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Abstract We study cofinal systems of finite subsets of ω1. We show that while such systems can be NIP,
they cannot be defined in an NIP structure. We deduce a positive answer to a question of Chernikov
and Simon from 2013: In an NIP theory, any uncountable externally definable set contains an infinite
definable subset. A similar result holds for larger cardinals.

1. Introduction

Suppose that M is a structure and x a tuple of variables. Recall that a set X ⊆Mx is
M -definable if there is some formula φ(x) over M such that φ(M) =X. The set X is

externally definable if there is some elementary extension N �M and a formula ψ(x)

over N such that X = ψ(M) = {a ∈Mx |N � ψ(a)}.
When Th(M) is stable, all externally definable subsets are in fact M -definable (this is

a characterization of stability: all types over any model are definable).

Let T be a theory. We consider the following natural question:
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2 M. Bays et al.

Question 1.1. Is there some (infinite) cardinal λ such that for any M � T and any

externally definable set X ⊆ Mk, if |X| ≥ λ, then X contains an infinite M -definable

subset?

We cannot hope to say much about externally definable sets in arbitrary theories. In

particular, supposing that T has a strong form of the independence property (IP), the

answer to Question 1.1 is negative (see Remark 5.5). On the other hand:

Fact 1.2. [CS13, Corollary 1.12] Suppose T is not IP (NIP). Then the answer to Question
1.1 is positive: One can take λ= �ω.

For a complete theory T, let ext(T ) be the minimal λ as in Question 1.1 if such exists,

and ext(T ) =∞ otherwise. If T is NIP, Fact 1.2 shows that ext(T )≤�ω. We first observe

that we cannot hope to improve this to ext(T ) = ℵ0.

Example 1.3. [CS13, just above Question 1.13] Let M be the linear order (ω+Z, <),
whose theory is NIP (and even dp-minimal; see [Sim15, Proposition A.2]). Then, ω is

externally definable (as is any cut), but no infinite subset of ω is M -definable since

Th(M) has quantifier elimination after adding the successor and predecessor functions.
Thus, ext(Th(M))≥ ℵ1.

In their paper [CS13, Question 1.13], Chernikov and Simon posed the following question:

Is it true that ext(T )≤ ℵ1 whenever T is NIP?

In this paper, we positively answer this question (see Main Theorem 1.1). We use

the existence of honest definitions (see Definition 2.3 and Fact 2.4). Let X = φ(M,c)
be externally definable and uncountable, and let ψ(x,z) be an honest definition for

tpφopp(c/M). This means that for every finite set X0 ⊆ X, there is some d ∈ Mz such

that

X0 = φ(X0,c)⊆ ψ(M,d)⊆ φ(M,c) =X. (*)

If one of these sets Yd :=ψ(M,d) is infinite we are done, so assume for all d as in Equation
(*), Yd is finite. We get a family of finite subsets of X which is cofinal as a subset of the

partial order P<ω(X) of finite subsets of X. This raises the question:

Question 1.4. Suppose F is a cofinal family of finite subsets of ℵ1. Can F have finite

VC-dimension?
In other words, can the relation ∈|(ℵ1×F) be NIP?

In Theorem 3.8, we give a positive answer to Question 1.4. This means that the fact that

the honest definition is NIP is not in itself a guarantee that X has an infinite M -definable

subset (see Remark 5.2).
On the other hand, we prove that if F is a cofinal family of finite subsets of ℵ1, then

the two-sorted structure (ℵ1,F ;∈) has IP. We conclude (in Theorem 5.1):

Main Theorem 1.1. For T NIP, ext(T )≤ ℵ1.
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1.1. A generalisation to arbitrary cardinals

We also consider the following generalisation of Question 1.1.

Question 1.5. Let T be a theory and κ an infinite cardinal. Is there some cardinal λ
such that for any M � T and any externally definable set X ⊆ Mk, if |X| ≥ λ, then X

contains an M -definable subset of size ≥ κ?

For a complete theory T, let ext(T,κ) be the minimal λ as in Question 1.5 (if it does

not exist, let ext(T,κ) =∞). So ext(T ) = ext(T,ℵ0). The proof of [CS13, Corollary 1.12]

can easily be adapted to show that if T is NIP, then ext(T,κ)≤ �ω(κ).
The following slight adaptation of Example 1.3 gives us an NIP theory T (namely DLO)

with ext(T,κ) ≥ κ+ for κ ≥ ℵ1. Let I be an extension of the linear order (κ, <) where

between any two ordinals we put a copy of Q. Let M = Q+ I +Q. Then M is a dense
linear order and thus Th(M) has quantifier elimination. The set I is externally definable

but contains no M -definable subset of size κ.

In fact, we prove the main theorem, Theorem 5.1, in this generality: If T is NIP, then

ext(T,κ)≤ κ+.

1.2. Structure of the paper

In Section 2, we give the necessary preliminaries on NIP and honest definitions. In

Section 3, we discuss Question 1.4. In Section 4, we prove the technical lemmas needed

to prove Theorem 5.1, which is proven in Section 5 and supplemented by some open

questions.
In a previous version of this paper there was a mistake in the proof of Theorem 3.8

(pointed out to us by George Peterzil). The old proof involved the construction of well

orders of order type ω on countable ordinals which agree up to finite sets. Since this result
may be of independent interest, we put it in Appendix A.

2. Preliminaries

2.1. Notations

Our notation is standard. We use L to denote a first order language and φ(x,y) to denote

a formula φ with a partition of (perhaps a superset of) its free variables. Let φopp be the

partitioned formula φ(y,x) (it is the same formula with the partition reversed).
T will denote a complete theory in L, and U � T will be a monster model (a sufficiently

large saturated model).

When x is a tuple of variables and A is a set contained in some structure (perhaps in a
collection of sorts), we write Ax to denote the tuples of the sort of x (and of length |x|)
of elements from A; alternatively, one may think of Ax as the set of assignments of the

variables x to A. If M is a structure and A ⊆Mx, b ∈My, then φ(A,b) = {a ∈ A |M �
φ(a,b)}.
When B ⊆ U , L(B) is the language L augmented with constants for elements from B

so that a set is B -definable if it is definable in L(B).
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For an L-formula φ(x,y), an instance of φ over B ⊆U is a formula φ(x,b) where b ∈By,

and a (complete) φ-type over B is a maximal partial type consisting of instances and

negations of instances of φ over B. We write Sφ(B) for the space of φ-types over B in x
(in this notation, we keep in mind the partition (x,y), and x is the first tuple there). We

also use the notation φ1 = φ and φ0 = ¬φ. For a ∈ Ux, we write tpφ(a/B) ∈ Sφ(B) for its

φ-type over B.

2.2. VC-dimension and NIP

Definition 2.1 (VC-dimension). Let X be a set and F ⊆P(X). The pair (X,F) is called
a set system. We say that A⊆X is shattered by F if for every S ⊆ A there is F ∈ F
such that F ∩A = S. A family F is said to be a VC-class on X if there is some n < ω

such that no subset of X of size n is shattered by F . In this case, the VC-dimension
of F , denoted by VC(F), is the smallest integer n such that no subset of X of size n+1

is shattered by F .

If no such n exists, we write VC(F) =∞.

Definition 2.2. Suppose T is an L-theory and φ(x,y) is a formula. Say φ(x,y) is NIP if

for some/every M � T , the family {φ(Mx,a) | a ∈My} is a VC-class. Otherwise, φ is IP.
The theory T is NIP if all formulas are NIP. A structure M is NIP if Th(M) is NIP.

Definition 2.3. [Sim15, Definition 3.16 and Remark 3.14] Suppose T is an L-theory and

M � T . Suppose that φ(x,y) is a formula, A ⊆Mx is some set and b ∈ Uy. Say that an

L-formula ψ(x,z) (with z a tuple of variables each of the same sort as x ) is an honest
definition of tpφopp(b/A) if for every finite A0 ⊆A there is some c ∈Az such

φ(A0,b)⊆ ψ(A,c)⊆ φ(A,b).

In other words, for all a ∈ A, if ψ(a,c) holds, then so does φ(a,b) and for all a ∈ A0 the

other direction holds: If φ(a,b) holds, then ψ(a,c) holds.

The existence of honest definitions for NIP theories was first proved in [CS13]. This

was improved in [CS15] to get uniformity of the honest definitions assuming that T is
NIP. This was subsequently improved to:

Fact 2.4. [BKS21, Corollary 5.23] If φ(x,y) is NIP, then there is a formula ψ(x,z) that

serves as an honest definition for any φopp-type over any set A of size ≥ 2.

We also recall the Shelah expansion.

Definition 2.5. For a structure M, the Shelah expansion MSh of M is given by: For

any formula φ(x,y) and any b ∈ Uy, add a new relation Rφ(x,b)(x) interpreted as φ(M,b).

Fact 2.6. [She09] If T is NIP, then for any M � T , MSh is NIP.

3. The VC-dimension of cofinal families of finite subsets of an

uncountable set

The goal of this section is to answer Question 1.4.
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Definition 3.1. We say that a set F of subsets of a set X is ω-cofinal if every finite
subset of X is contained in some element of F . (In the case that F consists of finite

subsets of X, we omit ‘ω-’.)

We start with an easy observation.

Remark 3.2. If F is an ω-cofinal family of subsets of an infinite set X such that if s∈F
then |s| < |X|, then ∈ |(X×F) is unstable: There exist (xi,si)i ∈ ω such that xi ∈ sj iff

i≤ j. Indeed, inductively choose xi ∈X and si ∈F such that xi /∈
⋃

j<i sj and si contains

{xj | j ≤ i}.

The proof of [CS13, Corollary 1.12(2)] can be adapted to say that if |X| ≥ �ω and F is
a cofinal family of finite subsets of X, then F is not a VC-class (i.e., it has IP). In fact,

one can also make a connection between the VC-dimension of F and the cardinality of X

(via the alternation rank of the appropriate relation). The next proposition replaces �ω

with ℵω, and gives a precise lower bound on the VC-dimension in terms of the cardinality
of X.

Proposition 3.3. If |X| ≥ ℵn, then any cofinal system F of finite subsets of X has

VC-dimension > n. So any cofinal set system of finite sets on a set of size ≥ ℵω has IP.

Proof. We may assume X = ℵn.
For finite subsets A,B ⊆X, write A 
B to mean that if D ∈F contains A then D∩B �=

∅, and write A �
B for the negation of this.

Observation 3.4. We have A �
 ∅ for any A since F is cofinal.

Observation 3.5. If A �
B, then there are only finitely many c∈X such that A
B∪{c}.
(Indeed, if D ∈ F witnesses A �
B, then we must have c ∈D.)

Observation 3.6. If A′ ⊆A and A �
B, then A′ �
B.

We find ci ∈ ℵi for 0≤ i≤ n by downwards induction such that for k = n,...,0,−1:

(+)k

{
for any partition c>k =A∪B, where A,B are disjoint and any bi ∈ ℵi for i≤ k,

b≤k ∪A �
B.

(+)n holds by Observation 3.4.
(+)−1 means that {ci | i < n+1} is shattered, from which we conclude.

Suppose (+)k holds, we choose ck ∈ ℵk such that (+)k−1 holds.

Such a ck exists because for each of the ℵk−1 choices for b<k and A, there are only
finitely many choices to rule out. More explicitly, for every choice of b<k as above, and

any A ⊆ c>k such that b<k ∪A �
 c>k \A, let sb<k,A = {c ∈ ℵk | b<k ∪A 
 c>k \A∪{c}}.
By Observation 3.5, sb<k,A is finite for each such b<k,A, and let ck ∈ ℵk \ (

⋃
{sb<k,A |

b<k ∪A �
 c>k \A}∪ c>k).

(+)k−1 holds: If ck ∈A, then we are done by induction, and otherwise ck ∈B and this

follows from Observation 3.6 and the choice of ck.
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Remark 3.7. With the same proofmutatis mutandis, one can see that if F is an ω-cofinal
family of subsets of X, each of size < ℵα, and if |X| ≥ ℵα+n, then F has VC-dimension

> n.

Theorem 3.8. There is a cofinal family F of finite subsets of ℵ1 of VC-dimension 2.

Proof. Let δ ≤ ω1. Suppose that C = (<α)α < δ is a sequence of linear orders, where <α

is a linear order on α. We define the following relation on triples α,β,γ < δ: α,β 
C γ iff
β,γ < α and γ <α β. Say B ⊆ δ is 
C-closed if for any α,β ∈B, if α,β 
C γ, then γ ∈B.

We inductively define well-orders <α on α < ω1 such that

(∗)α any finite subset A ⊆ α extends to a finite subset A ⊆ B ⊆ α such that B ∪{α} is

Cα

-closed for Cα := (<β)β ≤ α.

(∗)0 holds with <0 the empty order.

Suppose (∗)α holds. Let <α+1 be the order obtained from <α by putting α at the start:
<α+1 =<α∪{(α,β) | β < α}. Let A⊆ α+1. By (∗)α, let B ⊆ α be a finite set containing

A\{α} ⊆ α such that B′ :=B∪{α} is 
Cα
-closed. Then it follows from the definition of

<α+1 that also B′∪{α+1} is 
Cα+1
-closed. Since B′ is finite and contains A, we conclude

that (∗)α+1 holds.
Suppose that η < ω1 is a limit ordinal and (∗)α holds for all α < η. Note that for

α < β < η and any B ⊆ α, B is 
Cα
-closed iff B is 
Cβ

-closed.

Since η is countable, it follows that η=
⋃

n∈ω Sn, where for each n<ω, Sn is finite, Sn ⊆
Sn+1 and Sn is 
Cα

-closed for any (some) α < η such that Sn ⊆ α. (In the construction,

given Sn, let S′
n = Sn∪{βn}, where (βn)n < ω enumerates η and let Sn+1 be finite and


Cα
-closed containing S′

n for α< η such that S′
n ⊆ α.) We define <η to be of order type ω

in such a way that each Sn is an initial segment. Then (∗)η holds: If A is a finite subset of

η, then A is contained in some Sn which is finite and 
Cα
-closed for any α large enough,

and since Sn is an initial segment of <η, Sn∪{η} is 
Cη
-closed.

Finally, let C = (<α)α < ω1 and 
= 
C . Let F be the family of finite subsets of ω1 which
are 
-closed. By the above construction, F is cofinal. As for any triple α0,α1,α2 < ω1 of

distinct ordinals, there is some permutation σ of 3 such that ασ(0),ασ(1) 
 ασ(2), F does

not shatter any set of size 3.

Corollary 3.9. The following statement is independent of the Zermelo-Frankel axioms

of set theory and Choice (ZFC): there is an NIP cofinal family of finite subsets of 2ℵ0 .

Proof. On the one hand, the Continuum Hypothesis (CH) is consistent with ZFC (by
Gödel’s theorem; see e.g., [Jec03, Theorem 13.20]), and on the other hand it is consistent

with ZFC that ℵω < 2ℵ0 (using Cohen forcing; see, e.g., [Jec03, Chapter 15, “Cohen

Reals”]). Thus, the statement follows from Proposition 3.3 and Theorem 3.8.

Question 3.10. Is there a cofinal family of finite subsets of ℵ2 of VC-dimension 3?

More generally: Is the bound in Proposition 3.3 tight, or can we improve ℵω to a smaller

cardinal?

4. NIP and cofinal families of finite subsets of an uncountable set

This section is devoted to proving the following theorem.
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Theorem 4.1. Suppose that κ is an infinite cardinal, |X| ≥ κ+, and F is an ω-cofinal

family of subsets of X, each of size < κ. Then (X,F ;∈) has IP (as a two-sorted structure

whose only relation is ∈ ⊆X×F).

The proof relies upon the following lemma.

Lemma 4.2. Let κ be any infinite cardinal. Assume that:

1. |X| ≥ κ+.

2. R⊆Xn and 1≤ n.

3. For every a1, . . . ,an−1 ∈X, |{a0 ∈X |R(a0,a1, . . . ,an−1)}|< κ.

4. For every set A⊆X of size |A|= n, for some a ∈ A and some tuple ā ∈ (A\a)n−1,

R(a,ā) holds.

Then, there is some partition of {1, . . . ,n− 1} into nonempty disjoint sets u,v such

that, letting x := (xi)i ∈ u∪{0} and y := (xi)i ∈ v, the partitioned formula φ(x,y) :=
R(x0,x1, . . . ,xn−1) has IP.

Remark 4.3. Lemma 4.2 does not hold if we replace κ+ by κ in (1). Indeed, let X = ω
and let R(x,y) = (x < y). Then (2)–(4) hold for κ= ℵ0 and n= 2 but R is NIP (by, e.g.,

[Sim15, Proposition A.2]).

Remark 4.4. Note that conditions (1)–(4) imply that n > 2. If n = 1 then by (3), R
defines a set of size < κ, but by (4), R contains X, contradicting (1). Suppose that n= 2

and for a∈X let sa = {b∈X |R(b,a)}. Let X0,X1 ⊆X be such that X0∩X1 = ∅, |X0|= κ

and |X1| = κ+. Let S =
⋃
{sa | a ∈ X0}. As |S| ≤ κ, there must be some b ∈ X1 \S. As

|sb|< κ, there must be some a ∈X0 \sb. Then a /∈ sb and b /∈ sa, contradicting (4).

The following example shows that the conditions of Lemma 4.2 can hold when n= 3.

Example 4.5. Suppose that for each α < ω1, <
α is a well order on α of order type ω.

For α,β,γ < ω1, let R(γ,β,α) hold iff γ,β < α and γ <α β. Then R satisfies the conditions

of Lemma 4.2 with κ= ℵ0.

Remark 4.6. In essence, the proof of Lemma 4.2 is an induction on n, with Remark 4.4

as the base case. However, we need to keep track of sets witnessing IP (Dk,j,c̄

Ā
in the proof

below), which substantially complicates the proof.

Proof of Lemma 4.2. Assume not, that is, that

(5) for any partition of {1, . . . ,n − 1} into nonempty disjoint sets u,v, letting

x := (xi)i ∈ u∪{0} and y := (xi)i ∈ v the partitioned formula φ(x,y) :=

R(x0,x1, . . . ,xn−1) is NIP.

Define R′ ⊆ Xn by R′(a0, . . . ,an−1) iff for some tuple ā ∈ {a1, . . . ,an−1}n−1, R(a0,ā)
holds. Note that R′ satisfies (2)–(5) above (it satisfies (5) as a finite disjunction of NIP

relations; in fact (5) can now be simplified by saying that R′(x0, . . . ,xk−1;xk, . . . ,xn−1) is

NIP for any 1< k < n). Thus, we can replace R with R′ and assume in addition that
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(6) For any tuple ā ∈Xn−1 and for any permutation ā′ of ā, R(X,ā) =R(X,ā′).

For any nonempty set t⊆X of size ≤ n−1, let st =R(X,ā), where ā is any enumeration

of t of length n−1; this is well-defined by (6). We can then restate (4) as:
� For every t of size n, for some a ∈ t, a ∈ st\{a}.
We may assume that |X| = κ+ and even that X = κ+. When we say that a subset of

X is ‘cofinal’ or ‘contains an end segment of some cofinal set’, we mean with respect to
the canonical order on κ+. For a cofinal set D ⊆ X and some property P ⊆ X, write

∀∗x ∈D P (x) to mean that P contains an end segment of D. By downwards induction on

k ∈ [2,n] (note that by Remark 4.4, n > 2, so this range for k makes sense), we will find:

(A) mk < ω, and

(B) a cofinal set Dk,j,c̄
Ā

⊆X for every j ∈ [k,n) and c̄ ∈Xj−k and Ā ∈
∏

i∈[k,j]P(mi)

such that �k and �k below hold. To state these conditions, we first introduce some

additional notation:

• For l,j with k ≤ l≤ j ≤ n, let M j
l :=

∏
i∈[l,j]P(mi). We denote elements of M j

l by

(j+1− l)-tuples Ā. For j < l, set M j
l := {∅}.

• For j ∈ [k,n], t⊆X of size k−1, c̄ ∈Xj−k, and Ā ∈M j−1
k , define sets sk,j,c̄,Āt as

follows. We set sk,n,c̄,Āt = st∪c̄, and then define recursively for j ∈ [k,n):

sk,j,c̄,Āt = {a ∈X | ∃A⊆mj ∀∗c ∈Dk,j,c̄
ĀA

a ∈ sk,j+1,c̄c,ĀA
t }.

• For t⊆X of size k−1, let skt = sk,k,∅,∅t .

Now, we can state the conditions to be satisfied by our inductive construction:

�k For every j ∈ (k,n) and every cc̄ ∈ Xj−k and AĀ ∈ M j
k , Dk,j,cc̄

AĀ
⊆ Dk+1,j,c̄

Ā
(for k ≥ n−1, this condition holds trivially).

�k For all t⊆X of size |t|= k, for some a ∈ t, a ∈ skt\{a}.

Note that each |sk,j,c̄,Āt |< κ by downwards induction on j : For j = n this is clear, and

suppose that |sk,j+1,c̄c,ĀA
t |<κ for all c∈X and A⊆mj . Towards a contradiction, assume

that sk,j,c̄,Āt contains a set F of size κ. We may assume that for some A ⊆ mj and all

a ∈ F , ∀∗c ∈Dk,j,c̄
ĀA

a ∈ sk,j+1,c̄c,ĀA
t . For any a ∈ F , there is an end segment Fa of Dk,j,c̄

ĀA

such that for any c ∈ Fa, a ∈ sk,j+1,c̄c,ĀA
t . Since Dk,j,c̄

ĀA
is cofinal in κ+ (which is a regular

cardinal),
⋂

a∈F Fa contains an end segment of Dk,j,c̄

ĀA
, and in particular is nonempty. Let

c ∈
⋂

a∈F Fa. Then F ⊆ sk,j+1,c̄c,ĀA
t , contradicting the induction hypothesis.

Note also that for t⊆X of size n−1, st = snt .

We now proceed with the inductive construction of the mk and Dk,j,c̄
Ā

.
For k = n, let mn = 0. Then �n holds trivially and �n holds by � above.

Assume that 2 ≤ k < n, and we found mk′ and cofinal sets Dk′,j,c̄
Ā

such that �k′ and

�k′ hold for all k′ > k. We want to find mk and sets Dk,j,c̄

Ā
such that �k and �k hold.

For m< ω, we let ⊗m be the following statement: There are
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• cofinal sets Dk,j,c̄
Ā

for j ∈ [k,n) and c̄ ∈Xj−k and Ā ∈ (P(m)×M j
k+1), and

• subsets ti ⊆X of size k for i < m

such that:

(I) �k holds with m playing the role of mk;

(II) if B �=A are subsets of m, and i := min(B �A) ∈B, then for some enumeration ā
of ti, the following hold:

⊕ for all ck ∈Dk,k,∅
(B) , for some Ak+1 ⊆mk+1 and all ck+1 ∈D

k,k+1,(ck)
(B,Ak+1)

, . . ., for

some An−1 ⊆mn−1 and all cn−1 in D
k,n−1,(ck,...,cn−2)
(B,...,An−1)

,

R(ā,ck, . . . ,cn−1);

� for all ck ∈Dk,k,∅
(A) , for all Ak+1 ⊆mk+1 and all ck+1 ∈D

k,k+1,(ck)
(A,Ak+1)

, . . ., for all

An−1 ⊆mn−1 and all cn−1 in D
k,n−1,(ck,...,cn−2)
(A,...,An−1)

,

¬R(ā,ck, . . . ,cn−1).

If ⊗m holds for all m< ω, we get IP as we now explain. Consider the formula

φ(x̄,ȳ) =
∨

Ā∈Mn−1
k+1

R(x0, . . . ,xk−1;yk,y
Ā
k+1,y

Ā
k+2, . . . ,y

Ā
n−1).

Fix some m < ω. For A ⊆ m, we define a ȳ-tuple c̄A as follows. Let cAk ∈ Dk,k,∅
(A) and

for j ∈ [k+1,n) and (Ak+1,...,An−1) ∈Mn−1
k+1 , inductively let cA,Ā

j ∈D
k,j,(cAk ,cA,Ā

k+1,...,c
A,Ā
j−1 )

(A,Ak+1,...,Aj)
.

Then, by (II) we get that if B �= A and i = min(B � A) ∈ B, then for some tuple ā

enumerating ti, φ(ā,c̄
B) holds, while φ(ā,c̄A) does not. Let E be the set of all x̄-tuples ā

enumerating ti for all i <m. We get that the number of φ-types in ȳ over E is exponential
in m (at least 2m). However, |E| ≤mk!. By Sauer–Shelah ([Sim15, Lemma 6.4]), we get

that φ(x̄,ȳ) has IP. As NIP formulas are closed under Boolean combinations, we get that

R(x0, . . . ,xk−1;yk, . . . ,yn−1) has IP, contradicting (5).

We first show that ⊗0 holds. Let Dk,k,∅
(∅) = X and for j > k, Ā ∈ M j

k+1, c̄ ∈ Xj−(k+1)

and c ∈X, let Dk,j,cc̄
∅Ā =Dk+1,j,c̄

Ā
. Then (I) is immediate, and (II) is trivially satisfied.

Let mk be maximal such that ⊗mk
holds, witnessed by Dk,j,c̄

Ā
and ti. We claim that

this mk and Dk,j,c̄
Ā

satisfy �k and �k. �k is satisfied by (I), so we are left to check �k.
Assume that �k does not hold. Then there is some t ⊆ X of size k witnessing this:

For all a ∈ t, a /∈ skt\{a}. We will show that, letting tmk
:= t, we can find new Dk,j,c̄

Ā
for

Ā ∈ P(mk+1)×M j
k+1 and c̄ ∈Xj−k witnessing ⊗mk+1. We will construct two sequences

of cofinal sets, Ek,j,c̄
Ā

and F k,j,c̄
Ā

, that will then be used to find suitable D ’s.

Let Ak ⊆ mk. Let Ek,k,∅
(Ak)

= Dk,k,∅
(Ak)

\ (sk+1
t ∪ t). Since sk+1

t has size < κ, Ek,k,∅
(Ak)

is still

cofinal. Let ck ∈Ek,k,∅
(Ak)

. By �k+1 applied to t∪{ck}, and as ck /∈ sk+1
t , for some ack,Ak

∈ t,

we have ack,Ak
∈ sk+1

{ck}∪t\{ack,Ak
}. As t is finite, by reducing Ek,k,∅

(Ak)
, we may assume that

there is some aAk
∈ t such that aAk

∈ sk+1
{ck}∪t\{aAk

} for any ck ∈ Ek,k,∅
(Ak)

.
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Let j ∈ (k,n), Ā ∈M j
k , and c̄ ∈Xj−k. Write c̄= ck c̄

′ and Ā=AkĀ
′, so Ā′ ∈M j

k+1. We

define cofinal sets Ek,j,c̄
Ā

as follows

• If ∀∗c ∈Dk+1,j,c̄′

Ā′ aAk
∈ sk+1,j+1,c̄′c,Ā′

{ck}∪t\{aAk
} , then let S ⊆Dk+1,j,c̄′

Ā′ be an end segment

witnessing this, and set Ek,j,c̄
Ā

= S∩Dk,j,c̄
Ā

. Note that Ek,j,c̄
Ā

is cofinal as Dk,j,c̄
Ā

⊆
Dk+1,j,c̄′

Ā′ by �k.

• Otherwise, let Ek,j,c̄
Ā

=Dk,j,c̄
Ā

.

By (upwards) induction on j ∈ [k,n), one proves that:

(†j ) For any Ak ⊆ mk and any ck ∈ Ek,k,∅
(Ak)

there is some Ak+1 ⊆ mk+1 such that

for any ck+1 ∈ E
k,k+1,(ck)
(Ak,Ak+1)

there is some Ak+2 ⊆ mk+2 such that . . .for any cj ∈
E

k,j,(ck,...,cj−1)

(Ak,...,Aj)
, aAk

∈ s
k+1,j+1,(ck+1,...,cj),(Ak+1,...,Aj)

{ck}∪t\{aAk
} .

Now, for Ak ⊆mk, let F
k,k,∅
(Ak)

⊆Dk,k,∅
(Ak)

be a cofinal set such that aAk
/∈ s

k,k+1,(c),(Ak)
t\{aAk

} for

any c ∈ F k,k,∅
(Ak)

; such a set exists since aAk
/∈ skt\{aAk

} = sk,k,∅,∅t\{aAk
}.

Then for any j ∈ (k,n), any c̄ ∈Xj−k and any Ā= (Ak,...,Aj) ∈M j
k , we similarly define

cofinal sets F k,j,c̄

Ā
as follows.

• If aAk
∈ s

k,j,c̄,(Ak,...,Aj−1)

t\{aAk
} , let F k,j,c̄

Ā
=Dk,j,c̄

Ā
, and

• if aAk
/∈ s

k,j,c̄,(Ak,...,Aj−1)

t\{aAk
} , let F k,j,c̄

Ā
⊆Dk,j,c̄

Ā
be cofinal such that aAk

/∈ sk,j+1,c̄c,Ā
t\{aAk

}

for any c ∈ F k,j,c̄

Ā
.

Recall that by choice of t, a /∈ skt\{a} for all a ∈ t. By (upwards) induction on j ∈ [k,n]
one proves that:

($j ) If (Ak,...,Aj−1) ∈M j−1
k and (ck, . . . ,cj−1) ∈Xj−k are such that ci ∈ F

k,i,(ck,...,ci−1)
(Ak,...,Ai)

for every i ∈ [k,j), then for every i ∈ [k,j],

aAk
/∈ s

k,i,(ck,...,ci−1),(Ak,...,Ai−1)
t\{aAk

} .

Now, for any AĀ ∈ P(mk +1)×M j
k+1, let G

k,j,c̄

AĀ
:= F k,j,c̄

AĀ
if mk /∈ A, else let Gk,j,c̄

AĀ
:=

Ek,j,c̄
(A∩mk)Ā

. Now, we show that (ti)i≤mk and these Gk,j,c̄
AĀ

witness ⊗mk+1. Note that

Gk,j,c̄
AĀ

is a cofinal subset of Dk,j,c̄
(A∩mk)Ā

. Hence, �k still holds, establishing (I). For

(II), let B �= A be subsets of mk + 1. If i = min(B � A) ∈ B and i < mk, then i =

min((B∩mk)� (A∩mk)) and so ⊕ and � still hold (using Gk,j,c̄
AĀ

⊆Dk,j,c̄
(A∩mk)Ā

). If not,

then B = A∪{mk}. Let ā be an enumeration of tmk
starting with aA. Then ⊕ follows

from (†n−1) and � follows from ( n), as required.
This completes the construction of mk and Dk,j,c̄

Ā
as in (A), (B) above for all k ∈ [2,n].

Finally, �2 yields a contradiction by the argument of Remark 4.4. Indeed, by �2 we

get that for any distinct a,b ∈X, either a ∈ s2{b} or b ∈ s2{a}. Let X0,X1 ⊆X be such that

X0 ∩X1 = ∅, |X0| = κ and |X1| = κ+. Let S =
⋃
{s2{a} | a ∈X0}. As |S| ≤ κ, there must
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be some b ∈X1 \S. As |s2{b}|< κ, there must be some a ∈X0 \s2{b}. But then a /∈ s2{b} and

b /∈ s2{a} – contradiction.

Proof of Theorem 4.1. Suppose that |X| ≥ κ+ and that F is a cofinal family of subsets

of X, each of size < κ. Suppose that VC(F) = n.
For any 0≤ k ≤ n and any m≤ k, let Rm,k(x0, . . . ,xk) be the relation defined by

[∃t ∈ F
∧

1≤i≤k

(xi ∈ t)(i≤m)]∧ [∀t ∈ F ((
∧

1≤i≤k

(xi ∈ t)(i≤m))→ x0 ∈ t)].

(If k = 0 the conjunction is empty and thus holds trivially, meaning that R0,0(x0) =

∀t ∈ F x0 ∈ t.)
Let R(x0,x1, . . . ,xn) =

∨
m≤k≤nRm,k(x0, . . . ,xk). We claim that R satisfies the condi-

tions of Lemma 4.2 on X. Conditions (1) and (2) are trivial; condition (3) follows from

the fact that it is true for each m,k separately and that each t ∈ F has size < κ (using

the existential clause of the definition of Rm,k).
We show condition (4). Suppose that A ⊆X has size n+1. Since VC(F) = n, F does

not shatter A. Let B ⊆ A be of minimal size such that F does not shatter B. Note that

B is nonempty, and let k = |B|−1. Since B is not shattered, there is some B0 ⊆B such
that for no t ∈ F , t∩B = B0. Note that B0 �= B since F is ω-cofinal (and B is finite).

Let m= |B0|. Let a0 ∈B \B0, and let a1, . . . ,ak enumerate B \{a0} such that ai ∈B0 iff

i ≤m. It follows that Rm,k(a0,a1, . . . ,ak) holds: the first clause holds by the minimality
of B (any proper subset is shattered), and the second clause follows by the choice of B0.

By Lemma 4.2, for some permutation σ of {1, . . . ,n} and some 1<k <n the partitioned

formula R(x0,xσ(1), . . . ,xσ(k−1);xσ(k), . . . ,xσ(n−1)) has IP and we are done.

Question 4.7. Let R(x,y,z) be the relation from Example 4.5. The proof of Lemma 4.2

yields that R(x,y;z) has IP. Could the relation R(x;y,z) be NIP? Note that {R(ω1;β,α) |
β,α} is a cofinal family of finite subsets of ω1 (see Theorem 3.8).

Similarly, we do not know whether the formula φ(x,z;y) =R(x,y,z) has IP.

5. Conclusion and final thoughts

We conclude with the final theorem, that is, the generalisation of Main Theorem 1.1

discussed in Section 1.1.

Theorem 5.1. Let κ be an infinite cardinal. If T = Th(M) is NIP and X ⊆ Mk is
externally definable of size ≥ κ+, then X contains an M-definable subset of size ≥ κ. In

other words, ext(T,κ)≤ κ+.

Proof. Suppose that X is defined by φ(x,c) for some formula φ(x,y). Let ψ(x,z) be an

honest definition for tpφopp(c/M). This means that for every finite set X0 ⊆X, there is
some d ∈Mz such that

X0 = φ(X0,c)⊆ ψ(M,d)⊆ φ(M,c) =X.

Let Y = {d ∈ Mz | ψ(M,d) ⊆ X}. Note that Y is definable in MSh. If for some

d ∈ Y , ψ(M,d) has size ≥ κ, we are done, so assume for all d ∈ Y , |ψ(M,d)| < κ. Let
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F = {ψ(M,d) | d ∈ Y }. Then N := (X,F ;∈) is interpretable in MSh. By Fact 2.6, it
follows that N is NIP, contradicting Theorem 4.1 as required.

Remark 5.2. Note that the above proof implies that in an NIP theory, if X = φ(M,c) is
externally definable of size κ+, then an instance of the honest definition of tpφopp(c/M)

has size ≥ κ. By Fact 2.4, we know that the existence of an honest definition ψ(x,z) only

requires φ to be NIP. We do not know if ψ itself can be chosen to be NIP (this is open
even for the finite case; see [EK20, Question 22]). However, even if it were NIP, we cannot

get a contradiction as in the proof above due to Theorem 3.8.

Question 5.3. Suppose that M is a structure and X = φ(M,c) is externally definable
of size ≥ ℵ1. Suppose that φ is NIP. Does it follow that X contains an infinite definable

subset?

Note that when T eliminates the quantifier ∃∞, the answer is ‘yes’ (even just assuming
that X is infinite), as in [CS13, Corollary 1.12(1)]: by Fact 2.4 (or [Sim15, Theorem 3.13]),

tpφopp(c/M) has an honest definition ψ, and so as above some instance ψ(M,d) ⊆ X

contains a finite subset X0 large enough that, by elimination of ∃∞, the instance must
be infinite.

Refining Question 5.3, we can define ext(T,φ,κ) as the minimal λ (if exists) such that

whenever M � T and X ⊆Mk is externally definable by φ(x,c) for some c ∈ U , then X
contains anM -definable subset of size≥κ. By Theorem 5.1, if T is NIP, then ext(T,φ,κ)≤
κ+. If the honest definition of φ is NIP, then by Remark 3.7, if κ= ℵα, ext(T,φ,κ)≤ℵα+ω.

If we assume only that φ is NIP, it is not even clear that ext(T,φ,ℵ0) exists.

Question 5.4. What is ext(T,φ,κ) when φ is NIP?

Remark 5.5. Let T be a complete theory. Suppose that there is some infinite ∅-definable
set Z of x -tuples such that φ(x,y) is random on Z : For any finite disjoint sets A,B ⊆ Z,
there is some y-tuple d such that A= φ(A∪B,d) (for the notations, see Section 2.1). This

is a strong negation of NIP and happens for example, in the case of the random graph.

Then every subset of Z is externally definable by compactness. Let T Sk be a Skolemization
of T. Let λ be any infinite cardinal, and let I = (ai)i < λ be an indiscernible sequence (in

the sense of T Sk) contained in Z (in some model of T ), and let N = Sk(I) (the Skolem

hull of I ). Then X := {ai | i even} is a subset of N which is externally definable by an

instance of φ but which does not contain an infinite N -definable subset (even in LSk).
Hence, ext(T,φ,ℵ0) =∞, and in particular ext(T,ℵ0) =∞.

Question 5.6. Does ext(T,ℵ0) = ∞ hold whenever T is IP? That is, does every IP
theory have a model containing an uncountable externally definable set which contains

no infinite definable set?

Appendix A. Almost agreeing orders on the countable ordinals

In this appendix, we show how to construct on each countable ordinal an order of order

type ω in such a way that any two of the orders agree up to a finite set. This result is not
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used in the paper. It formed part of our first attempt to prove Theorem 3.8, but in the
end turned out not to provide a route to proving that theorem. We nonetheless present

the result in this appendix, in the hope that it may be of interest in its own right.

Definition A.1. Let X be a set. Say two orders <1 and <2 on X almost agree, and

write <1 ∼<2, if there is a finite subset X0 ⊆X such that <1|(X\X0) =<2|(X\X0).

Note that ∼ is an equivalence relation.

If (X, <) has order type ω, we call < an ω-order on X.

Theorem A.2. There are ω-orders <α on each α for ω ≤ α < ω1 such that <β ∼ <α|β
whenever ω ≤ β < α.

Before proving Theorem A.2, we establish a pair of lemmas.

Lemma A.3. Suppose that (X, <X) and (Y , <Y ) are both ω-orders, X ⊆ Y , and <X ∼
<Y |X . Then there is some ω-order �Y on Y such that �Y ∼<Y and �Y |X =<X .

Proof. Let X0 ⊆ X be finite such that <X and <Y |X agree on X \X0. We define an

order on Y which agrees with <Y on Y \X0 and places X0 in a way which agrees with

<X on X. Formally, we prove the lemma by induction on |X0|. If X0 is empty there is
nothing to do. Let x∈X0, Z =X \{x}, W = Y \{x}, <Z =<X |Z and <W =<Y |W . Note

that <Z and <W are still ω-orders. By the induction hypothesis, there is some order �W

on W such that �W ∼<W and <Z ⊆�W .

Let F = {y ∈W | ∃z ∈X (z <X x∧y�−
W z)}; this is the cut on (W,�W ) induced by the

cut of x on (Z, <Z). Note that F is downwards closed in �W and that F is finite: let

x′ ∈X be such that x<X x′. Then if y ∈F and z witnesses this, then z <X x<X x′ so that

z <Z x′ and hence y�−
W z�W x′. But (W,�W ) is an ω-order and hence {y ∈W | y�W x′}

is finite.
Let �Y extend �W and be such that for all y ∈ Y , y�Y x iff y ∈ F . To show that �Y

is an ω-order, it is enough to show that {y ∈ Y | y <Y x} is finite, but this is precisely F.

Since F ∩X = {z ∈ Z | z <Z x} = {x′ ∈X | x′ <X x}, it follows that �Y ⊇ <X . Finally,
if �W and <W agree on W \W0 where W0 ⊆ W is finite, then <Y and �Y agree on

Y \ (W0∪{x}) so that <Y ∼�Y as required.

Lemma A.4. Suppose that (Xi)i < ω is an increasing sequence of countable sets, (Xi, <
i)

are ω-orders, and <i+1|Xi
∼<i for all i < ω. Then there are ω-orders �i on Xi such that

�0 =<0, and �i ∼<i, and �i+1|Xi
=�i for all i < ω.

Proof. Inductively define �i as follows. Let �0 = <0. Suppose we defined �i. Since

<i ∼ �i and <i+1|Xi
∼ <i, it follows that <i+1|Xi

∼ �i. By Lemma A.3, there is some

ω-order �i+1 on Xi+1 such that �i+1 ∼<i+1 and �i+1|Xi
=�i, as required.

Proof of Theorem A.2. We define the orders <α by induction on ω ≤ α < ω1. Define

<ω as the canonical order on ω.
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Suppose that α = β+1 and <β has been defined. Let <α = <β ∪{(β,γ) | γ < β}. In
other words, we put β as the first element of <α without changing anything else. Now, if

γ ≤ β then <α|γ =<β |γ ∼<γ by induction.

Now, suppose that α > ω is a limit ordinal. Let (αi)i < ω be an increasing sequence of

ordinals, cofinal in α, where α0 = ω. Apply Lemma A.4 to the sequence (αi, <
αi) (which

we can by the induction hypothesis) to get ω-orders �αi on αi such that �α0 =<α0 =<ω,

and �αi ∼<αi , and �αi+1 ⊇�αi .

Let <∗ =
⋃
{�αi | i < ω}. We define an ω-order <α on α by, roughly speaking,

concatenating the finite orders obtained by taking, for each i < ω in turn, those elements

of αi which are �αi -less than i and have not yet been taken, ordered by �αi . Formally, for

β < α, let (−∞,β) be {γ < α | γ <∗ β}. Define inductively sets bi ⊆ α for i < ω as follows:
bi = αi∩ (−∞,i)\

⋃
j<i bj (so b0 = ∅= (−∞,0)∩α0, since �

α0 =<ω is the canonical order

on ω). Note that bi∩bj = ∅ for i �= j and that α=
⋃

i<ω bi (if β < α, then β < αi for some

i < ω and hence β�αi m for some m< ω so that β ∈ (−∞,m) and hence β ∈ bk for some

k ≤max{i,m}). Finally, note that each bi is finite since (αi,�
αi) has order type ω.

Order each bi by <∗, and put the bi’s in order to define <α. More formally, let <lex be

the lexicographical order on ω×α (taking the canonical order on ω and <∗ on α). For

β < α let i(β) be such that β ∈ bi(β), and for β,γ < α put γ <α β iff (i(β),β)<lex (i(γ),γ).
We check that <α is as required. The order type of (α, <∗) is ω since each bi is finite

so that for any β < α, {γ < α | γ <α β} is finite. Now, suppose that β < α. Then β < αi

for some i < ω. Since <β ∼<αi |β and <αi ∼�αi , to show <β ∼<α|β it suffices to check
that �αi ∼<α|αi

.

To show this, we show that if γ,β ∈ αi \
⋃

j≤i bj , then

γ�αi β ⇐⇒ γ <α β. (*)

Indeed, if γ,β ∈ bj for some j < ω, then Equation (*) follows from the fact that <α equals

<∗ on bj so extends �
αi |bj . Suppose that γ ∈ bj , β ∈ bk and j �= k, so without loss i < j < k.

Then, since γ,β ∈ αi, necessarily γ ∈ (−∞,j) and β /∈ (−∞,j). In this case, γ�αi j�αi β
(since this is true for <∗) and γ <α β by definition.
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