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Abstract
With recent epidemics such as COVID-19, H1N1 and SARS causing devastating financial loss to the economy, it
is important that insurance companies plan for financial costs of epidemics. This article proposes a new method-
ology for epidemic and insurance modelling by combining the existing deterministic compartmental models and
the Markov multiple state models to facilitate actuarial computations to design new health insurance plans that
cover epidemics. Our method is inspired by the seminal paper (Feng and Garrido (2011) North American Actuarial
Journal, 15, 112–136.) of Feng and Garrido and complements the work of Hillairet and Lopez et al. in Hillairet
and Lopez ((2021) Scandinavian Actuarial Journal, 2021(8), 671–694.) and Hillairet et al. ((2022) Insurance:
Mathematics and Economics, 107, 88–101.) In this work, we use the deterministic SIR model and the Eyam
epidemic data set to provide numerical illustrations for our method.

1. Introduction
Given the impact of epidemics such as COVID-19, and to a lesser extent H1N1, SARS, etc. on our
society, health insurance providers must pay more attention to developing health insurance coverage to
the public that includes those caused by infectious diseases. In that regard, the actuaries who design those
health insurance plans may find the vast literature of epidemiological compartmental models immensely
useful. Epidemiological compartmental models have been developed since the 1910s with the works of
Ross in fighting malaria (Ross, 1910) and Kermack and McKendrick (1927) and (1932) who introduced
the celebrated SIR model. Those early compartmental models are deterministic (i.e., it gives the exact
number of individuals in each compartment at any given time). In Bartlett (1949), Bartlett introduced
a stochastic version of the SIR model known as the general stochastic epidemic model. Since then,
stochastic compartmental models have been studied and generalised extensively (see Andersson and
Britton, 2000; Britton et al., 2019).

Even though the literature on epidemiological compartmental models is vast, its applications to actu-
arial science and in designing insurance plans are modest in comparison. Early papers to investigate
actuarial applications of epidemiological models include Hua and Cox (2009) by Hua and Cox and
Feng and Garrido (2011) by Feng and Garrido. In Feng and Garrido (2011), the authors developed
actuarial models to provide financial arrangement arising due to epidemics based on deterministic epi-
demiological compartmental models. Other papers in this direction include Chen (2021), Feng et al.
(2022, 2020), and Hainaut (2021). In particular, the paper Feng et al. (2022) by Feng et al. contains a
detailed bibliography of related works.

In another development, Lefevre, Picard and Simon in a series of papers (Lefevre et al., 2017-Lefevre
and Simon, 2021) also developed actuarial applications of the general stochastic epidemic models such
as one proposed in Bartlett (1949) and its generalisations. Using sophisticated techniques of probability
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theory, they obtained formulas for various important quantities of actuarial interest, for example, the
final susceptible size distribution of the epidemic, the expected susceptibility and infectivity times, the
ruin probability for insurers, etc.

It has been pointed out that modelling the financial impact of epidemics is significantly different
from those caused by regular mortality or diseases. One of main differences is that the speed of infec-
tion depends heavily on the number of infected individuals in the population. As a result, stochastic
Markovian epidemic models usually take the entire population into account rather than looking at each
individual. This approach, even though is very natural and powerful, has one drawback that the state
space grows with the population size which makes actuarial calculations impractical.

In this paper, we want to propose an idea that starting with a deterministic compartmental model as
an exogenous input, we can construct a Markov multiple state model for the infection time line of an
individual such that the behaviour of the population of such independent individuals match the deter-
ministic compartmental model. Such a model can then be used to calculate premiums and reserves for
an insurance policy covering epidemics. The advantage of this approach is that we can then utilise the
full machinery of Markov multiple state models to study the financial impacts of epidemics at the indi-
vidual level and then obtain related results for the entire population. To illustrate the idea, we analyse in
detail the Markov multiple state model arising from the deterministic SIR model. Consequently, we can
clarify and extend some of the results in Feng and Garrido (2011).

The idea of using Markov multiple state models at the individual level to study the financial impact
of epidemics is not new. Indeed, many of the quantities introduced by Feng and Garrido in Feng and
Garrido (2011) are remarkably similar to standard actuarial functions in Markov multiple state models.
Furthermore, Billard and Dayananda constructed a multistage compartmental model for HIV-infected
individuals based on waiting time in each compartment and studied its actuarial applications in Billard
and Dayananda (2014a) and (2014b). Nevertheless, Billard and Dayananda model the waiting times
directly, whereas our approach involves setting the transition intensities to match the deterministic
compartmental model.

It has come to our attention that our model is a special case of the model used in Hillairet and Lopez
(2021) and Hillairet et al. (2022) by Hillairet and Lopez et al. in their study of cyber insurance man-
agement. Note that in Hillairet et al. (2022), the authors not only study the SIR model but also extend
their analysis to multigroup SIR model as well. Nevertheless, our objective and motivation as well as
methodology are significantly different from those of Hillairet and Lopez et al. We also acknowledge
that there is a parallel paper (Francis and Steffensen, 2023) by Francis and Steffensen which has the same
fundamental ideas as those in our paper. Francis and Steffensen not only treat the SIR model but also
generalise it to several related models as well. The results obtained in Francis and Steffensen (2023) are
very similar to ours. Although our paper focuses exclusively on the SIR model, we also discuss several
topics not included in Francis and Steffensen (2023) such as the distributions of the waiting times, the
duration and the final susceptible size of the epidemic. Thus, despite the overlap, we believe our paper
makes a genuine contribution to the literature.

This paper is organised as follows. In Section 2, we recall the deterministic SIR model and its basic
properties. In Section 3, we construct the Markov multiple state model based on the deterministic SIR
model. In Section 4, we discuss the waiting times for an individual to remain susceptible or infected. In
Section 5, we analyse the spread of the epidemic in a population. More precisely, we give the distributions
of the final susceptible size and the duration of the epidemic. In Sections 6 and 7, we give formulas
for the actuarial present values of the traditional insurance benefits and discuss premium and reserve
calculations. In Section 8, we provide numerical illustrations for our method using the Eyam data set
from Raggett (1982).

2. The deterministic SIR model
Let us briefly recall the deterministic SIR model in epidemiology. The readers should consult (Brauer
et al., 2019) for further description of this model. The population is divided into three compartments
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Figure 1. The deterministic SIR model.

Susceptible (S), Infected (I) and Removed (R) where possible transitions are indicated in Figure 1. Let
S(t), I(t) and R(t) be the number of susceptible, infected and removed individuals at time t, respectively.
Assume that at time 0, the population has N individuals and R(0) = 0. Let us define s(t), i(t) and r(t)
as the corresponding proportions of susceptible, infected and removed individuals in the population,
respectively. The SIR model states that the dynamics of this epidemic is governed by the following
system of differential equations ⎧⎨

⎩
s′(t) = −βs(t)i(t)
i′(t) = βs(t)i(t) − αi(t)
r′(t) = αi(t)

(2.1)

where α and β are positive constants. This is a first-order system of differential equations. Although
explicit solutions in terms of elementary functions are not available, we can still numerically solve for
(s(t), i(t), r(t)) for any t > 0. The following proposition gives the phase-plane equation for (s(t), i(t))
(see Brauer et al., 2019, p. 37).

Proposition 2.1. The functions s(t) and i(t) are related via the equation

s(t) + i(t) = 1 + α

β
log

(
s(t)

s(0)

)
. (2.2)

Equivalently,

s(t) = s(0)e− β
α r(t). (2.3)

Proposition 2.2. Let s(∞), i(∞) and r(∞) be the limits of s(t), i(t) and r(t), respectively, as t approaches
∞. Then i(∞) = 0, r(∞) = 1 − s(∞) where s(∞) is the unique solution between 0 and α/β of the
equation

F(z) = z − α

β
log

(
z

s(0)

)
− 1 = 0. (2.4)

In particular, both s(∞) and r(∞) are strictly between 0 and 1 and

s(∞) = 1 + α

β
log

(
s(∞)

s(0)

)
. (2.5)

Proof. See Brauer et al. (2019, p. 37). �
The following formula for the inverse of s(t) will be used in Subsection 8.6.

Proposition 2.3. The inverse function of s(t) is given by: for s(∞) < u ≤ s(0),

s−1(u) =
∫ s(0)

u

dz

βz
[
1 + α

β
log

(
z

s(0)

)
− z
] . (2.6)

Proof. From (2.2), we deduce

i
(
s−1(u)

)= 1 + α

β
log

(
u

s(0)

)
− u.

Furthermore,

(s−1)′(u) = 1

s′ (s−1(u))
= −1

βui (s−1(u))
= −1

βu
[
1 + α

β
log

(
u

s(0)

)
− u

] .

Integrating both sides and noting that s−1(s(0)) = 0 yields the required formula. �

https://doi.org/10.1017/asb.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2024.8


ASTIN Bulletin 363

The proof of the following proposition can be found in Brauer et al. (2019, p. 40).

Proposition 2.4. If s(0) < α/β, the epidemic fails to take off. Suppose s(0) > α/β. The infection
proportion i(t) peaks at time t∗ = s−1(α/β) with maximum value

i(t∗) = 1 + α

β

(
log

(
α

βs(0)

)
− 1

)
. (2.7)

For the rest of this paper, we assume that s(0) > α/β.

Proposition 2.5. If z > t∗ = s−1(α/β) and i(z) is sufficiently small, then for t ≥ z, we have the following
approximations:

s(t) = s(z) − βs(∞)i(z)

α − βs(∞)

(
1 − e−(α−βs(∞))(t−z)

)+ o(i(z)) (2.8)

i(t) = i(z)e−(α−βs(∞))(t−z) + o
(
i(z)e−(α−βs(∞))(t−z)/2

)
(2.9)

r(t) = r(z) + αi(z)

α − βs(∞)

(
1 − e−(α−βs(∞))(t−z)

)+ o(i(z)). (2.10)

Proof. From Proposition 2.4, s(t)/s(∞) is in the interval (1, α/(βs(∞))) for t > t∗. Let G(x) be the
function

G(x) = x − α

βs(∞)
log (x) − 1. (2.11)

Clearly, G(1) = 0 and that

G′(x) = 1 − α

βs(∞)x
.

Thus, G(x) is decreasing on the interval (1, α/(βs(∞))) and G−1 exists and is differentiable. From
(2.2) and (2.5), s(t)/s(∞) is the unique solution of the equation G(x) = −i(t)/s(∞). Let ε = (α −
βs(∞))/(3β). There exists δ > 0 such that if i(t) < δ then s(t) − s(∞) < ε. Let t0 > t∗ such that i(t) < δ

for t > t0. For z > t0 and w > 0, integrating the following equation
i′(t)

i(t)
= −(α − βs(∞)) + β(s(t) − s(∞))

between z and z + w and taking exponentiation yields

i(z + w) = i(z)e−(α−βs(∞))w exp

(
β

∫ z+w

z

(s(t) − s(∞))dt

)
.

Hence, for z > z0 and w > 0, we have

1 ≤ i(z + w)

i(z)e−(α−βs(∞))w
≤ eβwε . (2.12)

As a result,

0 ≤ i(z + w) − i(z)e−(α−βs(∞))w ≤ i(z)e−(α−βs(∞))w
(
eβwε − 1

)
≤ i(z)e−2(α−βs(∞))w/3 = o

(
i(z)e−(α−βs(∞))w/2

)
.

Thus, (2.9) follows. To prove (2.10), we integrate equation r′(t) = αi(t) from z to z + w

r(z + w) = r(z) + α

∫ z+w

z

i(t)dt

= r(z) + α

∫ z+w

z

i(z)e−(α−βs(∞))(t−z)dt + o

(∫ z+w

z

i(z)e−(α−βs(∞))(t−z)/2dt

)

= r(z) + αi(z)

α − βs(∞)

(
1 − e−(α−βs(∞))w

)+ o(i(z)).
�
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Corollary 2.6. For z > t∗ = s−1(α/β) and i(z) sufficiently small,

s(z) = s(∞)

(
1 + βi(z)

α − βs(∞)

)
+ o(i(z))

r(z) = r(∞) − αi(z)

α − βs(∞)
+ o(i(z)).

In particular, for t → ∞,

s(t) − s(∞) ∼ e−(α−βs(∞))t, i(t) ∼ e−(α−βs(∞))t, r(t) − r(∞) ∼ e−(α−βs(∞))t. (2.13)

3. The SIR Markov multiple state model
In this section, we will construct a Markov multiple state model that can capture the dynamics of the
deterministic SIR model. Consider a random individual in this population. At any given time, this indi-
vidual can be in either one of the three states 0,1 and 2 which correspond to the three compartments
(S), (I) and (R). For t ≥ 0, let Xt be the state that this individual is in at time t. We assume that (Xt)t≥0 is
a continuous Markov process. Let P be the transition matrix for Xt. That is for 0 ≤ z ≤ t, P(z, t) is the
matrix whose entries are given by

Pij(z, t) = P(Xt = j|Xz = i) (3.1)

for all i, j ∈ {0, 1, 2}. To connect the deterministic SIR model with this Markov multiple state model,
we will match the observed number of individuals in each compartment in the former model with the
corresponding expected numbers of individuals in each compartment in the latter model. This leads us
to the following proposition that allows us to construct the transition matrix from the values of S(t), I(t)
and R(t).

Proposition 3.1. For the observed number of individuals in each compartment of the deterministic SIR
model to match the expected number of individuals in the SIR Markov multiple state model, the transition
matrix P(0, t) needs to satisfy the following equations:

s(t) = s(0)P00(0, t)

i(t) = s(0)P01(0, t) + i(0)P11(0, t) (3.2)
r(t) = s(0)P02(0, t) + i(0)P12(0, t).

Equations (3.2) can be written in matrix form as follows

(s(t), i(t), r(t)) = (s(0), i(0), r(0))P(0, t). (3.3)

Proof. At time 0, there are S(0) susceptible individuals who can get infected at time t with probability
P01(0, t), and there are I(0) infected individuals who remain infected at time t with probability P11(0, t).
Therefore, the expected number of infected individuals at time t is

S(0)P01(0, t) + I(0)P11(0, t).

which is equal to I(t) from our assumption. Dividing by N yields the required equation for i(t). The
other equations can also be obtained by a similar reasoning. �
Proposition 3.2. For 0 ≤ z ≤ t,

s(t) = s(z)P00(z, t)

i(t) = s(z)P01(z, t) + i(z)P11(z, t) (3.4)
r(t) = s(z)P02(z, t) + i(z)P12(z, t) + r(z)

Equivalently,

(s(t), i(t), r(t)) = (s(z), i(z), r(z))P(z, t). (3.5)
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Proof. The result follows directly from Chapman–Kolmogorov equation. �
Let us recall the Kolmogorov differential equations for multiple state models (see Haberman and

Pitacco, 1998, p. 17).

Theorem 3.3. For a Markov multiple state model with transition matrix P and transition intensity matrix
μ, the Kolmogorov forward differential equation is given by

Pt(z, t) := ∂

∂t
P(z, t) = P(z, t)μt. (3.6)

The initial condition is P(z, z) equals to the identity matrix.

Proposition 3.4. Suppose for t ≥ 0

P(Xt = 0) = s(t), P(Xt = 1) = i(t), P(Xt = 2) = r(t). (3.7)

Then, the transition intensities are given by

μ01
t = βi(t), μ12

t = α. (3.8)

All the other μij
t for i �= j are identically zero.

Proof. Differentiating (3.3) with respect to t yields.
d

dt
(s(t), i(t), r(t)) = (s(0), i(0), r(0))

∂

∂t
P(0, t)

= (s(0), i(0), r(0))P(0, t)μt = (s(t), i(t), r(t))μt.

Note that μ00
t = −μ01

t and μ11
t = −μ12

t are the only nonzero entries of μt. Thus, combining the above
equation with (2.1) yields

(−βs(t)i(t), βs(t)i(t) − αi(t), αi(t)) = (−s(t)μ01
t , s(t)μ01

t − i(t)μ12
t , i(t)μ12

t ). (3.9)

We deduce that μ01
t = βi(t) and μ12

t = α. �
Definition 3.5. By the SIR multiple state model, we mean the model given by the continuous Markov pro-
cess (Xt)t≥0 taking values in {0, 1, 2} with transition intensity matrix given by (3.8) and initial distribution
(s(0), i(0), r(0)).

Corollary 3.6. For the SIR multiple state model, the forward Kolmogorov equations are

P00
t (z, t) = −βi(t)P00(z, t), (3.10)

P01
t (z, t) = βi(t)P00(z, t) − αP01(z, t),

P02
t (z, t) = αP01(z, t).

In addition, for �t > 0, we have

P00(t, t + �t) = 1 − βi(t)�t + o(�t) (3.11)
P01(t, t + �t) = βi(t)�t + o(�t)

P02(t, t + �t) = o(�t).

Theorem 3.7. For the SIR multiple state model, the transition probabilities are given by

P11(z, t) = e−α(t−z), P12(z, t) = 1 − e−α(t−z). (3.12)

In addition,

P00(z, t) = s(t)

s(z)
, & P01(z, t) = 1

s(z)

(
i(t) − i(z)e−α(t−z)

)
,

P02(z, t) = 1

s(z)

(
r(t) − r(z) − i(z)(1 − e−α(t−z))

)
. (3.13)
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Proof. The formulas for P11(z, t) and P12(z, t) follow immediately from μ12
w ≡ α. We have

P00(z, t) = exp

(
−
∫ t

z

μ01
w dw

)
= exp

(
−
∫ t

z

βi(w)dw

)

= exp

(∫ t

z

s′(w)

s(w)
dw

)
= s(t)

s(z)
.

Furthermore,

P01(z, t) =
∫ t

z

P00(z, w)μ01
w P11(w, t)dw = −e−αt

s(z)

∫ t

z

eαws′(w)dw

= −e−αt

s(z)

(
eαts(t) − eαzs(z) − α

∫ t

z

eαws(w)dw

)
.

We can directly verify that

α

∫
eαws(w)dw = eαw(s(w) + i(w)) + c,

where c is any constant. Thus, the formula for P01(z, t) follows. �
Combining (3.13) and Proposition 2.2 yield the following Corollary.

Corollary 3.8. Let Pij(z, ∞) = limt→∞ Pij(z, t). Then

P00(z, ∞) = s(∞)

s(z)
, P01(z, ∞) = 0, P02(z, ∞) = 1 − s(∞)

s(z)
.

For z > t∗ = s−1(α/β) and i(z) sufficiently small, for t > z we have

P00(z, t) = P00(z, ∞)

(
1 + βi(z)

α − βs(∞)
e−(α−βs(∞))(t−z)

)
+ o(i(z))

P01(z, t) = i(z)

s(z)

[
e−(α−βs(∞))(t−z) − e−α(t−z)

]+ o
(
i(z)e−(α−βs(∞))(t−z)/2

)
,

P02(z, t) = P02(z, ∞) − 1

s(z)

(
αi(t)

α − βs(∞)
− i(z)e−α(t−z)

)
+ o(i(z)).

Remark 3.9. The SIR multiple state model defined by Definition 3.5 is a special case of the model
constructed by Hillairet and Lopez in (2021).

• We have showed that it is the only Markov multiple state model that satisfies (3.7). That is, the
probability a randomly chosen individual being in each compartment matches with the propor-
tion of the population in the corresponding compartment which is given by the deterministic
SIR model.

• We have also determined the transition probabilities of the SIR multiple state model and show
that they can be given by simple expressions of (s(t), i(t), r(t)) (see (3.13)). Note that we could
also obtain (3.13) by solving (3.4).

Remark 3.10. The technique that used to construct the SIR multiple state model can be extended to
other deterministic compartment models as well. Suppose we are given a deterministic compartment
model with compartments 0, 1, . . . , M. Let s(t) = (si(t))M

i=0 be the row vector whose components are
proportions of the population in each compartment. Assume that the dynamics of the population are
characterised by the system of differential equations

s′(t) = F(t, s(t)) (3.14)

where F is a function of t and s(t). Consider a random individual in this population. Let Xt be the
compartment that this individual belongs to at time t. We want (Xt)t≥0 to follow a Markov multiple state
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model that matches the behaviour of the model (3.14) in aggregate. That is for t ≥ 0

s(t) = (si(t))
M
i=0 = (P(Xt = i))M

i=0.

Let μt be the transition intensity matrix. By the Chapman–Kolmogorov equation,

s(t) = (P(Xt = i))M
i=0 = (P(X0 = i))M

i P(0, t) = s(0)P(0, t). (3.15)

Differentiating (3.15) and using (3.6) yields

s′(t) = s(0)
∂

∂t
P(0, t) = s(0)P(0, t)μt = s(t)μt.

As a result, μt satisfies the following equation

s(t)μt = F(t, s(t)). (3.16)

For the deterministic SIR model, (3.16) reduces to (3.9) which in turn yields (3.8).

Remark 3.11. The fact that many of the constructions in Feng and Garrido (2011) are remarkably simi-
lar to the actuarial functions in Markov multiple state models, for example, forces of transition, EPVs of
annuity and insurance benefits, etc. suggests that there might be a Markov multiple state model underly-
ing all of these constructions. Moreover, this model should describe the state of a random individual in
the population during the epidemic rather than the state of the entire population. The chance that an indi-
vidual getting infected depends on the current state of the population. Unfortunately, this information is
not available if we only consider one individual. Therefore, we use the expected state of the population
which is given by the deterministic SIR model to approximate the actual state of the population. We
are not claiming that this model actually describes the infection mechanism of the epidemic, but it is a
reasonable approximation.

4. The distribution of waiting times
In this section, we will analyse the individual’s waiting times in each state for the SIR multiple state
model. The results derived here are useful for simulation (see Subsection 8.6). Consider a random indi-
vidual in the population. Let T (0) and T (1) be the waiting times in states 0 and 1, respectively. If the
individual is in state 1 at time 0, then we set T (0) equal to zero. Furthermore, let T = T (0) + T (1) be the
time until removal or time to absorption. The following proposition gives the distributions of T (0), T (1)

and T .

Proposition 4.1. The survival function of T (0) is given by

P
(
T (0) > t

)= s(t)

s(0)
, P

(
T (0) = ∞)= s(∞)

s(0)
. (4.1)

The survival function of T (1) is given by

P
(
T (1) = 0

)= s(∞)

s(0)
, P

(
T (1) > t

)= e−αt

(
1 − s(∞)

s(0)

)
. (4.2)

The distribution function of T is given by

P (T < t) = r(t) − i(0)(1 − e−αt)

s(0)
, P (T = ∞) = s(∞)

s(0)
. (4.3)

Proof. We haveP
(
T (0) > t

)= P00(0, t) = s(t)/s(0). Note that T (1) = 0 if and only if T (0) = ∞. Because
of the Markov property, P(T (1) > t|T (0) < ∞) = e−αt. Hence,

P(T (1) > t) = P(T (1) > t|T (0) < ∞)P(T (0) < ∞) = e−αt

(
1 − s(∞)

s(0)

)
.
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Note that T ≤ t is equivalent to Xt = 2 given that X0 = 0. Thus, P(T ≤ t) = P02(0, t) and that implies (4.3)
in view of (3.13). �
Remark 4.2. The random variables T (0), T (1) and T all have mixed distributions with mass probabilities
at ∞, 0 and ∞, respectively, and continuous density elsewhere. The fact that P(T (0) = ∞) = s(∞)/s(0)
can be interpreted as a susceptible individual in this population has a positive chance of never getting
infected. Consequently, neither T (0) nor T has finite moments. However, conditioning on T (0) < ∞, all
of their moments are finite as showed by the following proposition.

Proposition 4.3 Let MT(0)|T(0)<∞(z) and MT|T(0)<∞(z) be the moment generating functions of T (0) and T
conditioning on T (0) < ∞, respectively. Then for z < α − βs(∞),

MT(0)|T(0)<∞(z) = 1 + z

s(0) − s(∞)

∫ ∞

0

ezt(s(t) − s(∞))dt (4.4)

MT|T(0)<∞(z) = α

s(0) − s(∞)

[∫ ∞

0

ezti(t)dt − i(0)

α − z

]
. (4.5)

Consequently, the moments of T (0) and T conditioning on T (0) < ∞ are given by

E
(
(T (0))n

∣∣T (0) < ∞)= n

s(0) − s(∞)

∫ ∞

0

tn−1(s(t) − s(∞))dt. (4.6)

E
(
Tn
∣∣T (0) < ∞)= α

s(0) − s(∞)

(∫ ∞

0

tni(t)dt − i(0)n!
αn+1

)
. (4.7)

Proof. From (2.13), MT(0)|T(0)<∞(z) is well defined for z < α − βs(∞) and is given by

MT(0)|T(0)<∞(z) = −
∫ ∞

0

ezts′(t)

s(0) − s(∞)
dt

= 1

s(0) − s(∞)

{
s(0) − s(∞) + z

∫ ∞

0

ezt(s(t) − s(∞))dt

}
.

From (3.10), the conditional probability density functions of T is

fT|T(0)<∞(t) = d

dt

(
P02(0, t)

1 − s(∞)
s(0)

)
= s(0)αP01(0, t)

s(0) − s(∞)

= α

s(0) − s(∞)

(
i(t) − i(0)(1 − e−αt)

)
.

From this, (4.5) can be derived straightforwardly. Finally, (4.6) and (4.7) can be obtained by examining
the corresponding Taylor’s expansions of (4.4) and (4.5). �

5. The duration and final susceptible size of the epidemic
In this section, we will investigate the spread of the epidemic in the whole population. Suppose our popu-
lation consists of S0 susceptible and I0 infected individuals initially where S0, I0 > 0. Let N = S0 + I0. We
assume that everyone’s state is independent from one another and follows the Markov process described
in Definition 3.5 with s(0) = S0/N and i(0) = I0/N. Let S̃(t) and Ĩ(t) be the number of susceptible and
infected individuals at time t. The spread of the epidemic in the population is given by the process
(S̃(t), Ĩ(t))t≥0 with (S̃(0), Ĩ(0)) = (S0, I0). We observe that (S̃(t), Ĩ(t))t≥0 is a continuous Markov process
on the state space

{(m, n) ∈ [0, 1, . . . , S0] × [0, 1, . . . , N]: m + n ≤ N} .

https://doi.org/10.1017/asb.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2024.8


ASTIN Bulletin 369

Proposition 5.1. S̃(t) follows the binomial distribution B(S0, P00(0, t)) and Ĩ(t) is the sum of two
independent binomial random variables B(S0, P01(0, t)) and B(I0, P11(0, t)). In particular,

E(S̃(t)) = Ns(t), E(Ĩ(t)) = Ni(t), Cov(S̃(t), Ĩ(t)) = −S0P00(0, t)P01(0, t).

Let � be the distribution function of the standard normal distribution. For N large and 0 < α < 1, the
(1 − α)-confidence intervals of s(t) and i(t) are contained in the intervals

S̃(t)

N
± �−1(1 − α/2)

2
√

N
, &

Ĩ(t)

N
± �−1(1 − α/2)

2
√

N
(5.1)

respectively. In particular, as N → ∞, S̃(t)/N and Ĩ(t)/N converge to s(t) and i(t) in probability.

Proof. For i = 0, 1, 2, let S̃0i(t) be the number of individuals in state i at time t having been susceptible
at time 0. Let I11(t) be the number of infected individuals at time t who are infected at time 0. We have

S̃(t) = S00(t), Ĩ(t) = S01(t) + I11(t).

From the independence assumption between individuals, I11(t) ∼ B(I0, P11(0, t)) and(
S̃0i(t)

)2

i=0
∼ Multinomial

(
S0,
(
P0i(0, t)

)2

i=0

)
.

In addition, I11(t) is independent of the S̃0i(t) for i = 0, 1, 2. The formulas for the expected values and
covariance of S̃(t) and Ĩ(t) then follow. The formulas for the confidence intervals can be derived using
normal approximations to the binomial distributions. �
Remark 5.2. The final susceptible size of the epidemic is the total number of susceptible individu-
als remained at the end of the epidemic which is given by S̃(∞). It follows the binomial distribution
B(S0, s(∞)/s(0)). The final size of the epidemic is given by S0 − S̃(∞).

Proposition 5.3. For 0 ≤ z ≤ t, the transition probability

P

(
(S̃(t), Ĩ(t)) = (St, It)

∣∣∣(S̃(z), Ĩ(z)) = (Sz, Iz)
)

is given by(
Sz

St

)
P00(z, t)St P02(z, t)Sz−St P11(z, t)It P12(z, t)Iz−It

min (Sz−St ,It)∑
k=max (0,It−Iz)

(
Sz − St

k

)(
Iz

It − k

)(
P01(z, t)P12(z, t)

P02(z, t)P11(z, t)

)k

for 0 ≤ St ≤ Sz and 0 ≤ It ≤ Sz + Iz. It is zero otherwise.

Proof. Let k be the number of individuals who are in state 0 at time z but are in state 1 at time t.
Therefore,

• there are St, k and Sz − St − k individuals who are in state 0 at time z and are in states 0,1 and
2, respectively, at time t.

• there are It − k and Iz − (It − k) individuals who are in state 1 at time z and are in states 1 and
2, respectively, at time t.

Note that k needs to be between max (0, It − Iz) and min (Sz − St, It). The probability that S̃(t) =
St, Ĩ(t) = It and k individuals moving from state 0 to 1 is(

Sz

St k Sz − St − k

)
P00(z, t)St P01(z, t)kP02(z, t)Sz−St−k

(
Iz

It − k

)
P11(z, t)It−kP12(z, t)Iz−It+k.

Summing over all possible values of k and simplifying yields the proposition. �
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The following proposition gives the transition intensities for the process (S̃(t), Ĩ(t))t≥0.

Proposition 5.4. For �t > 0,

P

(
(S̃(t + �t), Ĩ(t + �t)) = (St − 1, It + 1)

∣∣∣(S̃(t), Ĩ(t)) = (St, It)
)

= βSti(t)�t + o(�t), (5.2)

P

(
(S̃(t + �t), Ĩ(t + �t)) = (St, It − 1)

∣∣∣(S̃(t), Ĩ(t)) = (St, It)
)

= αIt�t + o(�t). (5.3)

Proof. From Proposition 5.3, the first probability is given by

StP
00(t, t + �t)St−1P01(t, t + �t)P11(t, t + �t)It ,

whereas the second probability is given by

ItP
00(t, t + �t)St P11(t, t + �t)It−1P12(t, t + �t).

Therefore, both formulas follow from (3.11). �
Remark 5.5. Using our notations, the general stochastic epidemic model proposed by Bartlett in Bartlett
(1949) is characterised by the following relations (see Andersson and Britton, 2000, p. 14 or Britton
et al., 2019, p. 26)

P

(
(S̃(t + �t), Ĩ(t + �t)) = (St − 1, It + 1)

∣∣∣(S̃(t), Ĩ(t)) = (St, It)
)

= βStIt/N�t + o(�t), (5.4)

P

(
(S̃(t + �t), Ĩ(t + �t)) = (St, It − 1)

∣∣∣(S̃(t), Ĩ(t)) = (St, It)
)

= αIt�t + o(�t).

Compared with Proposition 5.4, the key difference is in the infection intensity where βStIt/N is replaced
by βSti(t). In our model, the infection intensity is given exogenously from the SIR deterministic model,
whereas in the general stochastic epidemic model (5.4), the infection intensity is determined endoge-
nously by the actual number of susceptible and infected individuals in the population. Nevertheless,
for large N, Ĩ(t)/N ≈ i(t) in probability. Hence, our model can be considered an approximation of the
general stochastic epidemic model. It would be interesting to work out a comprehensive comparison
between the two models, and we would like to revisit this question at a future date.

Remark 5.6. The independence assumption among members of the population allows for mathematical
tractability. We offer the following heuristic argument to partially justify it. For another point of view,
the readers are referred to Hillairet and Lopez (2021) and Hillairet et al. (2022). It is plausible to assume
independence between individuals because the dependence nature of the epidemic has already been
encoded in the individual’s infection intensity. Let us elaborate by considering the following instances.

• Suppose there are many infected individuals in the population at time t, that is, Ĩ(t) is large.
Then (5.1) implies that i(t) is also likely to be large. As the infection intensity for an individual
is βi(t), a randomly chosen individual is more likely to get infected even though all individuals
are independent.

• Suppose we observe no infected individuals at time t. According to our model, further infection
is possible which is counter intuitive. However, by (5.1), if Ĩ(t) = 0 then it is likely that i(t) is
small. The infection intensity is also small and even though further infection is possible, it is
also unlikely.

Hence, although the independence assumption is unrealistic, this model can still capture the dynamics
of the epidemic to a certain extent because the aggregate level of infection in the population indirectly
influences every individual’s chance of getting infected.
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We now turn to the question of the duration of the epidemic.

Definition 5.7. The duration of the epidemic, D, is defined as the first instance that there are no infected
individuals and there are no further infections thereafter. In other words,

D = inf{t ≥ 0:Ĩ(t) = 0, and there are no further infections after t.}
Equivalently, the duration can be defined as

D = max
1≤i≤N

{Ti : Ti < ∞}

where Ti is the time to absorption of the ith individual as defined in Section 4.

Proposition 5.8. The distribution function of D is given by

P(D ≤ t) = (
P00(0, ∞) + P02(0, t)

)S0
(
1 − e−αt

)I0 . (5.5)

Proof. The epidemic is over by time t if and only if at time t

• all I0 infected individuals have been removed;
• and all S0 susceptible individuals have either been removed or will never be infected.

Therefore, (5.5) follows from the independence assumption. �
Let us give the asymptotic distribution of D as N → ∞ such that s(0) and i(0) are constants. Let D0

be the maximum value of the time to absorption for the S0 individuals who are susceptible at time 0 and
are removed eventually. Let D1 be the maximum value of the time to absorption for the I0 individuals
who are infected at time 0. Thus, D0 is the maximum value of S0 independently identically distributed
(i.i.d.) random variables (Yi)

S0
i=1 whose common distribution, F(t), is given by

F(t) = P00(0, ∞) + P02(0, t). (5.6)

On the other hand, D1 is the maximum value of I0 i.i.d. exponential random variables with rate α.
It is clear that D is the maximum value of D0 and D1. The following proposition gives the limiting
distributions of D0 and D1.

Proposition 5.9. There exists a constant b such that both (α − βs(∞))D0 − log (S0) − b and αD1 −
log (I0) converge in distribution to the standard Gumbel distribution as N → ∞. Furthermore, the
variable D/ log (N) is bounded in probability. More precisely,

lim
N→∞

P

(
D ≤ 2 log (N)

α − βs(∞)

)
= 1. (5.7)

Proof. The fact that the normalised maximum of i.i.d. exponential random variables converges in
distribution to the standard Gumbel distribution as sample size increases to infinity is well-known (see
Embrechts et al., 1997, p. 125). From Corollary 3.8, 1 − F(t) ∼ e−(α−βs(∞))t. Thus, the random variable Yi

is tail equivalent to the exponential random variable with rate α − βs(∞). From Embrechts et al. (1997,
Proposition 3.3.28), the norming constants of the exponential distribution can be used for those of F(t)
with the limiting distribution shifted by a constant. As D0 and D1 are independent, P(D ≤ t) = P(D0 ≤
t)P(D1 ≤ t). By direct calculation,

lim
N→∞

P

(
D ≤ 2 log (N)

α − βs(∞)

)
= lim

N→∞
exp

[
−
(

s(0)e−b

N
+ i(0)

N
α+βs(∞)
α−βs(∞)

)]
= 1. (5.8)

�
Remark 5.10. It is important to emphasise that the duration of the epidemic is not given by

inf{t ≥ 0 : Ĩ(t) = 0}.
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The reason is that even if Ĩ(t) = 0, further infections are still possible after time t. If that is the case, we
say the epidemic restarts after time t. Since we cannot rule out the possibility that the epidemic may
restart as long as there remain susceptible individuals, the duration is not an observable quantity.

For the rest of this section, we will estimate the duration of the epidemic under different sets of
available information. Let us start with the following scenario. Suppose z is the last instance we observe
infected individuals and t is the first instance we observe no infected individuals. That is, for z < t

(S̃(z), Ĩ(z)) = (Sz, Iz), (S̃(t), Ĩ(t)) = (St, 0) (5.9)

where Sz, St and Iz > 0. Under these circumstances, the epidemic is not over at time z, but it is not clear
whether it is over at time t. Proposition 5.11 below describes the conditional distribution of the duration
given (5.9). Thus, we can estimate how long it takes until the epidemic is finally over having observed
no infections for the first time.

Proposition 5.11. For w ≥ 0, the conditional distribution of D

P

(
D ≤ z + w

∣∣∣(S̃(z), Ĩ(z)) = (Sz, Iz), (S̃(t), Ĩ(t)) = (St, 0)
)

is given by ⎧⎨
⎩P00(t, ∞)St

(
P02(z,z+w)

P02(z,t)

)Sz−St
(

P12(z,z+w)
P12(z,t)

)Iz

if w ≤ t − z,(
P00(t, ∞) + P02(t, z + w)

)St if w > t − z.
(5.10)

Note that the distribution above is continuous but not differentiable at w = t − z.

Remark 5.12. Let us give a more intuitive explanation of (5.10).

• For w > t − z, (5.10) gives the probability that the duration is over at time z + w > t based on
the state of the population at time t. Then the formula is just a variation of (5.5).

• For w < t − z, (5.10) gives the probability that the duration is over at time z + w < t given that
there remain St susceptible individuals at the end of the epidemic. Then the required probability
is the product of the probability that all St susceptible individuals at time t remain susceptible
forever with the probability that all Sz − St susceptible individuals at time z being removed by
time z + w given they are removed by time t with the probability that all Iz infected individuals
at time z being removed by time z + w given they are being removed by time t.

Corollary 5.13. Suppose that in addition to the information (5.9), we also know that there are no further
infections after time t. For example, all the remaining susceptible individuals are removed for some other
reasons. Then the distribution of the duration under the combined information is

P

(
D ≤ z + w

∣∣∣D ≤ t, (S̃(z), Ĩ(z)) = (Sz, Iz), (S̃(t), Ĩ(t)) = (St, 0)
)

which, for 0 ≤ w ≤ t − z, is given by(
P02(z, z + w)

P02(z, t)

)Sz−St (P12(z, z + w)

P12(z, t)

)Iz

.

Proposition 5.14. Suppose z > t∗ and i(z) is sufficiently small as in Proposition 2.5. Let Dz be the dura-
tion of the epidemic beyond time z. That is Dz = D − z if D > z and 0 otherwise. Then the expected value
of Dz given the state of the population at time z can be approximated by

E

(
Dz

∣∣∣(S̃(z), Ĩ(z)) = (Sz, Iz)
)

= Szβi(z)

α − βs(∞)

(
1

α − βs(∞)
+ 1

α

)
+ Iz

α
+ o(i(z)). (5.11)

Remark 5.15. Proposition 5.14 whose proof is omitted is applicable in the following situation. Suppose
we observe that the infection number is zero at some time z after the peak of the epidemic. How long
do we expect to wait until the epidemic is finally over ? From Proposition 5.1, Ĩ(z) = 0 implies that
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i(z) < 2/
√

N with at least 99% probability. Thus, if the population is large, we can be fairly confident
that the condition of the Proposition 5.14 is applied. Then (5.11) gives an approximation to the expected
duration of the epidemic from time z. Equation (5.11) is quite intuitive. The factor Szβi(z)/(α − βs(∞))
approximates the expected number of infections after time z and the factor 1/(α − βs(∞)) + 1/α

approximates the expected time to absorption for individuals who get infected after time z. Hence, even
though the epidemic can continue after zero infection level is observed, we do not expect it to last very
long or be very severe.

Remark 5.16. Let us make a brief comparison between the model constructed in this section and the
general stochastic epidemic model. According to Andersson and Britton (2000) Theorem 2.2, for the
general stochastic epidemic model the distribution of the final size is typically bimodal. That is either
a few individuals are infected or a fairly large number are infected eventually, whereas for our model
the distribution for the final size is binomial. In addition, from Andersson and Britton (2000, p. 34), the
asymptotic distribution of the duration is either short or grows as log (N), whereas for our model the
duration grows as log (N).

6. Valuations of insurance benefits
In this section, we derive formulas for the expected present values (EPV) of insurance and annuity
benefits in the SIR multiple state model. The results of this section will be used to analyse premiums
and reserves on insurance products in the next section.

6.1. Review of general results
For the readers convenience, we collect some useful results for the EPV calculations in a general
Markov multiple state model in this subsection. For comprehensive treatments, the readers are referred
to Dickson et al. (2020) and Haberman and Pitacco (1998).

Definition 6.1. Consider a Markov multiple state model with M + 1 states 0, 1, . . . , M. The transition
matrix is P and the force of transition matrix is μt. Let δ be the constant force of interest and v = e−δ.
Recall the following standard actuarial functions.

• For any i,j, let āij(z, n) be the EPV of an insurance benefit that pays a continuous annuity at the
rate of $1 per annum between time z and n to an individual, who is at state i at time 0, as long
as he is in state j.

āij(z, n) =
∫ n

z

vtPij(z, t)dt.

• For i �= j, let Āij(z, n) be the EPV of an insurance benefit that pays $1 at time t for z ≤ t ≤ n if
the policyholder who is at state i at time 0 moves to state j at time t.

Āij(z, n) =
M∑

k: k �=j

∫ n

z

vtPik(z, t)μkj
t dt.

• Let B̄ij(z, n) be the EPV of an insurance benefit that pays $1 at time t for z ≤ t ≤ n if the
policyholder who was at state i at time 0 transfer out of state t at time t.

B̄ij(z, n) =
M∑

k: k �=j

∫ n

z

vtPij(z, t)μjk
t dt.
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Lemma 6.2. We have
M∑

j=0

āij(z, n) = vz − vn

δ
. (6.1)

Lemma 6.3. For i �= j,

Āij(z, n) = vnPij(z, n) + δāij(z, n) + B̄ij(z, n).

Proof. Combining (3.6) and integration by parts yields

Āij(z, n) =
∫ n

z

vt

{
Pij

t (z, t) +
M∑

k:k �=j

Pij(z, t)μjk
t

}
dt

= [
vtPij(z, t)

]n

z
−
∫ n

0

vt log (v)Pij(z, t)dt +
M∑

k:k �=j

∫ n

z

vtPij(z, t)μjk
t dt

= vnPij(z, n) + δ[ij](z, n) + B̄ij(z, n). �
Remark 6.4 Consider an insurance policy in force between time z and n for an individual who is cur-
rently in state i. He will deposit $1 to an insurance fund the moment he enters state j. In return, he will
receive a continuous annuity of rate δ per annum as long as he is still in state j. His deposit will also
be returned either on the moment he leaves state j or on the expiration of the policy. Then Lemma 6.3
states that for such a policy the EPV of the cost to the insurer is equal to the EPV of the fund paid to the
insurer.

Corollary 6.5. If j is an absorbing state, then

Āij(z, n) = vnPij(z, n) + δāij(z, n).

6.2. Applications to the SIR multiple state model
Let us apply the results of the previous subsection to derive formulas for the standard actuarial functions
in the context of the SIR multiple state model.

Proposition 6.6. For the SIR multiple state model, we have

Ā01(z, n) = vnP01(z, n) + (α + δ)ā01(z, n), (6.2)
Ā02(z, n) = αā01(z, n), (6.3)

Ā12(z, n) = αvz

α + δ

(
1 − e−(α+δ)(n−z)

)
. (6.4)

In addition,

ā11(z, n) = vz

α + δ

(
1 − e−(α+δ)(n−z)

)
, (6.5)

ā12(z, n) = vz − vn

δ
− vz

α + δ

(
1 − e−(α+δ)(n−z)

)
.

Furthermore, the following equations hold

ā00(z, n) +
(

1 + α

δ

)
ā01(z, n) = 1

δ

(
vz − vn(1 − P02(z, n))

)
, (6.6)

and

ā02(z, n) = 1

δ

(
αā01(z, n) − vnP02(z, n)

)
. (6.7)
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and

Ā01(z, n) + δā00(z, n) = vz − vnP00(z, n). (6.8)

Proof. The formulas for Ā12(z, n), Ā02(z, n), ā11(z, n) and ā12(z, n) can be derived directly from the
fact that μ12

t = α and P11(z, t) = e−α(t−z). From Proposition 6.3,

Ā01(z, n) = vnP01(z, n) + δā01(z, n) +
∫ n

z

vtP01(z, t)μ12
t dt

= vnP01(z, n) + (α + δ)ā01(z, n).

By Corollary 6.5,

Ā02(z, n) = vnP02(z, n) + δā02(z, n).

On the other hand, we have just showed that Ā02(z, n) = αā01(z, n). Thus, we deduce (6.7). Equation (6.6)
follows from (6.1) and (6.7). Finally, combining (6.2) with (6.6) yields (6.8). �
Definition 6.7. Following Feng and Garrido (2011), we define the following actuarial functions:

ās(z, n) :=
∫ n

z

vts(t)dt, āi(z, n) :=
∫ n

z

vti(t)dt, ār(z, n) :=
∫ n

z

vtr(t)dt.

In addition,

Āi(z, n) :=
∫ n

z

vts(t)μ01
t dt = β

∫ n

z

vts(t)i(t)dt,

Ār(z, n) :=
∫ n

z

vti(t)μ12
t dt = α

∫ n

z

vti(t)dt.

Let us refer to these actuarial functions as the aggregate actuarial functions. These functions are
useful to calculate reserves and premiums for an insurance scheme consisting of all the population
including those who are already infected or removed. For example, this insurance scheme might be
part of a compulsory national insurance plan in which the entire population is required to participate.
In this context, the aggregate actuarial functions have the following economic interpretations. If each
susceptible (or infected or removed) individual is entitled to a continuous annuity at the rate of $1 per
annum between time z and n, then the EPV of the cost to the insurer per individual is given by ās(z, n)
(or āi(z, n) or ār(z, n)), respectively. Similarly, if each individual is compensated $1 immediately upon
getting infected (or removed) between time z and n, then Āi(z, n) (or Ār(z, n)) represents the EPV of the
cost to the insurer per individual.

Lemma 6.8. From (3.4), the aggregate actuarial functions can be expressed in terms of the standard
actuarial functions as follows.

ās(z, n) = s(z)ā00(z, n),

āi(z, n) = s(z)ā01(z, n) + i(z)ā11(z, n),

ār(z, n) = s(z)ā02(z, n) + i(z)ā12(z, n) + r(z)

(
vz − vn

δ

)
,

Āi(z, n) = s(z)Ā01(z, n),

Ār(z, n) = s(z)Ā02(z, n) + i(z)Ā12(z, n).

Lemma 6.9.

δār(z, n) = αāi(z, n) + vzr(z) − vnr(n). (6.9)

Proof. Equation (6.9) can be derived from integration by parts. It has the following economic inter-
pretation. Consider an insurance policy between time z and n where each individual deposits $1 to an
insurance fund either at time z if he is already removed or the moment he is removed. In return, he is

https://doi.org/10.1017/asb.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2024.8


376 Minh-Hoang Tran

entitled to a continuous annuity of rate δ per annum until time n when the $1 deposited earlier will be
returned. The EPV of the cost to the insurer per individual is given by

vnr(n) + δār(z, n).

The EPV of the fund paid to the insurer per individual is the sum of the payments of those who are
already removed at time z and the payments by those who are not yet removed at time z. Thus, it is
equal to

vzr(z) +
∫ n

z

vtr′(t)dt = vzr(z) + αāi(z, n).

As a result, (6.9) simply says that the EPV of the cost to the insurer is the same as the EPV of the fund
paid to the insurer. �
Proposition 6.10. For the SIR multiple state model, the following identities hold

δās(z, n) + (α + δ)āi(z, n) = vz(1 − r(z)) − vn(1 − r(n)), (6.10)

Āi(z, n) + δās(z, n) = vzs(z) − vns(n), (6.11)

Āi(z, n) + vzi(z) − vni(n) = (α + δ)āi(z, n). (6.12)

Proof. Different versions of these identities are proved in Feng and Garrido (2011). We note here
that they can be derived from Proposition 6.6 and Lemma 6.8. �
Remark 6.11. The economic interpretations of Proposition 6.10 can be obtained by equating the EPV of
the cost to the insurer and the EPV of the fund paid to the insurer for suitably chosen insurance policies.
As an example, let us interpret (6.10). Consider the insurance policy between time z and n in which
each susceptible or infected individual contributes $1 at time z. In return, he will receive a continuous
payment of rate δ per annum until he is either removed or until the expiration of the policy when he is
also returned his deposit. The other identities can be interpreted similarly (see Feng and Garrido, 2011
for more information).

7. Calculation of premiums and reserves
7.1. Premiums
Consider the following insurance policy which is in force for n years:

• If the policyholder is susceptible, then he pays a continuous premium at the rate of P per annum;
• If the policyholder is infected, then he receives immediately a payment of S1 and a continuous

hospitalisation benefit at the rate of H per annum;
• If the policyholder is removed, then he receives immediately a payment of S2.

Note that n should not exceed 1 otherwise constant removal intensity might not be appropriate. We
have the options of either work at the individual or aggregate level. That means we can either determine
the premium by considering a single policy consisting of one susceptible policyholder or by considering
a portfolio consisting of S0 susceptible and I0 infected policyholders. The latter is the approach taken in
Feng and Garrido (2011). Nevertheless, being able to work at the individual level allows more flexibility,
for example, if only a subset of the population is insured.

Proposition 7.1. Under the equivalence principle, the premium rate P at the individual level is

P = S1Ā01(0, n) + Hā01(0, n) + S2Ā02(0, n)

ā00(0, n)
. (7.1)
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The premium rate per individual π at the aggregate level is given by

π = S1Āi(0, n) + Hāi(0, n) + S2Ār(0, n)

ās(0, n)
. (7.2)

Proof. Let us prove (7.2) as (7.1) is clear. Let B(0) and B(1) be the EPVs of future benefits for an
individual who is susceptible and infected at time 0, respectively. Then,

B(0) = S1Ā01(0, n) + Hā01(0, n) + S2Ā02(0, n),

B(1) = Hā11(0, n) + S2Ā12(0, n).

Therefore, π = (s(0)B(0) + i(0)B(1))/(s(0)ā00(0, n)) which can be rearranged to give (7.2). �

7.2. Reserves
For reserves we differentiate 4 different types

• prospective reserves at the individual or aggregate level,
• retrospective reserves at the individual or aggregate level,

where prospective means we are taking the EPV of the difference between future benefits and future
premium payments, whereas retrospective means we are taking the accumulating value of the premium
payments already received less that of the benefits already paid.

Proposition 7.2. Consider the insurance policy described at the beginning of this section.
The prospective reserves at the individual level at time t for a susceptible policyholder and an infected

policyholder are, respectively,

tV
(0) = v−t

(
S1Ā01(t, n) + Hā01(t, n) + S2Ā02(t, n) − Pā00(t, n)

)
, (7.3)

tV
(1) = v−t

(
Hā11(t, n) + S2Ā12(t, n)

)
. (7.4)

The retrospective reserves at the individual level at time t for a susceptible policyholder and an
infected policyholder are, respectively,

tV
(0)
R = v−t

(
Pā00(0, t) − S1Ā01(0, t) − Hā01(0, t) − S2Ā02(0, t)

)
, (7.5)

tV
(1)
R = −v−t

(
Hā11(0, t) + S2Ā12(0, t)

)
. (7.6)

Furthermore, (tV (0), tV (1)) satisfy the differential equation

d

dt

(
tV (0)

tV (1)

)
=
[

δ + βi(t) −βi(t)
0 δ + α

] (
tV (0)

tV (1)

)
+
(

P
−H

)
−
(

S1βi(t)
αS2

)
. (7.7)

whereas (tV
(0)
R , tV

(1)
R ) satisfy the differential equation

d

dt

(
tV

(0)
R

tV
(1)
R

)
=
[

δ 0
0 δ

] (
tV

(0)
R

tV
(1)
R

)
+ 1

s(0)

(
Ps(t) − S1βs(t)i(t)

0

)
− (H + αS2)

s(0)

(
i(t) − i(0)e−αt

s(0)e−αt

)
. (7.8)

Proof. The formulas for the prospective and retrospective reserves are clear. We note that (7.7) is a
special case of Thiele’s differential equation for prospective reserves (see Dickson et al., 2020, p. 325)
and (7.8) can be obtained by direct differentiation. �
Proposition 7.3. Let WR(t) and WP(t) be the retrospective and prospective reserves per individual at
the aggregate level. Then

WR(t) = v−t
(
π ās(0, t) − S1Āi(0, t) − Hāi(0, t) − S2Ār(0, t)

)
WP(t) = v−t

(
S1Āi(t, n) + Hāi(t, n) + S2Ār(t, n) − π ās(t, n)

)
.
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The prospective and retrospective reserves WP(t) and WR(t) are related via

WR(t) = WP(t) − eδtWP(0).

In addition, both WR(t) and WP(t) satisfy the differential equation
dX

dt
= δX + πs(t) − βS1s(t)i(t) − (H + αS2)i(t). (7.9)

Proof. The formulas for the prospective and retrospective reserves are clear due to the inter-
pretation for the aggregate actuarial functions. The differential Equation (7.9) follows by direct
differentiation. �
Remark 7.4. Proposition 7.3 is proved in Feng and Garrido (2011) for retrospective reserves. Suppose
that P is set equal to π . Then we have the following decompositions of aggregate reserves.

WP(t) = s(t)tV
(0) + i(t)tV

(1), WR(t) = s(0)tV
(0)
R + i(0)tV

(1)
R . (7.10)

Thus, we can also obtain the same results by combining (7.10) and Proposition 7.2.

8. Numerical illustration
8.1. Data
For numerical illustration, let us consider the Eyam data set from Raggett (1982). This data set describes
the evolution of the bubonic plague in the village of Eyam in 1665–1666. From a population of 261 in
June 1666, there were only 83 survivors in October 1666 when the plague ended. Note that we have
rounded non-integral values to the nearest integers.

Date Time (years) Susceptible S(t) Infected I(t)
June 18 0.0000 254 7
July 3–4 0.0397 235 14
July 19 0.0822 201 22
August 3–4 0.1247 153 29
August 19 0.1671 121 21
September 3–4 0.2096 108 8
September 19 0.2521 97 8
October 20 0.3370 83 0

8.2. Parameter estimation
Given the values (Sti , Iti ) of the number of susceptible and infected individuals (S̃(ti), Ĩ(ti)) at time ti for
i = 1, . . . , M where t1 = 0, we can form the conditional log-likelihood function as follows.

l(α, β) =
M−1∑
i=1

log
(
P

(
(S̃(ti+1), Ĩ(ti+1)) = (Sti+1 , Iti+1 )

∣∣∣(S̃(ti), Ĩ(ti)) = (Sti , Iti )
))

(8.1)

Given α, β, numerical methods can be employed to solve the differential Equations (2.1) with initial
values

s(0) = 254

261
, i(0) = 7

261
(8.2)

for (s(ti), i(ti), r(ti)) for i = 1, . . . , M. The transition probabilities can be obtained from (3.13). Then
(8.1) can be calculated via Proposition 5.3. The graph of the function l(α, β) is given in Figure 2. The
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Figure 2. Log-likelihood function.

Figure 3. Fitting s(t), i(t) to the data.

function l(α, β) can be maximised using numerical methods. Initial estimates for (α, β) can be obtained
by minimizing the sum of squares

M∑
k=1

(
ŝ(tk) − s(tk)

)2 +
M∑

k=1

(
î(tk) − i(tk)

)2

(8.3)

where s(tk), i(tk) are the values obtained from solving (2.1) and ŝ(tk), î(tk) are the values calculated from
the data. The initial estimates obtained from minimizing (8.3) are α̂0 = 34.739 and β̂0 = 56.441. The
maximum likelihood estimates of α and β are given by

α̂ = 34.150, β̂ = 55.437. (8.4)

These estimates are slightly different from those obtained by Raggett (1982) who used a different
method of estimation. Note that (8.1) does not take into account the fact that the epidemic is already
over on October 20. To take that into account, the term StM log (s(∞)/s(tM)) needs to be added to (8.1).
The modified log-likelihood function becomes

l̃(α, β) = l(α, β) + StM log (s(∞)/s(tM)). (8.5)

Note that s(∞) can be calculated from Proposition 2.2. The estimates obtained from maximizing (8.5)
are α̃0 = 35.090 and β̃0 = 56.804. However, we do not use these estimates as we would like to treat the
data as part of an ongoing epidemic. Figure 3 shows the graphs of the estimated s(t) and i(t) and the
observed data.
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Figure 4. Transition probabilities P0i(0, t) for i = 0, 1, 2 and s(t), i(t), r(t).

Figure 5. Transition probabilities P0i(z, z + t) for i = 0, 1, 2.

8.3. Transition probabilities and transition intensities
Substituting the values of α̂ and β̂ from (8.4) into (2.1), we can solve for s(t), i(t), r(t) and the transition
probabilities Pij(0, t). From Figure 4, we observe that P00(0, t), P01(0, t) and P02(0, t) have remarkably
similar shapes to s(t), i(t) and r(t), which are consistent with (3.13). To find the value of s(∞) and r(∞),
we solve (2.5) which yields

s(∞) = 0.3257, r(∞) = 0.6743.

As a result, we can deduce

P00(0, ∞) = 0.3346, P01(0, ∞) = 0, P02(0, ∞) = 0.6654.

Hence, at the start of the epidemic a susceptible individual has a 33.46% chance of never getting
infected and 66.54% chance of getting removed eventually. From (2.7), the infection intensity peaks
at t∗ = 0.12 (years) when approximately 10% of the population is infected. Using (3.13), we can calcu-
late the transition probabilities P(z, z + t) for any z, t. The graphs of P0i(z, z + t) for i = 0, 1, 2 are given
in Figure 5.
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Figure 6. Distribution functions of the duration.

8.4. Duration estimation
Note that the last time that we could observe infected individuals is when z = 0.2521 and the first time
we could observe no infected individuals is when t = 0.3370. Based on this information alone, the dis-
tribution of the duration D of the epidemic is given by Proposition 5.11. On the other hand, if we could
be sure that there are no further infections after time t = 0.3370, for example, all susceptible individuals
are to die from some other causes, then the distribution of D is given by Corollary 5.13. The graphs of
the distributions of D − z in both cases are given in Figure 6. The mean and standard deviation of the
duration in the first case are 0.4653 and 0.0528, respectively. On the other hand, the mean and standard
deviation of the duration in the second case are 0.3317 and 0.0048, respectively.

8.5. Premium and reserve calculation
Consider an insurance policy that pays a continuous annual hospitalisation benefit of $1000 per annum
for a maximum of one year. We assume the force of interest is constant at 5% per annum. Then from
(7.1), the annual individual premium rate is given by

P = 1000ā01(0, 1)

ā00(0, 1)
= 47.5408

where

ā01(0, 1) = 0.01934, ā00(0, 1) = 0.4068.

From (7.2), the annual aggregate premium rate is π = 49.5219. As pointed out in Feng and Garrido
(2011), the aggregate retrospective reserves are usually negative since the infection rate decreases
towards the end of the epidemic. Hence, to not have policyholders surrender policies once the peak
of the epidemic has passed and running at a deficit, insurance providers should charge premiums at
the higher rate than that determined by the equivalence principle. Adopting the algorithm in Feng and
Garrido (2011), we obtained a premium rate of $113.90. From Figure 7, we observe that with the higher
premium rate, the aggregate reserve is always non-negative. Thus, the insurer is protected from loss due
to early surrender. However, at the end of the epidemic, there is a surplus of $26.79 which should be
returned to all remaining susceptible individuals.

8.6. Simulations
In this subsection, we describe the simulation procedure for the process (Xt)t≥0 described in Section 3.
Suppose X0 = 0. From Proposition 4.1, T (0) and T (1) can be simulated by the below algorithm. Note that
the inverse of s(t) is given by (2.6).

• Simulate u ∼ Uniform(0, 1) and w ∼ Exponential(α).

https://doi.org/10.1017/asb.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2024.8


382 Minh-Hoang Tran

Figure 7. Aggregate retrospective reserves for premium rates $49.52 and $113.90.

Figure 8. Histograms of the duration and the final susceptible size.

• Then T (0) and T (1) are given by

T (0) =
{

s−1(s(0)u) if u > s(∞)/s(0),
∞ if u ≤ s(∞)/s(0). & T (1) =

{
0 if T (0) = ∞,
w if T (0) < ∞.

Finally, we study the duration and final susceptible size of the epidemic. Assume that the popula-
tion size is 261 with 254 susceptible and 7 infected individuals as in the Eyam data set. We simulate
20,000 such populations. For each population, we simulate 254 paths starting from state 0 and 7 paths
starting from state 1 independently. The duration for each population is determined as the instance the
last infected individual is removed. The average duration of the epidemic from the simulations is 0.4749
years compared with the expected value of 0.4751 years and standard deviation 0.0798. The histograms
of the duration and the final susceptible size of the epidemic are included in Figure 8. They are fitted
with the probability density functions given by Remark 5.2 and Proposition 5.8.

Alternatively, we can simulate the dynamics of the above population as follows. Let tn = n�T for
n = 0, 1, 2, . . . where �T is a small time interval. Let Ŝ(0) be the number of individuals who are initially
susceptible but eventually removed. Thus, Ŝ(0) = S0 − S̃(∞). For i = 0, 1, 2, let Ŝ0i(tn) be the number
of individuals who are susceptible at time tn but are susceptible, infected, and removed at time tn+1,
respectively. Then,

(Ŝ0i(tn))
2
i=0 ∼ Multinomial

(
Ŝ(tn), (P̂0i(tn, tn+1))

2
i=0

)
where

P̂00(z, t) = P00(z, t) − P00(z, ∞)

P02(z, ∞)
, P̂01(z, t) = P01(z, t)

P02(z, ∞)
, P̂02(z, t) = P02(z, t)

P02(z, ∞)
.

Note that

S̃(tn) = S̃(∞) + Ŝ(tn).
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Figure 9. One possible realisation of the population dynamics.

The simulation algorithm is as follows.

• Simulate S̃(∞) ∼ B(S0, P00(0, ∞)) and set Ŝ(0) = N − S̃(∞).
• For n ≥ 0, simulate

(Ŝ0i(tn))
2
i=0 ∼ Multinomial

(
Ŝ(tn), (P̂0i(tn, tn+1))

2
i=0

)
,

and

Ĩ11(tn) ∼ B(Ĩ(tn), P11(tn, tn+1)).

• Update

Ŝ(tn+1) = Ŝ00(tn), Ĩ(tn+1) = Ŝ01(tn) + Ĩ11(tn).

• Repeat until Ŝ(tn) = Ĩ(tn) = 0.

Figure 9 shows one possible realisation of the dynamics of the population. As expected, the observed
number of susceptible and infected individuals fluctuated around the corresponding expected numbers.
In addition, the first time zero infection was observed is around 0.36 years. The epidemic then restarted
around 0.41 years and eventually ended around 0.45 years. We note that even though the epidemic
continued for almost 0.1 years after zero infection was observed, the number of further infections is
only 1. Thus, the restart of the epidemic in this case does not significantly alter the dynamics of the
epidemic. This fact is consistent with Proposition 5.14 and Remark 5.15.

9. Conclusions
In this paper, we propose a method of studying the financial repercussions of epidemics by combining
deterministic compartment models in epidemiology and Markov multiple state models in life insurance.
For illustrative purposes, we focus on the classical SIR model. The model that we analyse, which is
a special case of Hillairet & Lopez’s model in Hillairet and Lopez (2021) and Hillairet et al. (2022)
and which is also studied and generalised by Francis and Steffensen in Francis and Steffensen (2023),
has clarified and extended some of the constructions and results of Feng and Garrido in (2011). In
particular, our approach is more flexible in dealing with small portfolios and more complex insurance
products. We also study the spread of an epidemic in a population and provide concrete descriptions of
the distributions of the final susceptible size and the duration of the epidemic albeit under a very strong
independence assumption. Clearly, further work is required to relax that assumption and to arrive at a
more realistic model. Nevertheless, we believe our model having some desirable features can serve as a
starting point for further research and the techniques used in this paper are applicable in other aspect of
epidemic risk management for, for example, resource planning and allocation as in Chen (2021).
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