving angular
diameter distance to the last scattering epoch and the sound horizon at that
epoch (Hu & Sugiyama 1995). This is the parameter that depends solely on
geometry and acoustic dynamics. The dependence on spectral index n (tilt) is
at most 3%. The observed position of the first peak gives a solid constraint in
the h - no plane, where h is the Hubble constant in units of 100 km s-1Mpc- l .

Particularly interesting to us is a limit on h and no from below, corresponding
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to £1 < 218. The constraint depends on Ob, and the most conservative limit is
obtained at the lowest baryon abundance. Figure 1 shows the limit we derived
from £1 < 218 at 95% confidence level, as evaluated at Obh2 == 0.019, which is
derived from the CMB data, as we discuss later. The limit derived from £1 > 194
is weak, but also it further weakens with a higher baryon abundance, while the
baryon abundance indicated by the CMB data alone is practically unbounded
towards its high side; hence we do not obtain a meaningful limit on the h - 0 0
plane from above. The constraint is summarised as

Ooh3.85 > 0.079 . (1)

This is nearly parallel to an isochronal contour of t < 13.2 Gyr, although there
is no logical reason that the two agree. As a conservative limit we obtain to <
14Gyr.

The ratio of the heights of the second peak to the first primarily depends
on the tilt parameter and the baryon abundance (Hu 2000). This combination
is insensitive to reionisation, the presence of tensor modes or any effects that
are confined to the low multipoles. The remaining sensitivity is to Ooh2 , which
is modest in a flat universe due to some cancellations. The limit we obtained is
given approximately by

(

0 h2) -0.58
Obh2 > 0.0235 + 0.028 _0- (n - 1) .

0.15
(2)

The dependence of HI to the cosmological parameters is more complicated,
but fortunately, most complications tend to decrease HI by adding large scale
anisotropies. Therefore, the lower limit on n from the lower limit of HI in the
absence of reionisation and tensor mode gives a conservative constraint. We
then search for the minimum n that gives HI > 4.8 along the parameter space
that maximises H2. This gives a conservative limit on n as in

n > 0.85 .

With the aid of (2), this translates to a lower limit on 0b

(3)

(4)

The ratio H 3 depends more strongly on 00h2 and n; the baryon affects the
heights of the third and first peaks in a similar way. The observed small H3
leads to an upper limit on 00h2 as a function of n. When supplemented with
the lower limit on n, we get .

00h2 < 0.42 , (5)

as the most conservative limit. This is also plotted in Figure 1 above.
We examined our constraints with a general likelihood analysis of Tegmark

& Zaldarriaga (2000) and confirmed that they do not differ from the likelihood
results by more than a few percent. When the two results do not agree, the
allowed region from the likelihood analysis is limited by imposed prior conditions.
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Figure 2. Summary of constraints from the CMB analysis with the aid of
three external constraints, primordial nucleosynthesis, the rich cluster abun-
dance and the cluster baryon fraction. The allowed region is shown by dark
shading, while the light shaded region is allowed when the constraint from
nucleosynthesis is somewhat relaxed as described in section 2.3.

2.3. Constraints using external information

The constraints on nand 0b can be mapped into those on the h - 00 plane
if appropriate external constraints are employed. We choose three constraints
(i) the baryon abundance from primordial nucleosynthesis, (ii) the rich cluster
abundance at z ~ 0 and (iii) the cluster baryon fraction.

Baryon abundance from primordial nucleosynthesis has been discussed over
many years (see Olive et al. 1999; Tytler 2000 for recent reviews). Olive et al.
give two solutions, a high baryon density option of 0.015 ::; Obh2 < 0.023, and a
low baryon density option 0.004 ::; Obh2 < 0.010 at the 95% confidence. A low
baryon option is motivated by the traditional low value of helium abundance
(Yp == 0.234 ± 0.003) and it points to a high deuterium abundance. This is
consistent with two Lyman limit systems (Tytler et al. 1999 and references
therein). This low baryon solution is excluded by limit (4) from the eMB.

On the other hand, the high baryon option is driven by the recently more
favoured low deuterium abundance, the literal value being D/H==(3.4 ±0.25) x
10-5 . Tytler (2000) claims .an even smaller error for the baryon abundance,
Obh2 == 0.019 ± 0.0012. This high baryon option agrees with Yp == 0.244 ± 0.002
derived by Izotov & Thuan (1998), which is inconsistent with the traditional
estimate. The origin of this discrepancy is of systematic nature, mainly arising
from the use of different helium recombination rates and different corrections for
the collisional excitation. We adopt Obh2 < 0.023 of Olive et al. as the upper
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limit, but also we allow for the possibility that the actual baryon abundance
would be somewhat higher, Obh2 < 0.028, which corresponds to D/H==2 x 10-5
(the interstellar D/H value with modest destruction of deuterium by stars) and
1; == 0.250 - 0.252 (3-4 sigma from the Izotov-Thuan value, taking their error
estimate literally).

With Obh2 < 0.023, when combined with (3), we obtain

0.85 < n < 0.98 ,

0.85 < n < 1.16 .

(6)

(7)

We can fit the low second peak only at two sigma, and a red tilt is needed if we
impose the consistency with the conventional baryon abundance.

This limit on the tilt parameter is combined with the matching condition
of the cluster abundance versus CMB fluctuations to give a constraint on the
h - 00 plane. We adopt the empirical fit of Eke et al. (1996) for the cluster
abundance in the flat universe, (}8 == (0.52 ± 0.08)00°.52+0.1300, and take the
two sigma range as allowed. The empirical value of 0'8 is well converged within 1
sigma among different authors. This is because the cluster abundance depends
strongly on 0'8 due to its appearance in the exponential of a Gaussian function
in the Press-Schechter formalism. With the amplitude at COBE scales with a
14% normalisation uncertainty (95% confidence) (Bennett et al. 1996; Bunn &
White 1997) we obtain a constraint, which is expressed roughly

0.27 < 08. 76hn < 0.35 , (8)

assuming no tensor contributions to COBE and evaluated at Obh2 0.028.
The upper limit comes from overshooting 0'8 and depends on the lower limit on
n, which only tightens with the inclusion of tensors and lowering the baryon
density. The lower limit comes from undershooting 0'8 which is exacerbated
with the inclusion of tensors, and maximised at the highest acceptable baryon
density, but this limit is already in the region disfavoured by the baryon fraction
argument.

The significance of our new constraint over similar ones in the previous work
is that we have relaxed the assumption on the tilt parameter (which was usually
assumed to be flat) and the allowance for a possible higher baryon density, as
the CMB itself suggests. Therefore, what we get here is a quite conservative
constraint without ad hoc assumptions

The third external constraint we consider is the baryon fraction in rich
clusters form X ray observations. The observed baryon fraction shows a slight
increase outwards, and the true baryon faction inferred for the entire cluster
depends on the extrapolation. The estimate ranges from (0.052 ± 0.0025)h-3/2

(White & Fabian 1995) to (0.076 ± 0.008)h-3/2 (Arnaud & Evrard 1999). We
take the 2 sigma limit to correspond to the two extreme edges. Adding baryons
frozen into stars, and require the cluster baryons to agree with the global value,
we obtain

0.019 0 0.023
0.076h1/ 2 + 0.015h < °< O.052h 1/ 2 + 0.006h '

(9)
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(10)

for 0.019 < nbh2 < 0.023 or

0.019 n 0.028
0.076h1/ 2 + 0.015h < 0 < 0.052h1/ 2 + 0.006h '

for 0.019 < nbh2 < 0.028.
Figure 2 shows our summary. The light shading is the allowed region with

nbh2 < 0.028 and the dark one is with the conventional baryon abundance limit
nbh2 < 0.023. We have drawn one more constraint on cosmic age to > 11
Gyr from stellar evolution of globular clusters. While this is not based on a
statistical analysis, no authors have ever claimed cosmic age shorter than this
value (Gratton et al. 1997; Reid 1997; Chaboyer et al. 1998).

The shaded region does not mean that all models in this region are consis-
tent with the CMB data. A viable model with a given (h, no) is constructed
with an appropriate choice of nand nb.

3. no from other observations

There are a number of determinations of the mass density parameter, as we have
listed in Table 1 earlier in this article. We include the Hubble constant in our
list here, since we have always discussed the constraint in the h - no plane in
section 2. We limit our considerations to the flat (non-zero A) universe, since
the open universe grossly conflicts with the CMB observations.

3.1. Hubble constant

Supernova Hubble diagrams and surface brightness fluctuations (SBF) are among
the most accurate secondary distance indicators. The Hubble constant from
SNIa Hubble diagram is converged to 64 ± 3 km s-lMpc-1 using the calibra-
tion with the Saha-Sandage Cepheid distance (Saha et al. 1999) to local SN
host galaxies. The HST-KP group carried out a reanalysis of the Saha-Sandage
Cepheid distance, and found that all their distances are longer by 5-15% than
are obtained with the HST-KP Cepheid analysis procedure, while the reasons
vary from one to another (Gibson et al 2000; Freedman personal communica-
tion). With this calibration Hi, from SNeIa becomes 69±3 km s-lMpc-1 . The
most extensive analysis of SBF with 300 galaxies results in 77 ± 8 km s-lMpc "!

or with the aid of the peculiar velocity flow information from the galaxy distri-
bution 74±4 km s-lMpc-1 (Blakeslee et al. 1999). Considering both SNIa and
SBF, we take 71 ± 7 km s-lMpc-1 as the two sigma overlapping range.

The value of Ho here assumes the LMC distance of 50 kpc. Recent work
on the local distance ladder shows that the distance to LMC is more uncertain
than was thought. It varies from 43 to 53 kpc. This discrepancy is clearly of
systematic nature, and hence we leave this uncertainty as an error to the Hubble
constant. We conclude Ho = (71±4) x (1.15-0.95). This summary is compared
with the most recent HST-KP result 73±2±6 km s-lMpc-1 (Freedman 2000).
For more discussion, see Fukugita (2000).

3.2. no from (MjL) and the luminosity density

The mass density is estimated by multiplying the luminosity density, LB ==
(2.2 ± 0.3) x 108hL

8 Mpc-3 , with the average mass to light ratio (MjLB) of
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galaxies (Peebles 1971). If the dark matter distribution is isothermal, the value

of M/LB inside the virial radius (r = 0.13 Mpc noO.15[M/1012M0]~1200kPC in a
spherical collapse model) is (150 - 350)h for L* galaxies. This is a little smaller
than the value for groups and clusters, (250 - 500)h, from dynamics (Bahcall,
Lubin & Dorman 1995) and from lensing (e.g. Kaiser et al. 1998). Multiplying
the two values we get no = 0.20 ± 0.08.

This conventional estimate assumes that light is a good tracer of mass
and M / L is constant over a wide range of luminosity; it does not include the
unclustered component, which is expected in the hierarchical clustering scenario
and the increase of the mass to light ratio for small galaxies. To account for small
galaxies and unclustered component, we consider galaxies with L > (1/10)L*
and assume the average value of mass to light ratio for these galaxies. According
to the CDM model (no = 0.3, h = 0.7, 0"8 = 0.9) the fraction of mass in
galaxies with M > (1/10)M* is 60% of the total mass. This means that we
must multiply the no estimated from luminous galaxies by a factor of 1.3-1.5,
giving no = 0.16 - 0.43.

3.3. Type Ia supernova Hubble diagram

Taking the 2 sigma error contour given in the paper (Riess et al. 1998; Perl-
mutter et al. 1999) the allowed range of the mass density for the flat universe
is no = 0.13 - 0.47

3.4. Peculiar velocities and density enhancement

It has been known that Virgocentric flow observed at around the Local Group
corresponds to a small mass density, no ~ 0.2 (Peebles 1999). We studied, using
a cosmological simulation of the CDM universe with no ~ 0.4 as input (Cen
& Ostriker 1999), whether such estimates give the correct value for the global
mass density (Nagamine et al. in preparation). We examined infall peculiar
velocities of test particles (galaxies) in the vicinity of large groups and clusters
with a density enhancement 8 > 5 - 10, and calculated no applying a spherical
model just as we do for the Virgocentric infall for the Local Group. We found
that the no derived in this way varies wildly from 0 to 1, while the mean is
located about the correct value. It was also found that if luminous components
are used to calculate the overdensity of clusters, the mean becomes smaller than
the correct value by a factor of 2. This indicates that the Virgo centric infall of
the Local Group is not a robust indicator for no. To obtain the correct global
mass density, we need a large sample of test particles with a proper control over
the biasing of the luminous matter.

no from the large scale flow (including the redshift distortion) is controver-
sial. It varies from no = 0.2 to unity; see Dekel (1999).

3.5. Gravitational lensing frequency

The most important uncertainty in the current analysis is not in the size of the
lensing sample, but in the calculation of the lensing power from galaxy statistics.
Continuous efforts for nearly a decade have brought substantial improvement in
reducing uncertainties in the normalisation factor. Nevertheless, the luminosity
density of early type galaxies which dominantly affects the lensing power is
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still uncertain by about a factor of two. The reason that Kochanek and his
collaborators (Kochanek 1997; Falco et al. 1998) obtained a very stringent
limit on Ao is their use of a large E/Sa luminosity density derived from the Cf'A
luminosity function (Marzke et al. 1994) and a small error assumed in calculating
the likelihood function. Some new lensing statistics analyses presented at this
Conference adopt the lensing power estimated by Kochanek; so they give the
limits on Ao that differ little from Kochanek's result. It seems clear that Ao in
excess of 0.8 is excluded because of a sharp increase of the lensing frequency
towards a higher Ao, but the value below 0.8 is unlikely to be ruled out, since a
shift of the luminosity density baseline by 50% easily modifies such a limit There
are some works which claimed positive Ao as the most likely value, but for the
same reason such results are also liable to be elusive. We take a conservative
limit Ao < 0.8 which is not too sensitive to this concern.

3.6. Power spectrum of galaxies

There are no changes from the analyses of Efstathiou et al. (1990) and Peacock
and Dodds (1994). We take r + (n - 1)/2 = 0.15 - 0.30 (Bond & Jaffe 1999),
where the spectral shape parameter is r ~ Oohexp[-Ob(l + 0 ( 1

) ] (Sugiyama
1995). Although the expressions depend on nand Ob, they give only small
corrections; hence we take this constraint as being independent from CMB.

3.7. Cluster abundance evolution

The matter density can be inferred from evolution of the rich cluster abundance
(Oukbir & Blanchard 1992; Bahcall & Fan 1998). The current results, however,
are controversial, depending sensitively on the estimate of the cluster masses at
high redshift. We do not use this argument as a constraint.

4. Conclusion

Figure 3 presents all constraints discussed here in the h - 0 0 plane. The con-
straints derived from new CMB experiments overlap with those from other ob-
servations well in the flat universe. Another significance is that the (0 0 , h)
parameters derived via structure formation models agree with each other, but
also with those from model-independent analyses, corroborating our understand-
ing of cosmology and structure formation based on the CDM dominance. The
convergent values are 0 0 = 0.25 - 0.45 (Ao = 1 - 0 0) , and h = 0.65 - 0.85.

On the other hand, there is one aspect which would falsify the current un-
derstanding with increasing accuracies of CMB observations. If the errors would
be reduced while the central values of the data remain as they are, the baryon
abundance from the CMB will not be reconciled with primordial nucleosynthe-
sis. This would also raise the problem as to where are these baryons today.
The high baryon option taken in this article (Obh2 ~ 0.02) requires 3/4 of the
baryons being hidden in the vicinity of galaxies and groups of galaxies as warm
gas, yet marginally consistent with various observations (Fukugita, Hogan &
Peebles 1998).

Most determinations of 0 0 still allows the range that spreads by a factor of
two. It seems that the work imminent to be done is to investigate systematic
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Figure 3. Consistency of all constraints discussed in this article. The region
allowed by CMB with the aid of the three external constraints (Figure 2) are
shown by dark shading. The region allowed by all other constraints is shown
by light (vertical) hatching.

errors of each method and to reduce the error by a factor of two in time for the
advancement that will be brought by the on-going C11B experiments, DASI,
CSI and MAP.
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