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Abstract

Let � and p be (not necessarily distinct) prime numbers and F be a global function field of characteristic
� with field of constants κ. Assume that there exists a prime P∞ of F which has degree 1 and let OF be
the subring of F consisting of functions with no poles away from P∞. Let f (X) be a polynomial in X with
coefficients in κ. We study solutions to Diophantine equations of the form Yn = f (X) which lie in OF and,
in particular, show that if m and f (X) satisfy additional conditions, then there are no nonconstant solutions.
The results apply to the study of solutions to Yn = f (X) in certain rings of integers in Zp-extensions
of F known as constant Zp-extensions. We prove similar results for solutions in the polynomial ring
K[T1, . . . , Tr], where K is any field of characteristic �, showing that the only solutions must lie in K.
We apply our methods to study solutions of Diophantine equations of the form Yn =

∑d
i=1(X + ir)m, where

m, n, d ≥ 2 are integers.

2020 Mathematics subject classification: primary 11D41; secondary 11R58.

Keywords and phrases: Diophantine equations over function fields, Diophantine equations involving power
sums and arithmetic progressions, propagation of solutions in towers of function fields.

1. Introduction

Let n ≥ 2 be an integer and κ be a finite field of characteristic � > 0. Let F be a global
function field with field of constants κ and assume that there exists a prime P∞ of F
of degree 1. In other words, we assume that there is a prime P∞ which is totally inert
in the composite κ̄ · F. The ring of integers OF consists of all functions f ∈ F with
no poles away from P∞. Given a polynomial f (X) with coefficients in κ, we study
solutions to the superelliptic Diophantine equation Yn = f (X) for which both X and
Y lie in OF. Superelliptic equations over function fields form an important part of the
modern theory of Diophantine equations. There has been significant interest in proving
finiteness results, as well as in obtaining effective bounds for the number of solutions.
Over algebraic number fields, the equation Yn = f (X) was shown by LeVeque in 1964
to have finitely many solutions, provided certain additional conditions are met (see [10,
Theorem 1]). Brindza [6] later obtained an effective bound on the number of solutions
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to such superelliptic equations. For further details, we refer the reader to [16, Ch. 8].
In the function field case, effective bounds on the number of solutions were obtained
by Mason and Brindza [11, page 168]. In greater detail, given a solution (X, Y) to
Yn = f (X), this result provides an effective upper bound on the height of X in terms of
the genus of the function field F [11, page 166, l.21].

We consider the class of superelliptic Diophantine equations Yn = f (X), for which
the coefficients of f (X) lie in the field of constants. We derive conditions for there to be
no nonconstant solutions. Given a natural number N, denote by hF[N] the cardinality
of the N-torsion in the class group of F. The understanding here is that hF[1] = 1.

THEOREM 1.1 (Theorem 2.4). Let � be a prime number and F be a global function
field of characteristic �. Let OF be the ring of integers of F. Denote by κ the field of
constants of F. Let f (X) be a polynomial with coefficients in κ. Let q � � be a prime
number and let k > 0 be the least integer such that hF[qk] = hF[qk−1]. Assume that the
following conditions are satisfied:

(1) f (X) factorises into f (X) = a0(X − a1)n1 · · · (X − at)nt , where a0 ∈ κ, a1, . . . , at are
distinct elements in κ, n1, . . . , nt are positive integers and t ≥ 2;

(2) at least two of the exponents ni are not divisible by q.

Then any solution (X, Y) to

Yqk
= f (X)

for which X, Y ∈ OF is constant, that is, X and Y are both in κ.

We shall apply our analysis to study a class of Diophantine equations which involve
perfect powers in arithmetic progressions. Let m, n, d ≥ 2 be integers and let r ≥ 1.
There has been significant interest in the classification of integral solutions to the
Diophantine equation

Yn = (X + r)m + (X + 2r)m + · · · + (X + dr)m

(see [1–5, 7, 8, 13]).
We also explore themes motivated by the Iwasawa theory of function fields.

Mazur [12] initiated the Iwasawa theory of elliptic curves over number fields, which
had applications to the growth of Mordell–Weil ranks of elliptic curves in certain
infinite towers of number fields. One hopes to extend such lines of investigation to
curves of higher genus (see [14]) and, more generally, to study the stability and growth
of solutions to any Diophantine equation in an infinite tower of global fields. We study
certain function field analogues of such questions. However, instead of elliptic curves,
we consider the class of superelliptic equations of the form Yn = f (X), where f (X) has
constant coefficients. Let us explain our results in greater detail. Given any integer n,
there is a unique extension κn/κ such that Gal(κn/κ) is isomorphic to Z/nZ. Given a
prime p, set κ(p)

n to denote κpn and set F(p)
n to denote the composite F · κ(p)

n . This gives
rise to a tower of function field extensions

F = F(p)
0 ⊂ F(p)

1 ⊂ · · · ⊂ F(p)
n ⊂ F(p)

n+1 ⊂ · · · .
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[3] Diophantine equations over function fields 381

Let Zp denote the ring of p-adic integers, that is, the valuation ring ofQp. The constant
Zp-extension of F is the infinite union

F(p)
∞ :=

⋃
n

F(p)
n .

It is easy to see that the Galois group Gal(F(p)
∞ /F) is isomorphic to Zp. Let hF denote

the class number of F (see [15, Ch. 5]). Note that since P∞ is assumed to have degree 1,
it remains inert in F(p)

n for all p. Let O(p)
∞ and O(p)

n respectively be the rings of integers
of F(p)

∞ and F(p)
n , that is, the functions f ∈ F∞ with no poles away from P∞. We now

state our main result.

THEOREM 1.2 (Theorem 3.2). Let � be a prime number and F be a global function
field of characteristic �. Let κ be the field of constants of F and let p and q be prime
numbers that are not necessarily distinct. Assume that q � �. Let f (X) be a polynomial
with coefficients in κ satisfying the following conditions:

(1) the polynomial f (X) factorises into f (X) = a0(X − a1)n1 · · · (X − at)nt , where
a0 ∈ κ, a1, . . . , at are distinct elements in κ, n1, . . . , nt are positive integers and
t ≥ 2;

(2) at least two of the exponents ni are not divisible by q.

Then the following assertions hold.

(i) Suppose that p and q are distinct. Then, for all sufficiently large numbers k > 0,
the only solutions (X, Y) to Yqk

= f (X) that are contained in O(p)
∞ are constant.

(ii) Suppose that p � hF. Then the only solutions (X, Y) to Y p = f (X) that are
contained in O(p)

∞ are constant.

As a consequence of this result, for any prime p, there are only finitely many
numbers n, that are not powers of �, for which Yn = f (X) has solutions in F(p)

∞ . The
methods used in proving the theorem are applied to another question of independent
interest. Let K be a field of positive characteristic � and A be the polynomial ring
K[T1, . . . , Tn].

THEOREM 1.3 (Theorem 4.1). With the notation as above, let f (X) be a polynomial
with all of its coefficients and roots in K. Let q � � be a prime number and assume that
the following conditions are satisfied:

(1) f (X) factorises into f (X) = a0(X − a1)n1 · · · (X − at)nt , where a0 ∈ K, a1, . . . , at
are distinct elements in K, n1, . . . , nt are positive integers and t ≥ 2;

(2) at least two of the exponents ni are not divisible by q.

Then any solution (X, Y) ∈ A2 to

Yq = f (X)

is constant, that is, X and Y are both in K.
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382 A. Ray [4]

It follows from this result that if n > 1 is not a power of �, then Xn = f (X) does not
have nonconstant solutions in A.

Organisation. In Section 2 we prove criteria for the constancy of solutions to
Yn = f (X) in global function fields F. The main result in Section 2 is Theorem 2.4.
In Section 3 we extend the results in Section 2 to prove the constancy of solutions to
the above equation in Zp-extensions of F. It is in this section that we prove the main
result of the paper, that is, Theorem 3.2. In Section 4 we prove similar results for the
polynomial rings over a field. Finally, in Section 5 we study the specific case where
f (X) =

∑k
i=1(X + ir)m.

2. Constancy of solutions to Yn = f (X) in a global function field

In this section we introduce basic notions and prove results about the solutions to
certain Diophantine equations over global function fields. Throughout this section, � is
a prime number and A is an integral domain of characteristic � with field of constants κ.
We introduce the notion of a discrete valuation on A.

DEFINITION 2.1. A function d : A→ Z is said to be a discrete valuation if the
following conditions are satisfied:

(1) the values taken by d are nonnegative;
(2) if 1 is the identity element of A, then d(1) = 0;
(3) if f , g ∈ A are nonzero elements, then d( f g) = d( f ) + d(g);
(4) d( f + g) ≤ max{d( f ), d(g)},
(5) if d( f ) < d(g), then d( f + g) = d( f ).

Let A0 be the subring of A consisting of all elements a ∈ A for which d(a) ≤ 0.
Given f , g ∈ A, we say that f divides g if f h = g for some h ∈ A. It is clear that if f
divides g then d( f ) ≤ d(g).

LEMMA 2.2. Let q be a prime number such that q � �, and A be an integral
domain of characteristic � equipped with a function d satisfying conditions (1)–(5) of
Definition 2.1. Let f , g, c ∈ A satisfy the equation

f q − gq = c. (2.1)

Then d( f ), d(g) ≤ d(c). In particular, f and g are contained in A0 if c is contained in A0.

PROOF. Suppose by way of contradiction that d( f ) > d(c) or d(g) > d(c). Assume first
that d( f ) > d(c). Set e := (g − f ). From (2.1), we find that e divides c. As a result,
d(e) ≤ d(c) < d( f ). Hence by property (5) in Definition 2.1,

d(g) = d( f + e) = d( f ).

Therefore, we have deduced that d(g) > d(c). Rewrite (2.1) as

(g + e)q − gq = c
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and expand the left-hand side of this equation via the binomial expansion to give

qegq−1 +

(
q
2

)
e2gq−2 + · · · + eq = c.

Note that since d(e) < d(g), we find that, for all i such that 2 ≤ i ≤ q,

d
((

q
i

)
eigq−i

)
< d(qegq−1)

and therefore,

d(c) = d((g + e)q − gq) = d(qegq−1) = (q − 1)d(g).

This implies that d(g) ≤ d(c), a contradiction. On the other hand, if we assume that
d(g) > d(c) (instead of assuming that d( f ) > d(c)), the same argument applies. �

We shall illustrate this result in various cases of interest. In this section we study
Diophantine equations over global function fields F. Let � be a prime number and
denote by F� the finite field with � elements (that is, Z/�Z). Fix an algebraic closure F̄
of F. Let κ be the algebraic closure of F� in F and let κ̄ be the algebraic closure of κ in
F̄. Set F′ to denote the composite of F with κ̄.

Following [15, Ch. 5], a prime v of F is by definition the maximal ideal of a discrete
valuation ring Ov ⊂ F with fraction field equal to F. A divisor of F is a finite linear
combination D =

∑
v nvv of primes v. In this sum, the nv are all integers and the set

of primes v for which nv � 0 is referred to as the support of D. Given a function
g ∈ F, denote by div(g) the associated principal divisor. Note that any principal divisor
has degree 0. Two divisors are considered equivalent if they differ by a principal
divisor. The class group of F is the group of divisor classes of degree 0 and has
finite cardinality (see [15, Lemma 5.6]). Denote by hF the class number, that is, the
number of elements in the class group. Given a natural number N, denote by hF[N] the
cardinality of the N-torsion in the class group.

The field F′ is identified with the field of fractions of a projective algebraic curve
X over κ̄. A point w ∈ X(κ̄) is also referred to as a prime of F′, since it corresponds to
a valuation ring Ow ⊂ F′ with fraction field F′. Given a prime w of F′ and a prime v
of F, we say that w lies above (or divides) v if the natural inclusion of fields F ↪→ F′

induces an inclusion of valuation rings Ov ↪→ Ow. Given a function g ∈ F or g ∈ F′,
denote by ordv(g) or ordw(g)) respectively the order of vanishing of g at v or w. We refer
to dv(g) := − ordv(g) and dw(g) := − ordw(g) as the order of the pole of g at v and w,
respectively. Given a finite and nonempty set of primes S of F, the ring of S-integers
OS consists of all functions g ∈ F such that dv(g) ≤ 0 for all primes v � S. Let S̄ be
the set of primes of F′ that lie above S. Let A denote the composite OS · κ̄. A function
g ∈ A has the property that dw(g) ≤ 0 for all w � S̄. According to our conventions, OF
is the ring of S integers where S := {P∞}. Since P∞ is a prime of degree 1, it is totally
inert in F′. By abuse of notation, the single prime in S̄ is also denoted by P∞.

We list some basic properties of the function dw on A. The following result applies
for any ring of S̄-integers.
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LEMMA 2.3. Let f and g be a functions in A and w be a point in X(κ̄). Then the
following assertions hold:

(1) if dw(g) ≤ 0 for all w ∈ S̄, then g is a constant function;
(2) dw( f g) = dw( f ) + dw(g);
(3) if dw( f ) > dw(g), then dw( f + g) = dw( f ).

PROOF. Note that since g is contained in A, dw(g) ≤ 0 for all points w � S̄. Therefore,
the assumption that dw(g) ≤ 0 implies that g has no poles and thus must be a constant
function. This proves part (1).

Part (2) clearly follows from the relation ordw( f g) = ordw( f ) + ordw(g).
For part (3), we note that f + g = f (1 + g/ f ). Since it is assumed that

dw( f ) > dw(g), it follows that g/ f vanishes at w. As a result, dw(1 + g/ f ) = 0 and
thus

dw( f + g) = dw( f ) + dw(1 + f /g) = dw( f ),

which proves the result. �

Recall that P∞ is a prime of degree 1 and OF is the associated ring of integers in F.

THEOREM 2.4. Let � be a prime number and F be a global function field of
characteristic �. Let OF be the ring of integers of F. Denote by κ the field of constants
of F. Let f (X) be a polynomial with coefficients in κ. Let q � � be a prime number and
let k > 0 be the least integer such that hF[qk] = hF[qk−1]. Assume that the following
conditions are satisfied:

(1) f (X) factorises into f (X) = a0(X − a1)n1 . . . (X − at)nt , where a0 ∈ κ, a1, . . . , at are
distinct elements in κ, n1, . . . , nt are positive integers and t ≥ 2;

(2) at least two of the exponents ni are not divisible by q.

Then any solution (X, Y) to

Yqk
= f (X) (2.2)

for which X, Y ∈ OF is constant, that is, X and Y are both in κ.

PROOF. Since the elements a1, . . . , at are distinct elements of κ, we find that for all i, j
such that i � j, (X − ai) − (X − aj) = aj − ai is a nonzero element of κ. Therefore, for
i � j, the divisors div(X − ai) and div(X − aj) have disjoint supports.

From equation (2.2),

qk div(Y) =
t∑

i=1

ni div(X − ai).

Since the divisors div(X − ai) have disjoint supports for all i, there are divisors D′i
such that qkD′i = ni div(X − ai). Recall that it is assumed that there are two distinct
indices i and j such that q � ni and q � nj. Without loss of generality, assume that q � n1
and q � n2. Therefore, there exist divisors D1 and D2 such that qkDi = div(X − ai) for
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i = 1, 2. The divisor classes [D1] and [D2] in the class group are in the qk-torsion
subgroup of the class group. Since hF[qk] = hF[qk−1], we find that qk−1Di is principal
for i = 1, 2. Let f and g be functions in F such that

div( f ) = qk−1D1 and div(g) = qk−1D2.

Thus u1 f q = (X − a1) and u2gq = (X − a2), where u1 and u2 are contained in κ. Note
that since (X − ai) has no poles away from {P∞}, the same is true for f and g,
hence, f , g ∈ OF. Setting A := OF · κ̄, we may replace f by u1/q

1 f and g by u1/q
2 g,

and thus assume that f q = (X − a1) and gq = (X − a2) for some elements f , g ∈ A.
We find that f q − gq = a2 − a1 is a nonzero element of κ. The pair (A, dP∞) satisfies
properties (1)–(5) and therefore dP∞( f ) = dP∞(g) = 0 by Lemma 2.2. Therefore, by
Lemma 2.3(1), f and g are both in κ. Hence, X = f q + a1 is in κ and thus so is Y. �

REMARK 2.5. We make the following observations.

• Theorem 2.4 implies that k = 1 if q � hF.
• If the roots ai are not contained in F, we may base-change F by an extension κ′ of κ

which is generated by the roots ai.
• Suppose that f (X) satisfies the conditions of Theorem 2.4. Since q � hF for all but

finitely many primes q, it follows that Yq = f (X) has no nonconstant solutions in
F for all but finitely many primes q. In fact, it is easy to see that Theorem 2.4
implies that Yn = f (X) has no nonconstant solutions for all but finitely many natural
numbers n.

3. Constancy of solutions to Yn = f (X) in the constant Zp-extension of a
function field

In this section we apply Theorem 2.4 to study questions motivated by Iwasawa the-
ory. Given primes p and q (not necessarily distinct), let hn(p, q) denote # Cl(F(p)

n )[q∞],
the cardinality of the q∞-torsion in the class group of F(p)

n .

THEOREM 3.1 (Leitzel, Rosen). Let p and q be (not necessarily distinct) prime
numbers and F be a function field of characteristic �. The following assertions hold:

(1) if p and q are distinct, then, as n goes to infinity, the quantity hn(p, q) is bounded;
(2) if p does not divide hF, then hn(p, p) = 1 for all n.

PROOF. Part (1) follows from [15, Theorem 11.6]. For function fields of genus 1, the
result was proved by Leitzel [9]. For part (2), see [15, Proposition 11.3]. �

Recall notation from the introduction. The prime P∞ is totally inert in F(p)
∞ for any

prime p. We set O(p)
∞ to denote the ring of integers of F(p)

∞ , that is, the functions with
no poles outside {P∞}. The following is the main result of this paper.

THEOREM 3.2. Let � be a prime number and F be a global function field with field of
constants κ. Let p and q be prime numbers that are not necessarily distinct, and assume
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that q � �. Let f (X) be a polynomial with coefficients in κ satisfying the conditions of
Theorem 2.4. Then the following assertions hold.

(1) If p and q are distinct, then, for all sufficiently large numbers k > 0, the only
solutions (X, Y) to Yqk

= f (X) in O(p)
∞ are constant.

(2) If p � hF, then the only solutions (X, Y) to Y p = f (X) in O(p)
∞ are constant.

PROOF. First, we consider the case where p � q. From Theorem 3.1(1), hn(p, q) is
bounded as n goes to infinity. Choose k > 0 such that qk is larger than max hn(p, q).
From Theorem 2.4, Yqk

= f (X) has no nonconstant solutions in O(p)
n for all n, and

therefore, no nonconstant solutions in O(p)
∞ . Hence, there are no nonconstant solutions

in F∞.
Next, we consider the case where p = q and p � hF. Note that if p � hF, then by

Theorem 3.1(2), hn(p, p) = 1 for all n. It follows from Theorem 2.4 that Y p = f (X)
has no nonconstant solutions in O(p)

n for all n, and therefore no nonconstant solutions
in O(p)

∞ . �

4. Constancy of solutions to Yn = f (X) in a polynomial ring in r-variables

In this section we study solutions to equations of the form Yn = f (X) in polynomial
rings over a field. Let K be any field of characteristic � > 0 and A be the polynomial
ring K[T1, . . . , Tr]. Given a polynomial g, let di(g) be the degree of g viewed as a
polynomial in Ti over the subring K[T1, . . . , Ti−1, Ti+1, . . . , Tr]. The pair (A, di) satisfies
conditions (1)–(5) of Definition 2.1. The class group Cl(A) denotes the group of
equivalence classes of Weil divisors. Since A is a unique factorisation domain, we
have that Cl(A) = 0.

THEOREM 4.1. With the notation above, let f (X) be a polynomial with all of its
coefficients in K. Let q � � be a prime number and assume that the following conditions
are satisfied:

(1) f (X) factorises into f (X) = a0(X − a1)n1 . . . (X − at)nt , where a0 ∈ K, a1, . . . , at
are distinct elements in K, n1, . . . , nt are positive integers and t ≥ 2;

(2) at least two of the exponents ni are not divisible by q.

Then any solution (X, Y) ∈ A2 to

Yq = f (X)

is constant, that is, X and Y are both in K.

PROOF. Note that the algebraic closure of K in A is equal to K. We may as well
replace K by its algebraic closure and assume without loss of generality that K is
algebraically closed and that q � n1 and q � n2. Since the class group of A is trivial,
the same argument as in the proof of Theorem 2.4 shows that (X − a1) = f q and
(X − a2) = gq for f , g ∈ A. Therefore, f q − gq = a2 − a1, an element of K. Lemma 2.2
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then implies that di( f ) = di(g) = 0 for all i, hence f , g are both in K. The result
follows. �

5. Perfect powers that are sums of powers in arithmetic progressions

In this section we apply the results from previous sections to study the solutions of
a Diophantine equation involving perfect powers in arithmetic progression:

Yn = f (X) := (X + r)m + (X + 2r)m + · · · + (X + dr)m.

Here, m, n, r, d are integers such that m, n, d ≥ 2 and r ≥ 1. Let Δ denote the discrimi-
nant of f (X) viewed as a polynomial with integral coefficients.

THEOREM 5.1. Let F be a function field with characteristic � ≥ 5 and field of functions
κ. Let q � � be a prime. Assume that the following conditions are satisfied.

(1) All roots of f (X) are contained in κ.
(2) � � r.
(3) At least one of the following conditions are satisfied:

(a) � � Δ;
(b) q > m and d � 0,±1 mod �.

Let k be the minimal value such that hF[qk] = hF[qk−1]. Then there are no nonconstant
solutions (X, Y) to

Yqk
= f (X) =

d∑
i=1

(X + ir)m

in O2
F.

PROOF. With the notation from the statement of Theorem 2.4, we write

f (X) = a0

t∏
j=1

(X − ai)ni ,

where a1, . . . , at are distinct elements of κ. The result follows from Theorem 2.4
provided that:

(1) t ≥ 2;
(2) at least two of the exponents ni are not divisible by q.

Note that if � � Δ, then all roots of f (X) are distinct in κ. Hence, ni = 1 for all i and
t = d ≥ 2. In particular, both of the above conditions are satisfied.

On the other hand, assume that q > m. Clearly, all values ni are less than or equal
to deg f (X) ≤ m, and since q > m, it follows that q � ni for all i. It suffices to check
that t ≥ 2 if d � 0,±1 mod �. Suppose not, then f (X) is of the form d(X + a)m, for
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some a ∈ κ. Expanding f (X) =
∑d

i=1(X + ir)m,

d∑
i=1

(X + ir)m =

d∑
i=1

m∑
j=0

(
m
j

)
ijrjXm−j

=

m∑
j=0

(
m
j

)
rj
( d∑

i=1

ij
)
Xm−j

= dXm + mr
(d(d + 1)

2

)
Xm−1 +

(
m
2

)
r2

(d(d + 1)(2d + 1)
6

)
Xm−2 + · · · .

Since f (X) = d(X + a)m and � � d, we find that

aj = rj
(1
d

d∑
i=1

i j
)

for all values of j. In particular,

a = r
( (d + 1)

2

)
and a2 = r2

( (d + 1)(2d + 1)
6

)
.

We thus arrive at the relation

a2 = r2
( (d + 1)

2

)2
= r2

( (d + 1)(2d + 1)
6

)
. (5.1)

The relation holds in Z/�Z. Since � � r and d � −1 mod � by assumption, relation (5.1)
gives

(d + 1)
4

=
2d + 1

6
.

This is not possible since it is assumed that d � 1 mod �. Thus, Theorem 2.4 applies
to give the result. �

THEOREM 5.2. Let F be a function field with characteristic � ≥ 5 and field of
functions κ. Let q � � be a prime. Assume that the following conditions are satisfied.

(1) All roots of f (X) are contained in κ.
(2) � � r.
(3) At least one of the following conditions are satisfied:

(a) � � Δ;
(b) q > m and d � 0,±1 mod �.

Let p be any prime number. Then the following assertions hold.

(i) If p � q, then for all large enough values of k > 0, there are no nonconstant
solutions to Yqk

= f (X) in O(p)
∞ .

(ii) If p = q and p � hF, then there are no nonconstant solutions to Y p = f (X) in O(p)
∞ .
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PROOF. It follows from the proof of Theorem 5.1 that the conditions of Theorem 3.2
are satisfied, and thus the result follows. �

THEOREM 5.3. Let K be a field of characteristic � ≥ 5 and let A be the polynomial ring
K[T1, . . . , Tr]. Let q � � be a prime. Assume that the following conditions are satisfied.

(1) All roots of f (X) are contained in K.
(2) � � r.
(3) At least one of the following conditions are satisfied:

(a) � � Δ;
(b) q > m and d � 0,±1 mod �.

Then any solution (X, Y) ∈ A2 to

Yq = f (X)

is constant, that is, X and Y are both in K.

PROOF. It follows from the proof of Theorem 5.1 that the conditions of Theorem 4.1
are satisfied. The result thus follows from Theorem 4.1. �
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