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The Genuine Omega-regular Unitary Dual
of the Metaplectic Group

Alessandra Pantano, Annegret Paul, and Susana A. Salamanca-Riba

Abstract. We classify all genuine unitary representations of the metaplectic group whose infinitesimal

character is real and at least as regular as that of the oscillator representation. In a previous paper we

exhibited a certain family of representations satisfying these conditions, obtained by cohomological

induction from the tensor product of a one-dimensional representation and an oscillator representa-

tion. Our main theorem asserts that this family exhausts the genuine omega-regular unitary dual of

the metaplectic group.

1 Introduction

In [4], we formulated a conjecture that provides a classification of all the genuine

unitary omega-regular representations of the metaplectic group. (Roughly, a repre-

sentation is called “omega-regular” if its infinitesimal character is real and at least

as regular as that of the oscillator representation. See Definition 2.1.) In this paper,

we prove that conjecture. In particular, we show that all such representations are

obtained by cohomological parabolic induction from the tensor product of a one-

dimensional representation and an oscillator representation. The reader may think

of the notion of omega-regular representations as a generalization, in the context of

genuine representations of the metaplectic group, of the idea of strongly regular rep-

resentations. (Recall that an infinitesimal character is called “strongly regular” if it is

at least as regular as the infinitesimal character of the trivial representation.) Then

our classification appears, for the case of the metaplectic group, as a generalization

of the main result of [10], which asserts that, for real reductive Lie groups, every

irreducible unitary representation with strongly regular infinitesimal character is co-

homologically induced from a unitary character. For double covers of other linear

groups one can define a similar notion of “omega-regular” for which every genuine

unitary omega-regular representation should be obtained by cohomological induc-

tion from one of a small set of “basic” unitary representations. We make this more

explicit after Theorem 1.4.

All representations considered in this paper have real infinitesimal character. Let

M p(2n) be the metaplectic group of rank n, i.e., the two-fold connected cover of the

symplectic group Sp(2n,R). We recall the construction of the Aq(Ω) representations

of M p(2n). Choose a theta stable parabolic subalgebra q = l + u of sp(2n,C), and
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let L be the Levi subgroup of M p(2n) corresponding to l. We may identify L with a

quotient of

(1.1) L =

[ u∏
i=1

Ũ (pi , qi)
]
× M p(2m).

Here, for i = 1 . . . u, Ũ (pi , qi) is a connected two-fold cover of U (pi , qi). However,

we will abuse notation and say L ≃ L. (See Section 2 for details.)

If Cλ is a genuine (unitary) character of
∏u

i=1 Ũ (pi , qi), and ω is an irreducible

summand of one of the two oscillator representations of M p(2m), we set Ω = Cλ⊗ω,
considered as a representation of L. Let Aq(Ω) := Rq(Ω) (see Section 2 for notation).

Remark 1.1 Our (new) definition of Aq(Ω) is slightly different from the one given

in [4], because we do not require Ω to be in the good range for q.

Definition 1.2 A representation Y of L is in the good range for q if its infinitesimal

character γY satisfies

〈
γY + ρ(u), α

〉
> 0, ∀α ∈ ∆(u).

Here ρ(u) denotes one half the sum of the roots in ∆(u).

For brevity of notation, we call an omega-regular representation “ω-regular”.

In [4] we proved the following result.

Proposition 1.3 ([4, Proposition 3]) If the representation Ω of L is in the good

range for q, then the representation Aq(Ω) of M p(2n) is nonzero, irreducible, genuine,

ω-regular, and unitary.

Our main result is the following converse of this statement.

Theorem 1.4 Let X be an irreducible, genuine, ω-regular, and unitary representation

of M p(2n). Then X ∼= Aq(Ω) for some theta stable parabolic subalgebra q of g and some

representation Ω = Cλ ⊗ ω, in the good range for q, of the Levi subgroup corresponding

to q.

Theorem 1.4 suggests that the four oscillator representations form a “basic” set of

building blocks for all genuine omega-regular unitary representations of the meta-

plectic group, via cohomological parabolic induction. Using the results of [14] and

[2], one can verify that similar statements hold true for the simply connected split

group of type G2 and the nonlinear double cover of GL(n,R). Here, “omega-regu-

larity” might be defined in terms of 1
2
ρ, and the basic representations are the pseu-

dospherical representations that correspond to the trivial representation of the linear

group under the Shimura correspondence of [1]. This suggests the following gener-

alization of “omega-regular” for a double cover G of a split linear group. Fix a choice

of positive roots with respect to the split Cartan and consider “metaplectic” roots

as in [1, Definition 4.4]. Define γω to be one half the sum of the non-metaplectic

positive roots plus one fourth the sum of the metaplectic positive roots, and call a
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representation of G “omega-regular” if its infinitesimal character is at least as reg-

ular as γω (as in Definition 2.1). This definition agrees with that for M p(2n) and

the examples considered above, and reduces to the strongly regular definition if G is

linear. If G is a nonlinear double cover of a split real group as in [1], then the set of

basic representations for G should include the (conjecturally unitary) pseudospher-

ical representations at infinitesimal character γω , i.e., the Shimura lifts of the trivial

representation of the corresponding linear group (e.g., the even oscillator representa-

tions of M p(2n)). This collection of pseudospherical representations at infinitesimal

character γω may or may not exhaust the set of basic representations for G.

We conjecture that a similar notion of “omega-regularity” and a similar small col-

lection Πω(G) (finite if G is semisimple) of “basic” genuine, unitary, and omega-

regular representations can be defined for any double cover G of a reductive linear

real Lie group.

Conjecture 1.5 For each double cover H of a real reductive linear Lie group there is a

set Πω(H) of basic representations as above, with the following property. Suppose that G

is a double cover of a linear reductive real Lie group. If X is the Harish-Chandra module

of a genuine irreducible omega-regular unitary representation of G, then there is a Levi

subgroup L of G and a representation Y ∈ Πω(L) such that X is obtained from Y by

cohomological parabolic induction.

Remark 1.6 For linear double covers, such as the trivial double cover, or the square

root of the determinant cover of U (p, q), the basic representations are the (genuine)

unitary one-dimensional representations. For these groups, the notion of omega-

regularity should coincide with strong regularity, and the conjecture recovers Sala-

manca-Riba’s result [10].

In [4], we proved Theorem 1.4 for a metaplectic group of rank 2. The proof was

based on a case-by-case calculation. For each (genuine) Ũ (2)-type µ that is the low-

est K-type of an Aq(Ω) representation, we showed that there exists a unique uni-

tary and ω-regular representation of M p(4) with lowest K-type µ. For each genuine

Ũ (2)-type µ that is not the lowest K-type of an Aq(Ω) representation, we showed

that every ω-regular representation of M p(4) with lowest Ũ (2)-type µ must be non-

unitary. The main tool in the proof of both claims was Parthasarathy’s Dirac Oper-

ator Inequality (cf. [6]). This scheme worked for all genuine Ũ (2)-types, except for

the (unique) fine Ũ (2)-type that occurs in the genuine non-pseudospherical princi-

pal series. In this case, we explicitly computed the intertwining operator that gives the

invariant Hermitian form on the representation space and showed that its signature

is indefinite.

The case-by-case calculation we used to prove Theorem 1.4 for the case n = 2

is not suitable for a generalization to arbitrary n. For the general case, we apply a

reduction argument similar to the one used in [9], but we also need some of the non-

unitarity results and non-unitarity certificates obtained in [5]. (The question of the

unitarity of the ω-regular principal series of M p(2n) was the motivation for [5].)

We sketch the proof of Theorem 1.4 (for arbitrary n). Let X be a genuine admissi-

ble irreducible unitary representation of M p(2n). The first step is to realize X as the

lowest K-type constituent of a module of the form Rq(X1 ⊗ X0), where q = l + u
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is a theta stable subalgebra of sp(2n,C) with Levi subgroup L ≃ Ũ (r, s) × M p(2d),

X1 is a genuine strongly regular irreducible representation of Ũ (r, s), and X0 is the

irreducible Langlands quotient of a genuine ω-regular principal series representation

of M p(2d). If X1 ⊗ X0 is unitary, then the results of [9] imply that X1 ≃ Aq2
(λ2) for

some theta stable parabolic subalgebra q2 and some parameter λ2, and the results of

[5] tell us that X0 must be the even half of an oscillator representation of M p(2d). In

this case, by a version of induction by stages, X must be of the desired form. If X1⊗X0

is not unitary, then there must be an (L ∩ K)-type µL that detects non-unitarity (in

the sense that the invariant Hermitian form will change sign on µL). The results of

[9], which rely heavily on Parthasarathy’s Dirac Operator Inequality, together with

the calculations in [5] (see Lemma 5.2), give us specific information about what µL

could look like. Recall that, associated with the cohomological induction functor Rq,

there is the bottom layer map, which takes (L∩K)-types (in (X1⊗X0)) to K-types (in

Rq(X1 ⊗ X0)). Let µ be the image of µL under this map. If µ were nonzero, then by a

theorem of Vogan, µ would occur in the lowest K-type constituent X of Rq(X1 ⊗ X0)

and would carry the same signature as µL; hence X would be not unitary. Because

we are assuming that X is unitary, we deduce that µL must be mapped to 0. It turns

out that, in this case, there exists a different theta stable parabolic subalgebra q ′ of

sp(2n,C) with Levi subgroup L ′ ≃ Ũ (r ′, s ′) × M p(2d + 2) such that X is the lowest

K-type constituent of Rq ′(X ′
1 ⊗ X ′

0). Here X ′
1 is an Aq3

(λ3) module of Ũ (r ′, s ′), and

X ′
0 is the odd half of an oscillator representation of M p(2d + 2). As in the previous

case, using induction by stages, we get the desired result.

In [4], we also classified the non-genuine unitary ω-regular representations of

M p(4), i.e., the ω-regular part of the unitary dual of Sp(4,R). We plan to address the

generalization of this result to metaplectic groups of arbitrary rank in a future paper.

The paper is organized as follows. In Section 2, we set up the notation and recall

some properties of the cohomological induction construction. We outline the proof

of our main theorem in Section 3. The argument is essentially reduced to two main

propositions, which we prove in Sections 6 and 7, and a series of technical lemmas

that are presented in Section 4 (the casual reader may want to skip this section).

Additional results needed for the proof are included in Sections 5 and 8.

2 Definitions and Preliminary Results

We begin with some notation. For the metaplectic group of rank r, we denote by

ω an irreducible summand of an oscillator representation, and we write ωr for the

corresponding infinitesimal character. Recall that there are four such summands,

namely, the odd and even halves of the holomorphic and antiholomorphic oscillator

representations, respectively. For any compact connected group, we often identify

irreducible representations of the group with their highest weight.

For G = M p(2n), set g0 = sp(2n,R) and g = sp(2n,C), and let t0 and t be the

real and complexified Lie algebra of a compact Cartan subgroup T of G. Let 〈 · , · 〉
denote a fixed non-degenerate G-invariant θ-invariant symmetric bilinear form on

g0, negative definite on k0 and positive definite on p0; use the same notation for its

complexification and its various restrictions and dualizations.
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Definition 2.1 Let γ ∈ it∗0 . Choose a positive system ∆
+(γ) ⊆ ∆(g, t) such that

〈α, γ〉 ≥ 0 for all α ∈ ∆
+(γ), and let ωn be the representative of the infinitesimal

character of the oscillator representation of G that is dominant with respect to ∆
+(γ).

We call γ ω-regular if the following regularity condition is satisfied:

〈α, γ − ωn〉 ≥ 0, ∀α ∈ ∆
+(γ).

We say that a representation of G is ω-regular if its infinitesimal character is.

Given a θ-stable parabolic subalgebra q = l + u of g, write L for the corresponding

subgroup of M p(2n). Then L is a double cover of a Levi subgroup Ld of Sp(2n,R) of

the form

(2.1) Ld
∼=

u∏
i=1

U (pi , qi) × Sp(2m,R).

For each i = 1 . . . u, let Ũ (pi , qi) be the inverse image of U (pi , qi) (in (2.1)) under

the covering map

p : M p(2n) −→ Sp(2n,R),

and similarly for S̃p(2m,R). Then Ũ (pi , qi) is the (connected) “square root of the

determinant cover” of U (pi , qi), and S̃p(2m,R) ∼= M p(2m). The groups Ũ (pi , qi)

and S̃p(2m,R) intersect in the kernel of the covering map p, and there is a surjective

map

(2.2) L =

[ u∏
i=1

Ũ (pi , qi)
]
× M p(2m) −→ L

given by multiplication inside M p(2n). Since the factors in (2.2) commute, we have

that genuine irreducible representations of L are in correspondence with tensor prod-

ucts of genuine irreducible representations of the factors of L. In order to keep our

notation simpler, we will identify L with L, and just write

L ∼=
[ u∏

i=1

Ũ (pi , qi)
]
× M p(2m).

Now let (R
(g,K)
q )i be the functors of cohomological parabolic induction carrying

(l, L∩K)-modules to (g,K)-modules (cf. [12, Def. 6.3.1]). We will occasionally apply

these functors to different settings. When the group and the Lie algebra are clear from

the context, we will omit the superscript (g,K) and use the more standard notation

R
i
q. In our situation, we only use the degree i = dim(u ∩ k) (usually denoted by S),

hence we may omit the superscript i as well.

Definition 2.2 An Aq(Ω) representation is a genuine representation of G of the

following form. Let q = l + u be a theta stable parabolic subalgebra of g, with corre-

sponding Levi subgroup L (as in equation (1.1)). Let Cλ be a genuine (on each factor)

one-dimensional representation of [
∏u

i=1 Ũ (pi , qi)] and let ω be an irreducible sum-

mand of an oscillator representation of M p(2m). We define

Aq(Ω) := Rq(Ω).
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Remark 2.3 In Definition 2.2, the rank m of the metaplectic factor of L is allowed

to be equal to 0 or n; in these cases, the representation Aq(Ω) of M p(2n) is an Aq(λ)

representation or an oscillator representation, respectively.

We will prove Theorem 1.4 in Section 3. Now we recall some properties of

the functors of cohomological induction. Let X be an irreducible admissible

(g,K)-module. Let

(2.3) (λa, qa, La,X
La )

be the “θ-stable parameters” associated with X via Vogan’s classification of admissible

representations, so that X is the unique lowest K-type constituent of RSa
qa

(XLa ), with

Sa = dim(ua∩k) and XLa a minimal principal series of La (cf. [12]). Recall that the

parameter λa ∈ it∗0 determines the theta stable parabolic subalgebra qa = la + ua. In

particular, the set of roots in ua is given by

∆(ua) =
{
α ∈ ∆(g, t) | 〈λa, α〉 > 0

}
.

Choose and fix the positive system of compact roots

(2.4) ∆
+
c = {ǫi − ǫ j | 1 ≤ i < j ≤ n}

so that dominant weights, and therefore highest weights of K-types, are given by

strings of weakly decreasing half-integers. The parameter λa is weakly dominant for

∆
+
c as well. If

(2.5)

λa =

(
g1, . . . , g1︸ ︷︷ ︸

r1

, . . . , gt , . . . , gt︸ ︷︷ ︸
rt

∣∣∣ 0, . . . , 0︸ ︷︷ ︸
d

∣∣∣ −gt , . . . ,−gt︸ ︷︷ ︸
st

, . . . ,−g1, . . . ,−g1︸ ︷︷ ︸
s1

)

with g1 > · · · > gt > 0, then the centralizer of λa in G is of the form

La = CentrG(λa) ≃
[ t∏

i=1

Ũ (ri , si)
]
× M p(2d),

and each factor is quasisplit.

Note that the parameter

(2.6) ξ =

(
1, 1, . . . , 1︸ ︷︷ ︸

r

∣∣∣ 0, 0, . . . , 0︸ ︷︷ ︸
d

∣∣∣ −1,−1, . . . ,−1︸ ︷︷ ︸
s

)

is a singularization of λa (cf. [11]). Here r =
∑t

i=1 ri and s =
∑t

i=1 si . Set

L = CentrG(ξ) ≃ Ũ (r, s) × M p(2d)

and q = l + u. Then L ⊇ La, la ⊆ l, ua = u + (l ∩ ua), and q = l + u ⊇ qa.

Proposition 2.4 lists a few results regarding the functors of cohomological induc-

tion and their restriction to K (see [3, 12] for proofs). Most of these results are gath-

ered together in [11], but are stated there for the functors LS
q instead of RS

q. Note that

in our context, the two constructions are isomorphic by a result due to Enright and

Wallach (cf. [13, Theorem 5.3]).

https://doi.org/10.4153/CJM-2011-075-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-075-x


Omega-regular Unitary Dual of the Metaplectic Group 675

Proposition 2.4 Suppose that X is an irreducible admissible (g,K)-module of

M p(2n). Define L and q as above, and let S = dim(u ∩ k).

(i) There is a unique irreducible (l, L∩K)-module XL associated with X so that X can

be realized as the unique lowest K-type constituent of RS
q(XL).

(ii) If µL is (the highest weight of) an irreducible representation VµL of L ∩ K and

µ = µL + 2ρ(u ∩ p) is ∆
+(k, t)-dominant, then every irreducible constituent

of (R
(K,k)
q∩k

)S(VµL ) has highest weight µ. If µ is not dominant for ∆
+(k, t), then

(R
(K,k)
q∩k

)S(VµL ) = 0.

(iii) There is a natural injective map, the bottom layer map, of K-representations

BXL :
(
R

(K,k)
q∩k

) S
(XL) → R

S
q(XL).

Moreover, there is a one-to-one correspondence (with multiplicities) between the

lowest K-types of X and the lowest (L ∩ K)-types of XL.

(iv) The module X is endowed with a nonzero invariant Hermition form 〈 · , · 〉G if

and only if the module XL is endowed with a nonzero invariant Hermitian form

〈 · , · 〉L.

(v) The bottom layer map is unitary. That is, for X Hermitian, on each K-type in the

bottom layer of X (cf. Remark 2.6), the signature of 〈 · , · 〉G matches the signature

of 〈 · , · 〉L on the corresponding (L ∩ K)-type of XL.

(vi) If γXL

∈ it∗0 is a representative of the infinitesimal character of XL, then

γX
= γXL

+ ρ(u)

is a representative of the infinitesimal character of X.

(vii) If λL
a is the Vogan classification parameter associated with XL, then

λa = λL
a + ρ(u).

Proof Because ξ in (2.6) is a singularization of λa, these facts follow from [11,

Lemma 2.7 and Theorem 2.13]. More precisely, part (i) and (vii) follow from The-

orem 2.13(b); (ii) from Lemma 2.7; (iii) and (v) follow from Theorem 2.13(d); (iv)

is proved in more generality in [9, Proposition 5.2 and Corollary 5.3], but it is also

[11, Theorem 2.13(c)]. Part (vi) is [12, Proposition 6.3.11].

Remark 2.5 If X has real infinitesimal character, then XL and X are Hermitian by

[9, Lemma 6.5]; the argument given there is easily seen to extend to the case of the

metaplectic group. Consequently, we have that in our setting, the forms 〈 · , · 〉L and

〈 · , · 〉G of Proposition 2.4(iv) always exist.

Remark 2.6 The image of the bottom layer map BXL (as in Proposition 2.4(iii)) is

called “the bottom layer of X”. We say that an (L∩K)-type µL survives in the bottom

layer if µ = µL + 2ρ(u ∩ p) is ∆+(k, t)-dominant (as in Proposition 2.4(ii)). Note

that, in this case, µ is the highest weight of a K-type in the bottom layer of X.
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Lemma 2.7 Retain the notation of Proposition 2.4. Set L = L1 × L0 with

L0 = M p(2d) and L1 = Ũ (r, s), and write XL ≃ X1 ⊗ X0, with Xi an irreducible

(li , Li ∩ K)-module (i = 0, 1). If X is ω-regular, then X1 is strongly regular for L1 and

X0 is ω-regular for L0.

Proof Let γXL

= (γX1 , γX0 ) be (a representative of) the infinitesimal character of XL,

and write

γX
= γXL

+ ρ(u)

as in Proposition 2.4(vi). Choose a positive system ∆
+ ⊂ ∆(g, t) of roots so that

γX is dominant with respect to ∆
+, and choose the representative of the infinitesimal

character ωn that is dominant with respect to ∆
+. Because X is ω-regular, we have

〈γX, α〉 ≥ 〈ωn, α〉, ∀α ∈ ∆
+.

If we normalize our form so that 〈α, α〉 = 2 for all short roots α, then this is equiva-

lent to saying that

〈γX, α〉 ≥ 1, ∀α ∈ ∆
+.

Now let

∆
+(l) = ∆

+ ∩∆(l, t) =
[
∆

+ ∩∆(l1, t)
]
∪
[
∆

+ ∩∆(l0, t)
]
.

Because ρ(u) is orthogonal to the roots of l, we have

〈γXL

, α〉 ≥ 1, ∀α ∈ ∆
+(l).

Note that the roots of l1 are orthogonal to γX0 , hence

〈γX0 , α〉 ≥ 1, ∀α ∈ ∆
+ ∩∆(l0, t),

and X0 is ω-regular for L0. Similarly, the roots of l0 are orthogonal to γX1 , hence

〈γX1 , α〉 ≥ 1, ∀α ∈ ∆
+(l) ∩∆(l1, t).

This implies that X1 is strongly regular for L1.

3 Proof Of Theorem 1.4

The proof of Theorem 1.4 relies on a series of auxiliary lemmas and propositions.

We will state these results as needed along the way and postpone the longer proofs to

later sections.

Fix X as in Theorem 1.4, i.e., let X be a genuine, irreducible, ω-regular, unitary rep-

resentation of M p(2n). By virtue of Proposition 2.4 and Lemma 2.7, we can assume

that our genuine, irreducible, ω-regular, unitary representation X is (the unique low-

est K-type constituent of) a representation of the form R
S
q(X1 ⊗ X0) with X1 an ir-

reducible genuine strongly regular (l1, L1 ∩ K)-module for L1 = Ũ (r, s), and X0 an

irreducible genuine ω-regular (l0, L0 ∩ K)-module for L0 = M p(2d). Note that, be-

cause L0 is a factor of La (and XLa is a minimal principal series representation of La),

X0 must be a minimal principal series representation of L0. The following proposi-

tion asserts that, in this setting, X1 is a good Aq2
(λ2) module.
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Proposition 3.1 Let X be an irreducible unitary (g,K)-module of M p(2n). Assume

that X is genuine and ω-regular; realize X as the unique lowest K-type constituent of

R
S
q(XL), as in Proposition 2.4, and write

L = L1 × L0 = Ũ (r, s) × M p(2d), XL ≃ X1 ⊗ X0,

as in Lemma 2.7. Suppose that r + s 6= 0. Then there exist a theta stable parabolic

subalgebra q2 and a representation Cλ2
of the Levi factor corresponding to q2, with λ2 in

the good range for q2, such that X1 ≃ Aq2
(λ2).

Using Proposition 3.1, we will prove the following result.

Proposition 3.2 In the setting of Proposition 3.1, assume d > 0 and allow r + s to be

possibly equal to zero. Then one of the following (mutually exclusive) options occurs:

(i) X0 is an even oscillator representation with lowest K-type

µ0 = ±(1/2, 1/2, . . . , 1/2).

(ii) There exist a subgroup L ′
= L ′

1 × L ′
0 = Ũ (r ′, s ′) × M p(2(d + 1)) ⊂ G also

containing La, a theta stable subalgebra q ′
= l ′ + u ′ ⊇ qa, and representations X

′

i

of L
′

i (i = 0, 1), such that

(a) Ũ (r ′, s ′) ⊂ Ũ (r, s), with either r = r ′ + 1 or s = s ′ + 1,

(b) X
′

1 is a good Aq3
(λ3) (or r ′ + s ′ = 0),

(c) X
′

0 is an odd oscillator representation with lowest K-type

µ
′

0 = (3/2, 1/2, . . . , 1/2) or (−1/2,−1/2, . . . ,−1/2.− 3/2),

and

(d) X can be realized as the unique lowest K-type constituent of RS ′

q ′(X
′

1 ⊗ X
′

0 ).

Putting all these results together, we obtain the following corollary.

Corollary 3.3 Every genuine irreducible ω-regular unitary representation X of

M p(2n) satisfies one of the following two properties:

(i) X is (the unique lowest K-type constituent of) a representation of the form R
S
q(XL)

with L = Ũ (r, s) × M p(2d) = L1 × L0 and XL
= X1 ⊗ X0. Here

(a) X1 is a good Aq2
(λ2) module for Ũ (r, s), unless r + s = 0, and

(b) X0 is an even oscillator representation of M p(2d) with lowest K-type

µ0 = ±(1/2, 1/2, . . . , 1/2),

unless d = 0.

(ii) X is (the unique lowest K-type constituent of) a representation of the form

R
S ′

q ′(XL ′

) with L ′
= Ũ (r ′, s ′) × M p(2(d + 1)) = L ′

1 × L ′
0 and XL ′

= X ′
1 ⊗ X ′

0.

Here

(a) X ′
1 is a good Aq3

(λ3) module for Ũ (r ′, s ′), unless r ′ + s ′ = 0, and
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(b) X ′
0 is an odd oscillator representation of M p(2(d + 1)) with lowest K-type

µ0 ′ = (3/2, 1/2, . . . , 1/2) or (−1/2,−1/2, . . . ,−1/2.− 3/2).

In order to conclude the proof of Theorem 1.4, we must show that (in both cases)

our genuine, irreducible, ω-regular, unitary representation X of M p(2n) can also be

realized as an Aq(Ω) representation for some theta stable parabolic subalgebra q and

some representation Ω = Cλ⊗ω in the good range for q. For this we need two more

results.

Proposition 3.4 Let q = l + u ⊆ g be a theta stable parabolic subalgebra. Assume

that L = NG(q) is a direct product of two reductive subgroups L = L1 × L0. (Here L can

be of the form Ũ (r, s) × M p(2d), as in Proposition 2.4, or Ũ (r ′, s ′) × M p(2(d + 1)), as

in Proposition 3.2.) Suppose further that we have a representation

X ≃ Rq

(
Aq ′(λ ′) ⊗ ω

)
,

where ω is an irreducible summand of an oscillator representation, q ′
= l ′ + u ′ ⊆ l1,

and Aq ′(λ ′) is good for q ′. Then there is a theta stable parabolic subalgebra qω = lω+uω
of g such that

X ≃ Rqω (Cλ ′ ⊗ ω) = Aqω (Ω)

with Ω = Cλ ′ ⊗ ω.

Proof Assume that X ≃ Rq(Aq ′(λ ′) ⊗ ω), where q ′
= l ′ + u ′ ⊆ l1. Set

qb = q ′ ⊕ l0 = (l ′ + u ′) ⊕ l0.

Then qb is a theta stable parabolic subalgebra of l, and by Lemma 3.5, we have that

Aq ′(λ ′) ⊗ ω ≃ R
(l1,L1∩K)
q ′ (Cλ ′) ⊗ R

(l0,L0∩K)
l0

(ω) ≃ R
(l,L∩K)
qb

(Cλ ′ ⊗ ω).

Therefore,

X ≃ Rq

(
R

(l,L∩K)
qb

(Cλ ′ ⊗ ω)
)
.

Now set

qω = qb + u = (l ′ ⊕ l0)︸ ︷︷ ︸
lω

+ (u ′ + u)︸ ︷︷ ︸
uω

.

Note that qω is a parabolic subalgebra of g. Since X1
∼= Aq ′(λ ′), by [10, Proposition

3.5], we know that l ′ ⊇ la ∩ l1 and u ′ ⊆ ua ∩ l1. We have

(3.1) lω = l ′ ⊕ l0 ⊆ l, u ⊆ u ′ + u = uω, and qω ⊆ q.

Hence, by induction in stages (cf. [12, Proposition 6.3.6]), we find that

Rq

(
R

(l,L∩K)
qb

(Cλ ′ ⊗ ω)
)
≃ Rqω (Cλ ′ ⊗ ω) = Aqω (Ω),

and Proposition 3.4 is proved.
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Lemma 3.5 For i = 1, 2, let Gi be a reductive Lie group with maximal compact

subgroup Ki , complexified Lie algebra gi , and a theta stable parabolic subalgebra qi =

li + ui . Moreover, let Xi be an (li , Li ∩ Ki)-module, and let Si = dim(ui ∩ ki). Then

R
S1
q1

(X1) ⊗ R
S2
q2

(X2) ≃ R
S1+S2
q1⊕q2

(X1 ⊗ X2).

Proof This follows by tracing through the definitions of the various cohomological

induction functors, using standard techniques and identities in homological algebra,

including an appropriate Künneth formula.

Finally, we need to show that our representation Ω is indeed in the good range

for qω .

Proposition 3.6 In the setting of Proposition 3.4, let X be the irreducible (lowest

K-type constituent of the) representation Rqω (Cλ ′ ⊗ ω). Assume, moreover, that λ ′

is in the good range for q ′. Then Ω = Cλ ′ ⊗ ω is in the good range for qω .

This concludes the proof of Theorem 1.4. The proofs of Propositions 3.1, 3.2, and

3.6 will be given in Sections 6, 7, and 8, respectively. Before we turn to those proofs,

we need to prove several technical lemmas concerning lowest K-types and to recall

some results about genuine minimal principal series representations of M p(2d). We

address these issues in the next two sections.

4 Technical Lemmas

The purpose of this section is to describe lowest K-types of irreducible, genuine, and

ω-regular representations of M p(2n), and to present some results that will be needed

for the proofs of Propositions 3.1, 3.2, and 3.6. We begin, in great generality, with

irreducible admissible (g,K)-modules M p(2n).

Lemma 4.1 Let X be an irreducible admissible (g,K)-module of M p(2n), and let µ be

a lowest Ũ (n)-type of X. Let λa and qa = la + ua be the Vogan classification parameter

and the theta stable parabolic subalgebra associated with X, respectively, as in (2.3).

Then µ is of the form

(4.1) µ = λa + ρ(ua ∩ p) − ρ(ua ∩ k) + δLa ,

where δLa is a fine (La ∩ K)-type.

Proof This is a known result due to Vogan. It follows from Proposition 2.4(ii)–(iii)

(when q = qa) and from the fact that (the highest weight of) the representation µLa

in that proposition is of the form λa − ρ(ua) + δLa , with δLa a fine (La ∩ K)-type. See

[7, Proposition 3.2.7] for a detailed proof in the case of G = U (p, q).

Next, we restrict our attention to irreducible admissible (g,K)-modules of M p(2n)

that are genuine and ω-regular.
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Lemma 4.2 Let X be an irreducible admissible (g,K)-module of M p(2n). Assume

that X is genuine and ω-regular. Realize X as the unique lowest K-type constituent of a

cohomologically induced representation R
S
q(XL), with

L = L1 × L0 = Ũ (r, s) × M p(2d) and XL ≃ X1 ⊗ X0,

as in Proposition 2.4. Let

λa =

(
g1, . . . , g1︸ ︷︷ ︸

r1

, . . . , gt , . . . , gt︸ ︷︷ ︸
rt

∣∣∣ 0, . . . , 0︸ ︷︷ ︸
d

∣∣∣ −gt , . . . ,−gt︸ ︷︷ ︸
st

, . . . ,−g1, . . . ,−g1︸ ︷︷ ︸
s1

)

be the Vogan classification parameter of X, as in equation (2.5).

(i) If X1 is an Aq ′(λ ′) module of Ũ (r, s), then the representation X has a unique lowest

Ũ (n)-type µ.

(ii) For i = 1, . . . , t, if ri 6= si , then gi ∈ Z + 1
2
. In this case, the infinitesimal character

of X contains an entry ±gi , and the infinitesimal character of X0 does not.

(iii) Suppose that X has a unique lowest Ũ (n)-type µ.

(a) µ is of the form

(4.2) µ = λa + ρ(ua ∩ p) − ρ(ua ∩ k) + µ0,

where µ0 is the lowest Ũ (d)-type of X0.

(b) Moreover, if ri = si , then gi ∈ Z.

Proof Recall that X0 is a genuine minimal principal series of M p(2d), therefore it

has a unique lowest K-type (cf. [5]). If X1 is an Aq ′(λ ′) module of Ũ (r, s), then X1

has a unique lowest K-type as well. The uniqueness of the lowest K-type of X then

follows from Proposition 2.4(iii).

For part (ii), recall from [8, Section 3.1] the relationship between the parameter

λa, the infinitesimal character, the lowest K-types, and the Langlands parameters of a

representation. There, the theory is laid out in detail for representations of the sym-

plectic group. The corresponding statements for genuine representations of M p(2n)

can be obtained by making slight modifications. In the case of ω-regular (hence

non-singular) representations, all limits of discrete series representations are discrete

series, and all the lowest K-types of a standard module appear in the same irreducible

representation. Because X is a genuine representation with associated parameter λa

as in (2.5), we can realize X as the Langlands subquotient of an induced represen-

tation from a cuspidal parabolic subgroup with Levi component MA isomorphic to

(a quotient of) M p(2a) × G̃L(2,R)b × G̃L(1,R)d, where a =
∑t

i=1 |ri − si | and

b =
∑t

i=1 min {ri , si}. If ri = si + 1 for some i, then the entry gi coincides with an

entry of the Harish-Chandra parameter of a genuine discrete series representation of

M p(2a). Similarly for −gi , if ri = si − 1. Therefore, gi ∈ Z + 1
2

whenever ri 6= si . In

this case, we also find that gi is an entry of the infinitesimal character of X. Then the

fact that X0 does not contain an entry ±gi follows from the ω-regular condition.
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For part (iii), assume that our representation has a unique lowest Ũ (n)-type µ.

Write

µ = λa + ρ(ua ∩ p) − ρ(ua ∩ k) + δLa

(as in Lemma 4.1). By Proposition 2.4, this equals µ1 + µ0 + 2ρ(u ∩ p). Now look at

the restriction to L0 ∩ K:

λa |l0∩k = 0

µ1 |l0∩k = 0

2ρ(u ∩ p) |l0∩k =
[
ρ(ua ∩ p) − ρ(ua ∩ k)

]
|l0∩k .

Hence, δLa |l0∩k= µ0. Next, we show that δLa |l1∩k= 0. Because X has a unique lowest

Ũ (n)-type, the representation X1 must have the same property. In order to have a

representation of L1 with a unique lowest Ũ (r) × Ũ (s)-type, every factor Ũ (ri , si) of

La with ri = si should carry the trivial fine Ũ (ri) × Ũ (si)-type, because non-trivial

fine Ũ (ri)×Ũ (si)-types on such factors come in pairs. This shows that the restriction

of δLa to L1 ∩ K is zero, hence δLa = µ0 and

µ = λa + ρ(ua ∩ p) − ρ(ua ∩ k) + µ0,

completing the proof of part (a). For part (b), write ri = si + εi for all i = 1, . . . , t .

Note that εi = 0 or ±1, because each factor of

La =

[ t∏
i=1

Ũ (ri , si)
]
× M p(2d)

is quasisplit. Then

ρ(ua ∩ p) − ρ(ua ∩ k) =

(
. . . , fi , . . . , fi︸ ︷︷ ︸,

ri

· · ·
∣∣∣ c, . . . , c︸ ︷︷ ︸

d

∣∣∣ . . . , hi , . . . , hi︸ ︷︷ ︸
si

, . . .

)
,

with

fi =

∑

j<i

(r j − s j) +
εi + 1

2
=

∑

j<i

ε j +
εi + 1

2
,

hi =

∑

j<i

(r j − s j) +
εi − 1

2
=

∑

j<i

ε j +
εi − 1

2
,(4.3)

c = r − s.

If ri = si for some i = 1, . . . , t , then εi = 0. The corresponding entry fi of

ρ(ua ∩ p) − ρ(ua ∩ k) is then in Z+ 1
2
. Because genuine Ũ (n)-types have half-integral

entries, this implies that gi ∈ Z. The proof of Lemma 4.2 is now complete.
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Remain in the setting of Lemma 4.2. Let µ be a lowest K-type of X. Recall that µ
satisfies equation (4.1):

µ = λa + ρ(ua ∩ p) − ρ(ua ∩ k) + δLa .

Write

(4.4) µ =

(
a1, . . . , a1︸ ︷︷ ︸

r1

, . . . , at , . . . , at︸ ︷︷ ︸
rt

∣∣∣ c1, . . . , cd︸ ︷︷ ︸
d

∣∣∣ bt , . . . , bt︸ ︷︷ ︸
st

, . . . , b1, . . . , b1︸ ︷︷ ︸
s1

)
,

according to how the coordinates break into the factors of the subgroup La. Then the

fine (L ∩ K)-type δLa is of the form

δLa =

(
y1, . . . , y1︸ ︷︷ ︸

r1

, . . . , yt , . . . , yt︸ ︷︷ ︸
rt

∣∣∣ z1, . . . , zd︸ ︷︷ ︸
d

∣∣∣ yt , . . . , yt︸ ︷︷ ︸
st

, . . . , y1, . . . , y1︸ ︷︷ ︸
s1

)
,

with yi = 0 or ± 1
2
, and zi = ± 1

2
(cf. [8, Proposition 6]). Note that the {zi} are

weakly decreasing.

Remark 4.3 If ri = 0, then ai does not occur as a coordinate of µ, but it is still

convenient to define

ai = gi + fi + yi ,

with fi as in equation (4.3). (Because si > 0 in this case, the quantities yi and (−)gi

can be determined by the coordinates of δLa and λa, respectively.) Similarly, if si = 0

(and ri > 0), we define bi by bi = −gi + hi + yi . We obtain sequences {ai} and {bi}
of half-integers satisfying

(4.5) a1 ≥ a2 ≥ · · · ≥ at and bt ≥ bt−1 ≥ · · · ≥ b1.

Lemma 4.4 Retain all the previous notation.

(i) at − bt ≥ 2.

(ii) Assume that the K-type µ satisfies the additional condition

(4.6) at = c1.

(a) εt ≥ 0 and gt =
1
2
.

(b) If εt = 0, then δLa (cf. (4.1)) must be of the form

(4.7) δLa =

(
. . . ,−

1

2
, . . . ,−

1

2︸ ︷︷ ︸
st

∣∣∣ 1

2
, . . . ,

1

2︸ ︷︷ ︸
p

,−
1

2
, . . . ,−

1

2︸ ︷︷ ︸
q

∣∣∣ −1

2
, . . . ,−

1

2︸ ︷︷ ︸
st

, . . .

)

for some p > 0 and q = d − p.
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(c) If εt = 1, then δLa (cf. (4.1)) must be of the form

δLa =

(
. . . , 0, . . . , 0︸ ︷︷ ︸

st +1

∣∣∣ 1

2
, . . . ,

1

2︸ ︷︷ ︸
p

,−
1

2
, . . . ,−

1

2︸ ︷︷ ︸
q

∣∣∣ 0, . . . , 0︸ ︷︷ ︸
st

, . . .

)

for some p > 0 and q = d − p.
(d) cd > bt .

Proof For part (i), observe that

at = gt + (r − s) − (rt − st ) +
εt + 1

2
+ yt = gt + (r − s) +

1

2
(1 − εt ) + yt ,

c1 = (r − s) + z1,

cd = (r − s) + zd, and

bt = −gt + (r − s) − (rt − st ) +
εt − 1

2
+ yt = −gt + (r − s) +

1

2
(−1 − εt ) + yt .

Hence, we obtain

at − c1 = gt +
1

2
(1 − εt ) + yt − z1,(4.8)

cd − bt = gt +
1

2
(1 + εt ) + zd − yt ,(4.9)

and

at − bt = 2gt + 1 ≥ 2,

because gt ≥
1
2
. This proves (i).

Now assume that µ satisfies equation (4.6). The coordinate gt of λa is either an

integer or a half-integer. We consider the two cases separately.

First assume that gt ∈ Z. By Lemma 4.2, εt = 0, so

at ∈ Z +
1

2
+ yt and c1 ∈ Z + z1.

In order for µ to be genuine, the coordinates of the fine (La ∩K)-type δLa must satisfy

{
yt ∈ Z

z1 ∈ Z + 1
2

⇐⇒

{
yt = 0

z1 = ± 1
2
.

This says that the representation δLa of (La ∩ K) is trivial on the Ũ (st , st )-factor of La,

and non-trivial on the M p(2d)-factor:

δLa =

(
. . . , 0, . . . , 0︸ ︷︷ ︸

st

∣∣∣ 1

2
, . . . ,

1

2︸ ︷︷ ︸
p

,−
1

2
, . . . ,−

1

2︸ ︷︷ ︸
q

∣∣∣ 0, . . . , 0︸ ︷︷ ︸
st

, . . .

)
.
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Equation (4.8) then gives

at − c1 =

{
gt if p > 0,

gt + 1 if p = 0.

Because gt > 0, this contradicts the fact that µ satisfies condition (4.6). Hence gt

cannot be an integer.

Next, assume that gt ∈ Z+ 1
2
. We need to show that gt =

1
2
. Recall that εt is either

0 or ±1. We consider the two cases separately. If εt = 0, the fine representation δLa

of (La ∩K) must be non-trivial on both the Ũ (st , st )-factor and the M p(2d)-factor of

La. Then either

(4.10) δLa =

(
. . . ,−

1

2
, . . . ,−

1

2︸ ︷︷ ︸
st

∣∣∣ 1

2
, . . . ,

1

2︸ ︷︷ ︸
p

,−
1

2
, . . . ,−

1

2︸ ︷︷ ︸
q

∣∣∣ −1

2
, . . . ,−

1

2︸ ︷︷ ︸
st

, . . .

)

or

(4.11) δLa =

(
. . . ,

1

2
, . . . ,

1

2︸ ︷︷ ︸
st

∣∣∣ 1

2
, . . . ,

1

2︸ ︷︷ ︸
p

,−
1

2
, . . . ,−

1

2︸ ︷︷ ︸
q

∣∣∣ 1

2
, . . . ,

1

2︸ ︷︷ ︸
st

, . . .

)

for some p, q ≥ 0 such that p + q = d. Equation (4.11) contradicts condition (4.6),

because the difference at − c1 is always positive; hence equation (4.10) must hold. We

find

at − c1 = 0 ⇐⇒ gt =
1

2
and p > 0.

Note that, in this case, cd − bt > 0 by equation (4.9). This proves (b) (and also (d)

for the case εt = 0). If εt 6= 0, the fine representation δLa of (La ∩ K) must be trivial

on the Ũ (st + εt , st )-factor of La and non-trivial on the M p(2d)-factor of La. Hence

δLa =

(
. . . , 0, . . . , 0︸ ︷︷ ︸

st

∣∣∣ 1

2
, . . . ,

1

2︸ ︷︷ ︸
p

,−
1

2
, . . . ,−

1

2︸ ︷︷ ︸
q

∣∣∣ 0, . . . , 0︸ ︷︷ ︸
st

, . . .

)
.

Just as above, we get that

at − c1 = 0 ⇐⇒ gt =
1

2
, εt = 1, and p > 0.

Moreover, cd − bt > 0 always in this case. This concludes the proofs of (a), (c), and

(d). The proof of Lemma 4.4 is now complete.

Finally, we look at the case in which the irreducible, admissible, genuine, and

ω-regular (g,K)-module X of M p(2n) is also unitary. Realize X as the unique lowest

K-type constituent of a representation R
S
q(XL), with

L = L1 × L0 = Ũ (r, s) × M p(2d) and XL ≃ X1 ⊗ X0,

as in Proposition 2.4. Proposition 3.1 then implies that X1 is a good Aq2
(λ2) module.

The next lemma describes the coordinates of the lowest K-type of X under some

technical assumptions that are needed for the proof of Claim (A) in Proposition 3.2.
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Lemma 4.5 Let X be an irreducible, admissible, genuine, and ω-regular (g,K)-

module of M p(2n). Assume that X1 (as above) is a good Aq2
(λ2) module. Let µ be

the unique lowest K-type of X and let λa be its Vogan classification parameter. Write the

coordinates of µ and λa as in equations (4.4) and (2.5), respectively. Set

x = max{i < t | ri > 0}, y = max{i < t | si > 0}.

(i) If gt =
1
2
, εt = 1, and st > 0, then bt − by ≥ 2;

(ii) If gt−1 ∈ Z or if gt−1 ∈ Z + 1
2

and gt−1 ≥
7
2
, then ax − at ≥ 2.

Proof Recall that, by Lemma 4.2, X has a unique lowest Ũ (n)-type µ (of the form

(4.2)). Equations (4.3) give

bt − bt−1 = −gt + ht − (−gt−1 + ht−1) = −gt + gt−1 +
εt−1 + εt

2
(4.12)

= gt−1 +
εt−1

2

(because gt = 1/2 and εt = 1). Note that gt−1 is a half-integer greater than gt = 1/2,

and εt−1 is 0 or ±1. Then bt − bt−1 ≥ 1. (This is obvious if gt−1 ∈ Z + 1
2
; when

gt−1 is an integer, it follows from the fact that εt−1 = 0, because bt − bt−1 must be an

integer.) Since the entries {bi}
t
i=1 are weakly increasing, we also find that bt −by ≥ 1.

In order to show that the difference bt − by is, in fact, at least 2, we consider the

lowest (K ∩ L1)-type µ1 of X1. This is a (Ũ (r) × Ũ (s))-type of the form

µ1 =
(
µ− 2ρ(u ∩ p)

)
|Ũ (r)×Ũ (s).

Note that 2ρ(u ∩ p) is constant on Ũ (r) and Ũ (s). Therefore, to understand the

difference bt − by , it is sufficient to look at the (difference among) coordinates of µ1.
Write

(4.13) L2 =

u∏
i=1

Ũ (pi , qi).

Section 8 of [9] gives a number of properties of lowest K-types of (good) Aq(λ) mod-

ules. Assuming we have chosen q2 so that L2 is maximal (there is a unique such

choice), µ1 must be of the form

(4.14)

µ1 =

(
n1, . . . , n1︸ ︷︷ ︸

p1

, . . . , nu, . . . , nu︸ ︷︷ ︸
pu

∣∣∣ 0, . . . , 0︸ ︷︷ ︸
d

∣∣∣ mu, . . . ,mu︸ ︷︷ ︸
qu

, . . . ,m1, . . . ,m1︸ ︷︷ ︸
q1

)

with n j > nk and mk > m j for all 1 ≤ j < k ≤ u. Moreover, [9, Proposition 8.6]

implies that

(4.15) n j − nk ≥ qi + qi+1 and mk − m j ≥ pi + pi+1

https://doi.org/10.4153/CJM-2011-075-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-075-x


686 A. Pantano, A. Paul, and S. Salamanca-Riba

whenever j ≤ i and k ≥ i + 1. Let z = max{i < u | qi > 0}, so that mz exists. Then

we get

bt − by = mu − mz ≥ pu + pu−1

(by (4.15) for i = u−1). By Proposition 2.4(vii), and [10, Proposition 3.5], La∩L1 ⊂
L2, therefore u(rt , st ) ⊂ u(pu, qu), so that

rt ≤ pu and st ≤ qu.

In fact, st = qu, because 2ρ(u ∩ p) is constant on Ũ (r) and Ũ (s), and bt − bt−1 > 0.

Hence we can write

bt − by ≥ pu + pu−1 ≥ rt = st + εt ≥ 2.

This proves (i).

For the proof of (ii), we distinguish two cases. If gt−1 is an integer, then Lemma 4.2

implies that εt−1 = 0, hence st−1 = rt−1 > 0 and x = y = t − 1. Furthermore,

because La ∩ L1 ⊂ L2, we have u(rt−1, st−1) ⊂ u(pu−1, qu−1). This implies that

(pu, qu) = (rt , st ) and qu−1 ≥ st−1 ≥ 1.

Then

at−1 − at = nu−1 − nu ≥ qu + qu−1 ≥ 1 + 1 = 2,

proving (ii). If gt−1 ≥
7
2
, then using equations (4.3), we get

at−1 − at = gt−1 − gt + ft−1 − ft = gt−1 − gt −
εt−1 + εt

2

= gt−1 −
εt−1

2
− 1 ≥ 2.

This concludes the proof of the lemma.

5 Genuine Principal Series of M p(2d)

Genuine minimal principal series of M p(2d) were studied in detail in [5]. In this

section, we summarize the non-unitarity results that are needed for this paper. We

refer the reader to [5] for more details.

Lemma 5.1 (cf. [5]) (i) Every genuine minimal principal series representation of

M p(2d) has a unique lowest Ũ (d)-type of the form

µδp,q
=

(
1

2
, . . . ,

1

2︸ ︷︷ ︸
p

,−
1

2
, . . . ,−

1

2︸ ︷︷ ︸
q

)

with p + q = d. Here δp,q is the character of the finite subgroup M of M p(2d) used

to construct the induced representation.
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(ii) For every pair of non-negative integers p and q with p + q = d, the Langlands

quotients of genuine minimal principal series of M p(2d) with lowest Ũ (d)-type

µδp,q
are parametrized by d-tuples of real numbers

ν = (ν1, . . . , νd) := (ν p|νq),

where ν1 ≥ ν2 ≥ · · · ≥ νp ≥ 0 and νp+1 ≥ νp+2 ≥ · · · ≥ νp+q ≥ 0. The

infinitesimal character of the corresponding representation is equal to ν.

(iii) Irreducible genuine pseudospherical representations of M p(2d), i.e., those with

lowest Ũ (d)-type µδd,0
or µδ0,d

, are uniquely determined by their infinitesimal char-

acter.

Lemma 5.2 Let J(δp,q, ν) be the Langlands quotient of a genuine minimal princi-

pal series representation of M p(2d), with lowest Ũ (d)-type µδp,q
and parameter ν =

(ν p|νq) as in Lemma 5.1.

(i) If νp >
1
2

or if νi −νi+1 > 1 for some 1 ≤ i ≤ p−1, then J(δp,q, ν) is not unitary,

and the Ũ (d)-type

δ1 =

(
1

2
, . . .

1

2︸ ︷︷ ︸
p−1

,−
1

2
, . . . ,−

1

2︸ ︷︷ ︸
q

,−
3

2

)

detects non-unitarity.

(ii) If νp+q >
1
2

or if νi − νi+1 > 1 for some p + 1 ≤ i ≤ p + q − 1, then J(δp,q, ν) is

not unitary, and the Ũ (d)-type

δ2 =

(
3

2
,

1

2
, . . .

1

2︸ ︷︷ ︸
p

,−
1

2
, . . . ,−

1

2︸ ︷︷ ︸
q−1

)

detects non-unitarity.

(iii) If J(δp,q, ν) is ω-regular, pq 6= 0, ν p 6= ωp, and νq 6= ωq, then both δ1 and

δ2 detect non-unitarity. As usual, ωr denotes the infinitesimal character of the

oscillator representation of M p(2r).

Proof The main ingredients for the proof of Lemma 5.2 are certain non-unitarity

results contained in [1, 5]. Note that the assumptions in Lemma 5.2(i) are precisely

conditions (1) and (3) of [5, Proposition 7.7]; similarly, the assumptions in part (ii)

coincide with conditions (2) and (4) of that proposition. Therefore, in both cases, the

non-unitarity of the Langlands quotient J(δp,q, ν) of M p(2d) follows directly from

[5, Proposition 7.7].

We are left with the problem of identifying a Ũ (d)-type on which the intertwining

operator changes sign. Recall from [5, §5] that each Ũ (d)-type µ in J(δp,q, ν) carries

a representation ψµ of the stabilizer

W δp,q = W (C p) ×W (Cq)
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of δp,q. This group is isomorphic to the Weyl group of

Gδp,q = SO(p + 1, p) × SO(q + 1, q);

hence, associated with ψµ, there is an intertwining operator for spherical Langlands

quotients of Gδp,q . If µ is petite, the M p(2d)-intertwining operator on µ with param-

eters {δ = δp,q, ν = (ν p|νq)} coincides with the Gδp,q -intertwining operator on ψµ
with parameters {δ = triv, ν = (ν p|νq)}. If νp >

1
2

or if νi − νi+1 > 1 for some

1 ≤ i ≤ p − 1, the spherical Langlands quotient of SO(p + 1, p) with parameter ν p

is not unitary; the reflection representation σR = (p − 1) × (1) of W (C p) detects

non-unitarity (see [1, Lemma 14.6]). For all choices of νq, the spherical Langlands

quotient of SO(p + 1, p) × SO(q + 1, 1) with parameter (ν p|νq) is also not unitary,

and the representation σR × triv of W δp,q detects non-unitarity. The computations in

[5, §10.1] show that the Ũ (d)-type

δ1 =

(
1

2
, . . .

1

2︸ ︷︷ ︸
p−1

,−
1

2
, . . . ,−

1

2︸ ︷︷ ︸
q

,−
3

2

)

carries the representation σR × triv of W δp,q . Because δ1 is petite, the M p(2d)-inter-

twining operator on δ1 with parameters {δp,q, (ν p|νq)} matches the Gδp,q -spherical

operator with parameter (ν p|νq), hence it is not positive semi-definite. This shows

that J(δp,q, (ν
p|νq)) is not unitary, and concludes the proof of part (i) of the lemma.

The proof of part (ii) is analogous: the Ũ (d)-type δ2 carries the representa-

tion triv⊗σR of W δp,q , hence the M p(2d)-intertwining operator on δ2 with pa-

rameters {δp,q, (ν p|νq)} is not positive semi-definite and the Langlands quotient

J(δp,q, (ν
p|νq)) of M p(2d) is not unitary.

For part (iii) of the lemma, note that if ν = (ν p|νq) is ω-regular and ν p 6= ωp,

then

νp >
1

2
or νi − νi+1 > 1 for some 1 ≤ i ≤ p − 1.

Similarly, if ν = (ν p|νq) is ω-regular and νq 6= ωq, then

νp+q >
1

2
or νi − νi+1 > 1 for some p + 1 ≤ i ≤ p + q − 1.

Therefore, the assumptions of both part (i) and part (ii) of the lemma must hold, and

both δ1 and δ2 detect non-unitarity.

6 Proof of Proposition 3.1

In this section, we give the proof of Proposition 3.1. For convenience, we begin by

restating the result.

Proposition 3.1 Let X be an irreducible unitary (g,K)-module of M p(2n). Assume

that X is genuine and ω-regular. Realize X as the unique lowest K-type constituent of

R
S
q(XL), with

L = L1 × L0 = Ũ (r, s) × M p(2d) and XL ≃ X1 ⊗ X0,
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as in Proposition 2.4. Suppose that r + s 6= 0. Then there exist a theta stable parabolic

subalgebra q2 and a representation Cλ2
of the Levi factor corresponding to q2, with λ2 in

the good range for q2, such that X1 ≃ Aq2
(λ2).

Proof Note that, by Proposition 2.4, the (l, L ∩ K)-module XL is irreducible, and so

are the Harish-Chandra modules Xi of Li (i = 0, 1). Let µ be a lowest K-type of X,

and let µL be the (L ∩ K)-type of XL corresponding to µ via the bottom layer map

(cf. Proposition 2.4(ii)–(iii)); then

(6.1) µL
= µ1 + µ0

with µi = µLi a lowest (Li ∩ K)-type of Xi . By Lemma 2.7, the representation X1 of

L1 = Ũ (r, s) is strongly regular (and irreducible).

Assume, by way of contradiction, that X1 is not a good Aq(λ) module. We will

show that X must be non-unitary, reaching a contradiction. By [9, Theorem 1.2] for

the case G = SU (p, q), if X1 is not a good Aq(λ) module, then X1 is not unitary, and

there exists an (L1 ∩ K)-type η1 such that η1 = µ1 + β for some β ∈ ∆(l1 ∩ p), and

the form

〈 · , · 〉L1 |V (µ1)⊕V (η1)

is indefinite. (In [9], the infinitesimal character of X1 is assumed to be integral; how-

ever, the proof of Theorem 1.2 only uses the fact that it is real and strongly regular.)

If

η = µ + β = (µ1 + β) + µ0 + 2ρ(u ∩ p)

is also dominant, then, by the bottom layer argument, η occurs in X and the Hermi-

tian form on V (µ)⊕V (η) is indefinite (cf. Proposition 2.4(iii) and (v)). This implies

that X is not unitary, reaching a contradiction.

So we may assume that η = µ+β is not dominant. Moreover, we can assume that

µ is weakly dominant with respect to our fixed choice of ∆+
c in (2.4). Because β is a

short non-compact root, if η1 = µ1 + β is dominant but η = µ + β is not dominant,

then one of the following two options must occur:

(6.2) d = 0 and at = bt ,

or

(6.3) at = c1 or cd = bt .

Remark 6.1 Lemma 4.4 shows that (6.2) is not possible and that the two identities

in (6.3) cannot hold simultaneously.

Without loss of generality, we may then assume that d > 0 and at = c1. We first

look at the case in Lemma 4.4 when εt = 1 and gt =
1
2
. By Lemma 4.2(ii), the

infinitesimal character γX of X contains an entry 1
2
, but γX0 does not. Recall that X0

is a genuine principal series representation of L0 = M p(2d). We claim that in this

case, X0 is not unitary, and that a Ũ (d)-type detecting non-unitarity survives under
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the bottom layer map, leading to a contradiction. We make use of the non-unitarity

results for genuine minimal principal series of M p(2d) contained in Section 5.

Write X0
∼= J(δp,q, ν) as in Lemma 5.2; note that p > 0, by Lemma 4.4. Then,

by ω-regularity, νp is strictly greater than 1
2
. By Lemma 5.2(i), we know that the

representation X0 is not unitary, and the signature of the Hermitian form changes on

δ1. If µ1 is as in equation (6.1), the weight

η = µ1 + δ1 + 2ρ(u ∩ p)

is K-dominant. By Proposition 2.4(iii) and (v), our original representation X is not

unitary, which contradicts our assumption.

Now assume that εt = 0. Recall that the fine K-type δLa is of the form (4.7); in

particular, its restriction to the subgroup Ũ (st , st ) of La is given by

δLa |Ũ (st ,st )=

(
0, . . . , 0,−

1

2
, . . . ,−

1

2︸ ︷︷ ︸
st

∣∣∣ 0, . . . , 0︸ ︷︷ ︸
d

∣∣∣ −1

2
, . . . ,−

1

2︸ ︷︷ ︸
st

, 0, . . . , 0

)
.

Hence, the representation µ1|Ũ (st ,st ), inside M p(2n), is of the form

(
0, . . . , 0, a, . . . , a︸ ︷︷ ︸

st

∣∣∣ 0, . . . , 0︸ ︷︷ ︸
d

∣∣∣ −a − 1, . . . ,−a − 1︸ ︷︷ ︸
st

, 0, . . . , 0

)

for some a ∈ 1
2

Z. By [9, Lemmas 8.8 and 6.3(b)], if β = (1, 0 . . . 0; 0, . . . 0,−1) is the

root ǫ1 − ǫ2st
in U (st , st ), then µ1|U (st ,st ) + β detects the signature change and survives

in the bottom layer. Note that the root in M p(2n,R) corresponding to β is

(
0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸

st

∣∣∣ 0, . . . , 0︸ ︷︷ ︸
d

∣∣∣ 1, 0, . . . , 0︸ ︷︷ ︸
st

, 0, . . . , 0

)
.

Therefore, X is not unitary, once again a contradiction. The proof of Proposition 3.1

is now complete.

7 Proof of Proposition 3.2

We now restate and prove Proposition 3.2.

Proposition 3.2 Let X be an irreducible unitary (g,K)-module of M p(2n). Assume

that X is genuine and ω-regular; realize X as the unique lowest K-type constituent of

R
S
q(XL), with

L = L1 × L0 = Ũ (r, s) × M p(2d) and XL ≃ X1 ⊗ X0,

as in Proposition 2.4. Suppose that d > 0. Then one of the following (mutually exclu-

sive) options occurs:
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(i) X0 is an even oscillator representation with lowest Ũ (d)-type

µ0 = ±(1/2, 1/2, . . . , 1/2).

(ii) There exist a subgroup L ′
= L ′

1 × L ′
0 = Ũ (r ′, s ′) × M p(2(d + 1)) ⊂ G also

containing La, a theta stable subalgebra q ′
= l ′ + u ′ ⊇ q and representations X

′

i

of L
′

i (i = 0, 1), such that

(a) Ũ (r ′, s ′) ⊂ Ũ (r, s), with either r = r ′ + 1 or s = s ′ + 1,

(b) X
′

1 is a good Aq3
(λ3) (or r ′ + s ′ = 0),

(c) X
′

0 is an odd oscillator representation with lowest K-type

µ
′

0 = (3/2, 1/2, . . . 1/2) or (−1/2,−1/2, . . .− 1/2.− 3/2),

and

(d) X can be realized as the unique lowest K-type constituent of RS ′

q ′(X
′

1 ⊗ X
′

0 ).

Proof Let λa be the Vogan classification parameter of X. Recall that, by Proposi-

tion 3.1, X1 is a good Aq2
(λ2) module; then, by Lemma 4.2, X has a unique lowest

Ũ (n)-type µ.

To prove Proposition 3.2, we first show that the representation X0 of M p(2d) is

pseudospherical, i.e., that X0 ≃ J(δp,q, ν) with pq = 0. Assume, by way of con-

tradiction, that X0 ≃ J(δp,q, ν) with p > 0 and q > 0, and set ν = (ν p|νq) (as

in Lemma 5.1). Write the lowest K-type µ of X as in equation (4.4) and the Vogan

classification parameter λa as in (2.5).

Recall that the half integers ai and bi are defined even if ri = 0 or si = 0, and that

they satisfy (4.5). By an argument similar to the proof of Lemma 4.4, (at least) one of

the following conditions must hold:

at > c1 or cd > bt .

Notice that, since p > 0 and q > 0, the Ũ (d)-types

δ1 =

(
1

2
, . . .

1

2︸ ︷︷ ︸
p−1

,−
1

2
, . . . ,−

1

2︸ ︷︷ ︸
q

,−
3

2

)
and δ2 =

(
3

2
,

1

2
, . . .

1

2︸ ︷︷ ︸
p

,−
1

2
, . . . ,−

1

2︸ ︷︷ ︸
q−1

)

(of Lemma 5.2) are obtained from the lowest Ũ (d)-type µ0 of X0 by adding or sub-

tracting a short root. One can check that if at > c1, then δ2 survives in the bottom

layer; if cd > bt , then δ1 survives in the bottom layer.

We distinguish two cases. First, suppose that ν p 6= ωp and νq 6= ωq; then (by

Lemma 5.2(iii)) X0 is not unitary and both δ1 and δ2 detect non-unitarity. Because

(at least) one of the two Ũ (d)-types survives in the bottom layer, we conclude that X

is not unitary, and we reach a contradiction. Next, assume that ν p
= ωp or νq

= ωq.

(Note that the two options can not hold at the same time, because X0 is ω-regular.)

If ν p
= ωp, then the entries of νq are all greater than or equal to p + 1

2
; in particular,

νp+q >
1
2
. Hence, we are in the situation of Lemma 5.2(ii): X0 is not unitary and
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δ2 detects non-unitarity. Similarly, if νq
= ωq, then X0 is not unitary and δ1 detects

non-unitarity. In either case, the infinitesimal character of X0 contains an entry 1
2
.

Then, by Lemma 4.2, gt ≥ 1. Because gt 6=
1
2
, Lemma 4.4(ii)(a) implies that at > c1;

a similar argument shows that cd > bt (because if cd = bt then −gt = − 1
2
). We

conclude that the coordinates of µ satisfy both conditions

at > c1 and cd > bt

and that both Ũ (d)-types δ1 and δ2 survive in the bottom layer. Hence X is not

unitary, contradicting our assumption.

Now we know that X0 is pseudopsherical. Without loss of generality, we may

assume that X0 has lowest Ũ (d)-type µ0 = (− 1
2
, . . . ,− 1

2
). If X0 is the even antiholo-

morphic oscillator representation (i.e., if X0 has infinitesimal character ωd), then we

are in Proposition 3.2(i), and we are done. So suppose not. Recall that, by Lemma

2.7, X0 is ω-regular. Therefore, if the infinitesimal character of X0 is not equal to ωd,

then it must satisfy one of the conditions of Lemma 5.2(ii). We conclude that X0 is

not unitary, and the Ũ (d)-type δ2 detects non-unitarity. Note that the Ũ (d)-type δ2

may or may not survive in the bottom layer. If δ2 survives in the bottom layer, then X

is not unitary, and we reach a contradiction. Hence, we may assume that δ2 does not

survive in the bottom layer. In this case, the lowest K-type µ satisfies the condition

at − c1 ≤ 1. By equation (4.8),

at − c1 = gt + 1
2
(1 − εt ) + yt − z1.

Here z1 = − 1
2

and yt = 0 because, by equation (4.2), the fine K-type δLa in (4.1) is

trivial except on M p(2d). Therefore, we obtain

at − c1 = gt +
1

2
(1 − εt ) +

1

2
≥

1

2
+

1

2
= 1

(because gt ≥
1
2
). This forces at − c1 = 1, so gt =

1
2
, εt = 1, and rt − st = 1.

Use the (new) singularization

ξ ′ =

(
1, 1, . . . , 1︸ ︷︷ ︸

r−rt

∣∣∣ 0, 0, . . . , 0︸ ︷︷ ︸
d+rt +st

∣∣∣ −1,−1, . . . ,−1︸ ︷︷ ︸
s−st

)

of λa to construct a (new) parabolic subalgebra q ′
= l ′ + u ′, just as at the beginning

of Section 3, and let

L ′
= L ′

1 × L ′

0
∼= Ũ (r − rt , s − st ) × M p

(
2(d + rt + st )

)

be the subgroup corresponding to the Levi factor of q ′. Then X may be realized as

the unique lowest K-type constituent of a representation

R
S ′

q ′(XL ′

),

as in Proposition 2.4. Using notation analogous to the one in Lemma 2.7, write

XL ′

= X ′
1 ⊗ X ′

0. Note that X ′
0 is still ω-regular, and X ′

1 is still strongly regular, as

representations of L ′
0 and L ′

1, respectively. To finish the proof of our proposition, we

need to show that, if X is unitary, then:
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(A) st = 0 (hence rt = 1);

(B) X ′
0 is an odd oscillator representation with lowest Ũ (d + 1)-type

µ ′

0 =

(
3

2
,

1

2
, . . . ,

1

2︸ ︷︷ ︸
d

)
;

and

(C) X ′
1 is a good Aq3

(λ3) module.

We begin with the proof of Claim (A). Assume, to the contrary, that c := st > 0,

and let µ ′
0 be the lowest Ũ (d + 2c + 1)-type of X ′

0. By Proposition 2.4(ii), the lowest

(L ′ ∩ Ũ (n))-type µ ′ of XL ′

satisfies µ ′
= µ − 2ρ(u ′ ∩ p). Therefore, µ ′

0 must be of

the form

µ ′

0 =

(
at − r ′ + s ′, . . . , at − r ′ + s ′︸ ︷︷ ︸

c+1

,

c1 − r ′ + s ′, . . . , cd − r ′ + s ′︸ ︷︷ ︸
d

, bt − r ′ + s ′, . . . , bt − r ′ + s ′︸ ︷︷ ︸
c

)

with r ′ = r − rt and s ′ = s − st . Using gt =
1
2

and εt = 1, we obtain

µ ′

0 =

(
3

2
, . . . ,

3

2︸ ︷︷ ︸
c+1

,
1

2
, . . . ,

1

2︸ ︷︷ ︸
d

,−
1

2
, . . . ,−

1

2︸ ︷︷ ︸
c

)
.

We will show, using Parthasarathy’s Dirac Operator Inequality, that X ′
0 is not uni-

tary, and that it contains a Ũ (d + 2c + 1)-type η ′
0 on which the signature of the Her-

mitian form changes. Because η ′
0 survives under the bottom layer map, this will im-

ply that X is not unitary, reaching a contradiction and thus completing the proof of

Claim (A).

We recall some results from [6], and from [9, Lemmas 6.1 and 6.3]. Let ∆+(l ′0)

be a choice of positive roots for M p(2(d + 2c + 1)) that is compatible with our fixed

system of positive compact roots, and let ρn be the corresponding half sum of non-

compact positive roots. Choose a Weyl group element w such that w−1(µ ′
0 − ρn) is

K-dominant, and denote by γX ′

0 the infinitesimal character of X ′
0. If

(7.1) 〈µ ′

0 − ρn + wρc, µ
′

0 − ρn + wρc〉 < 〈γX ′

0 , γX ′

0 〉,

then X ′
0 is not unitary. In this case, there is a non-compact root β ∈ ∆(l ′0) such that

η ′
0 = µ ′

0 − β occurs in X ′
0 and detects non-unitarity (in the sense that the signature

of the Hermitian form on X ′
0, restricted to µ ′

0 ⊕ η ′
0, is indefinite). If the conditions of

[9, Lemma 6.3(b)] are satisfied, then the root β may be chosen from ∆
+(l ′0).

We will prove that, in our setting, we can always choose ∆
+(l ′0) so that equation

(7.1) holds and the Ũ (d + 2c + 1)-type η ′
0 = µ ′

0 − β survives under the bottom layer
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map. The choice of ∆+(l ′0) will depend on the Vogan classification parameter λa of

X; in particular, we will distinguish two cases, according to the possible values of the

entry gt−1.

Recall that gt−1 is a half integer (strictly) greater than gt =
1
2
. First, assume that

gt−1 ∈ Z or gt−1 ∈ Z +
1

2
and gt−1 ≥

7

2
.

In this case, we let ∆+(l ′0)
(1)

be such that

ρ(l ′0)(1)
= (2c + d + 1, 2c + d, . . . , c + 1,−1,−2, . . . ,−c)

and

ρ(1)
n =

(
d

2
+ c + 1, . . . ,

d

2
+ c + 1

︸ ︷︷ ︸
c+d+1

,
d

2
, . . . ,

d

2︸ ︷︷ ︸
c

)
.

Then

µ ′

0 − ρ(1)
n =

(
−

d

2
− c +

1

2
, . . . ,−

d

2
− c +

1

2︸ ︷︷ ︸
c+1

,

−
d

2
− c −

1

2
, . . . ,−

d

2
− c −

1

2︸ ︷︷ ︸
d

,−
d

2
−

1

2
, . . . ,−

d

2
−

1

2︸ ︷︷ ︸
c

)
.

The element w(1)ρc can be chosen to be

(
d

2
,

d

2
− 1, . . . ,

d

2
− c

︸ ︷︷ ︸
c+1

,
d

2
− c − 1,

d

2
− c − 2, . . . ,−c −

d

2︸ ︷︷ ︸
d

,

c +
d

2
, c +

d

2
− 1, . . . ,

d

2
+ 1

︸ ︷︷ ︸
c

)
.

Hence, we obtain

(7.2) µ ′

0 − ρ(1)
n + w(1)ρc =

(
−c +

1

2
,−c −

1

2
, . . . ,−2c +

1

2︸ ︷︷ ︸
c+1

,

−2c −
3

2
,−2c −

5

2
, . . . ,−2c − d −

1

2︸ ︷︷ ︸
d

, c −
1

2
, c −

3

2
, . . . ,

3

2
,

1

2︸ ︷︷ ︸
c

)
.
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Because X ′
0 is ω-regular, its infinitesimal character γX ′

0 must satisfy the condition

(7.3) 〈γX ′

0 , γX ′

0 〉 ≥ 〈ωd+2c+1, ωd+2c+1〉.

Writing ωd+2c+1 in coordinates, we get

(7.4) ωd+2c+1
=

(
d + 2c +

1

2
, d + 2c −

1

2
, . . . ,

3

2
,

1

2

)
.

Rearranging the entries of µ ′
0 − ρ(1)

n + w(1)ρc in equation (7.2) and comparing them

with the entries of ωd+2c+1 in equation (7.4), we can see that

〈ωd+2c+1, ωd+2c+1〉 − 〈µ ′

0 − ρ(1)
n + w(1)ρc, µ

′

0 − ρ(1)
n + w(1)ρc〉 = (2c +

1

2
)2 − (c −

1

2
)2

= 3c2 + 3c.

This quantity is strictly positive if c > 0. Hence, by (7.3), we find

(7.5) 〈γX ′

0 , γX ′

0 〉 − 〈µ ′

0 − ρ(1)
n + w(1)ρc, µ

′

0 − ρ(1)
n + w(1)ρc〉 > 0.

We conclude that X ′
0 is not unitary and there is a non-compact root β ∈ ∆(l ′0) such

that the Ũ (d + 2c + 1)-type η ′
0 = µ ′

0 −β (is dominant and) detects non-unitarity. Set

x = max{i < t | ri > 0}, y = max{i < t | si > 0}.

By Lemma 4.5, the coordinates of µ (in equation (4.4)) satisfy the conditions

(7.6) ax − at ≥ 2 and bt − by ≥ 2.

Then the Ũ (n)-type µ − β is dominant for ∆+
c , and the Ũ (d + 2c + 1)-type η ′

0 =

µ ′
0 − β survives in the bottom layer. This implies that X is not unitary, and gives a

contradiction. (If x or y do not exist, then the corresponding condition in (7.6) is

empty.)

Next, we consider the case in which gt−1 is either 3
2

or 5
2
, and we choose ∆+(l ′0)

(2)

such that

ρ(l ′0)(2)
= (2c + d + 1, 2c + d, . . . , 2, 1)

and

ρ(2)
n =

(
d

2
+ c + 1, . . . ,

d

2
+ c + 1

︸ ︷︷ ︸
2c+d+1

)
.

Note that this choice of positive roots for M p(2(d + 2c + 1)) satisfies the conditions

of [9, Lemma 6.3(b)]. Because µ ′
0 − ρ(2)

n is dominant for our fixed set of positive

https://doi.org/10.4153/CJM-2011-075-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-075-x


696 A. Pantano, A. Paul, and S. Salamanca-Riba

compact roots, we can choose w(2)
= 1. Then we obtain

µ ′

0 − ρ(2)
n + ρc =

(
1

2
,−

1

2
,−

3

2
, . . . ,−c +

1

2︸ ︷︷ ︸
c+1

,−c −
3

2
,−c −

5

2
, . . . ,−c − d −

1

2︸ ︷︷ ︸
d

,

−c − d −
5

2
,−c − d −

7

2
, . . . ,−2c − d −

3

2︸ ︷︷ ︸
c

)
.

Let

γ̃ :=
(

d + 2c +
3

2
, d + 2c +

1

2
, . . . ,

9

2
,

7

2
,

3

2
,

1

2

)
.

The quantity

〈γ̃, γ̃〉 − 〈µ ′

0 − ρ(2)
n + ρc, µ

′

0 − ρ(2)
n + ρc〉 =

(
c +

1

2

) 2

+
(

c + d +
3

2

) 2

−
( 1

2

) 2

−
( 5

2

) 2

is strictly positive if c > 0. The assumptions that gt−1 =
3
2

(or 5
2
), along with Lemma

4.2, imply that the infinitesimal character γX0 ′ of X ′
0 does not contain an entry 3

2
(or

5
2
). Then, by ω-regularity, we obtain that 〈γX ′

0 , γX ′

0 〉 ≥ 〈γ̃, γ̃〉 and

〈γX ′

0 , γX ′

0 〉 − 〈µ ′

0 − ρ(2)
n + ρc, µ

′

0 − ρ(2)
n + ρc〉 > 0.

We conclude that X ′
0 is not unitary and there is a non-compact root β ∈ ∆

+(l ′0)
(2)

such that η ′
0 = µ ′

0 − β (is dominant and) detects non-unitarity. Note that β must be

of the form ǫi + ǫ j or 2ǫ j for some 1 ≤ i < j ≤ 2c + d + 1. Because

bt − by ≥ 2

(by Lemma 4.5), the Ũ (d + 2c + 1)-type η ′
0 = µ ′

0 − β survives in the bottom layer,

leading to a contradiction.

This concludes the proof of Claim (A).

Now we know that c = st = 0, and that X ′
0 is an irreducible genuine representation

of M p(2(d + 1)) with lowest Ũ (d + 1)-type

µ ′

0 =

(
3

2
,

1

2
, . . . ,

1

2︸ ︷︷ ︸
d

)
.

Let us prove Claim (B). We apply the same argument used for the proof of Claim

(A); note that, because c = 0 in this case, our two choices of positive roots ∆+(l ′0)
(i)

coincide (hence the the conditions of [9, Lemma 6.3(b)] are met). If the inequality

(7.3) is strict, i.e., if

〈γX ′

0 , γX ′

0 〉 > 〈ωd+1, ωd+1〉,
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then equation (7.5) still holds:

〈γX ′

0 , γX ′

0 〉 − 〈µ ′

0 − ρn + wρc, µ
′

0 − ρn + wρc〉 > 0.

Again, we conclude that X ′
0 is not unitary, and there is a non-compact root β ∈

∆
+(l ′0) such that η ′

0 = µ ′
0 − β (is dominant and) detects non-unitarity. The choices

for β are ǫ1 + ǫd+1, ǫd + ǫd+1, and 2ǫd+1. In each case, η ′
0 = µ ′

0 − β survives in the

bottom layer because

(7.7) cd − bt−1 =
1

2
+ gt−1 +

εt−1 + 1

2
≥ 2.

This follows from the fact that gt−1 ≥ 1 and from a calculation similar to the one in

(4.12). (Note that if gt−1 = 1, then εt−1 = 0 by Lemma 4.2.) Next, assume that the

infinitesimal character γX ′

0 satisfies

〈γX ′

0 , γX ′

0 〉 = 〈ωd+1, ωd+1〉,

so that

(7.8) γX ′

0 = ωd+1.

We want to prove that X ′
0 is an odd oscillator representation. It is sufficient to show

that X ′
0 is uniquely determined by its infinitesimal character. Because the Vogan clas-

sification parameter of X ′
0 is given by

λ ′

a =

( 1

2
, 0, . . . , 0

)
,

we can rewrite the infinitesimal character of X ′
0 in the form

γX ′

0 =

( 1

2
|ν
)
,

where ν is the continuous parameter on the pseudospherical principal series of

M p(2d) (cf. Lemma 5.1). Then equation (7.8) gives

(7.9) ν =

(
d +

1

2
, d −

1

2
, . . . ,

3

2

)
.

This implies that X ′
0 is indeed the appropriate odd oscillator representation, proving

Claim (B).

Finally, we turn to the proof of Claim (C), and show that X ′
1 is a good Aq3

(λ3)

module. As usual, write the coordinates of µ as in equation (4.4); this time, rt = 1,

st = 0, at −c1 = 1, and cd−bt−1 ≥ 2. Note that it suffices to show that at−1−at ≥ 1.

If this is the case, then our Claim (C) follows by the same kind of argument used in

the first part of the proof of Proposition 3.1: if X ′
1 is not a good Aq3

(λ3) module,

https://doi.org/10.4153/CJM-2011-075-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-075-x


698 A. Pantano, A. Paul, and S. Salamanca-Riba

then it is not unitary, and we can use Parthasarathy’s Dirac Operator Inequality and

a bottom layer argument to show that X is also non-unitary, reaching a contradiction.

We now show that at−1 −at ≥ 1. By contradiction, suppose that at−1 = at . Then,

by Lemma 4.2 and some calculations similar to those in the proof of Lemma 4.4, we

must have gt−1 = 1 and rt−1 = st−1 > 0. Roughly, a jump of 3
2

or more in the entries

of λa results in a corresponding jump of 1 or more in the coordinates of µ. Note that,

by Lemma 4.2(iii), we cannot have gt−1 =
3
2
, because the infinitesimal character of

X0, given by (7.9), contains an entry 3
2
.

As in the proof of Lemma 4.5, consider the lowest (Ũ (r) × Ũ (s))-type µ1 of the

Aq2
(λ2) module X1. Here L2 is given in (4.13), and µ1 has the form

µ1 =
(
µ− 2ρ(u ∩ p)

)
|Ũ (r)×Ũ (s)

with

(7.10) 2ρ(u ∩ p) =
(

r + d + 1, . . . , r + d + 1︸ ︷︷ ︸
r

∣∣∣ r − s, . . . , r − s︸ ︷︷ ︸
d

∣∣∣ −s − d − 1, . . . ,−s − d − 1︸ ︷︷ ︸
s

)
.

The shape of µ1 forces the last factor Ũ (pu, qu) of L2 to satisfy pu ≥ 2. Because

La ⊆ L2 × L0 (hence Ũ (rt−1, st−1) × Ũ (rt , st ) ⊆ L2), this implies that qu ≥ 1.

Now look at the infinitesimal character of X1:

γX1 = λ2 + ρ(l2) + ρ(u2).

Recall that λ2 = µ1−2ρ(u2∩p). Write the highest weight of µ1 as in equation (4.14).

Because at = r − s + 1
2

and bt−1 = r − s − 5
2

(by equation (7.7) with gt−1 = 1 and

εt−1 = 0), we find

µ1 =

(
. . . ,−s − d −

1

2
, . . . ,−s − d −

1

2︸ ︷︷ ︸
pu

∣∣∣ 0, . . . , 0︸ ︷︷ ︸
d

∣∣∣ r + d −
3

2
, . . . , r + d −

3

2︸ ︷︷ ︸
qu

, . . .

)

and

(7.11) 2ρ(u2 ∩ p) =
(
. . . ,−s + qu, . . . ,−s + qu︸ ︷︷ ︸

pu

∣∣∣ 0, . . . , 0︸ ︷︷ ︸
d

∣∣∣ r − pu, . . . , r − pu︸ ︷︷ ︸
qu

, . . .

)
.

https://doi.org/10.4153/CJM-2011-075-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-075-x


Omega-regular Unitary Dual of the Metaplectic Group 699

Hence

λ2 = µ1 − 2ρ(u2 ∩ p) =
(

. . . ,−d − qu −
1

2
, . . . ,−d − qu −

1

2
︸ ︷︷ ︸

pu

∣
∣
∣ 0, . . . , 0
︸ ︷︷ ︸

d

∣
∣
∣ d + pu −

3

2
, . . . , d + pu −

3

2
︸ ︷︷ ︸

qu

, . . .

)

.

Because λ2 must be constant on Ũ (pu, qu) (with twist because of the embedding into

g), we can conclude that pu = qu + 2. Recall that here qu > 0. Write

ρ(u2) =

(
. . . ,

−r − s + pu + qu

2
, . . . ,

−r − s + pu + qu

2︸ ︷︷ ︸
pu

∣∣∣ 0, . . . , 0︸ ︷︷ ︸
d

∣∣∣

r + s − pu − qu

2
, . . . ,

r + s − pu − qu

2︸ ︷︷ ︸
qu

, . . .

)
,

and choose

(7.12) ρ(l2) =

(
. . . ,

pu + qu − 1

2
,

pu + qu − 3

2
, . . . ,

qu − pu + 1

2︸ ︷︷ ︸
pu

∣∣∣ 0, . . . , 0︸ ︷︷ ︸
d

∣∣∣

pu + qu − 1

2
,

pu + qu − 3

2
, . . . ,

pu − qu + 1

2︸ ︷︷ ︸
qu

, . . .

)
.

Then

γX1 = λ2 + ρ(u2) + ρ(l2) =
(
. . . ,−d −

r + s

2
+ pu − 1,−d −

r + s

2
+ pu − 2 . . . ,−d −

r + s

2︸ ︷︷ ︸
pu

∣∣∣ 0, . . . , 0︸ ︷︷ ︸
d

∣∣∣

d +
r + s

2
+ pu − 2, d +

r + s

2
+ pu − 3, . . . , d +

r + s

2
+ pu − qu − 1

︸ ︷︷ ︸
qu

, . . .

)
.

Finally, consider the infinitesimal character of X. By Proposition 2.4(vi), we have

γX
= γXL

+ ρ(u) = γX1 + γX0 + ρ(u).
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Here the infinitesimal characters of X1 and X0 are known, and ρ(u) is given by

ρ(u) =

(
d +

r + s + 1

2
, . . . , d +

r + s + 1

2︸ ︷︷ ︸
r

∣∣∣ 0, . . . , 0︸ ︷︷ ︸
d

∣∣∣

−d −
r + s + 1

2
, . . . ,−d −

r + s + 1

2︸ ︷︷ ︸
s

)
.

We obtain

γX
= γX1 + γX0 + ρ(u) =

(
. . . , pu −

1

2
, pu −

3

2
, . . . ,

3

2
,

1

2︸ ︷︷ ︸
pu

∣∣∣

d +
1

2
, d −

1

2
, . . . ,

5

2
,

3

2

∣∣∣ pu −
5

2
, pu −

7

2
, . . . , pu − qu −

3

2︸ ︷︷ ︸
qu

, . . .

)
.

This contradicts our assumption that γX is nonsingular and concludes the proof of

Proposition 3.2.

8 Proof of Proposition 3.6

Finally, we give the proof of Proposition 3.6. For convenience, we restate the result.

Proposition 3.6 In the setting of Proposition 3.4, let X be the irreducible (lowest K-

type constituent of the) representation Rqω (Cλ ′ ⊗ ω). Assume, moreover, that λ ′ is in

the good range for q ′. Then Ω = Cλ ′ ⊗ ω is in the good range for qω .

Proof Recall from equation (3.1) that qω has Levi component lω = l ′ + l0 and nilpo-

tent part uω = u ′ + u. Let γΩ be (a representative of) the infinitesimal character of

Ω = Cλ ′ ⊗ ω. We need to show that Ω is in the good range for qω , i.e., that

〈γΩ + ρ(uω), α〉 > 0

for all α in ∆(uω). Note that ρ(uω) = ρ(u ′) + ρ(u). Let d0(= d or d + 1) be the rank

of L0, so that the infinitesimal character of the oscillator representation of L0 is ωd0 .

Then γΩ = λ ′ + ρ(l ′) + ωd0 , and

γΩ + ρ(uω) = λ ′ + ρ(l ′) + ωd0 + ρ(u ′) + ρ(u).

If α ∈ ∆(u ′), then α is orthogonal to ωd0 and ρ(u), and

〈
γΩ + ρ(uω), α

〉
=

〈
λ ′ + ρ(l ′) + ρ(u ′), α

〉
> 0

because λ ′ is assumed to be in the good range for q ′.
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It remains to consider the case α ∈ ∆(u). In order to keep the notation simple

and familiar, we will compute γΩ + ρ(uω) in our usual coordinates, for the case that

X0 is an even oscillator representation. If X0 is an odd oscillator representation, the

result will follow in exactly the same way. Let λa, µ and L = L1 ×L0 be as in the proof

of Proposition 3.1, and write L ′
=

∏u
i=1Ũ (pi , qi) as in (4.13) (it was called L2 there).

In these coordinates, the roots of u are those that are positive on

ξ =

(
a, a, . . . , a︸ ︷︷ ︸

r

∣∣∣ 0, 0, . . . , 0︸ ︷︷ ︸
d

∣∣∣ −a,−a, . . . ,−a︸ ︷︷ ︸
s

)

for a > 0. The roots of uω are those that are positive on

ξω =

(
a1, . . . , a1︸ ︷︷ ︸

p1

, . . . , au, . . . , au︸ ︷︷ ︸
pu

∣∣∣ 0, . . . , 0︸ ︷︷ ︸
d

∣∣∣ −au, . . . ,−au︸ ︷︷ ︸
qu

, . . . ,−a1, . . . ,−a1︸ ︷︷ ︸
qu

)
,

for a1 > a2 > · · · > au > 0. From [9], we know that the parameter λ ′ is of the form

λ ′
=

(
λ1, . . . , λ1︸ ︷︷ ︸

p1

, . . . , λu, . . . , λu︸ ︷︷ ︸
pu

∣∣∣ 0, . . . , 0︸ ︷︷ ︸
d

∣∣∣ −λu, . . . ,−λu︸ ︷︷ ︸
qu

, . . . ,−λ1, . . . ,−λ1︸ ︷︷ ︸
qu

)

with λi ∈ Z + 1
2
, and λ1 ≥ λ2 ≥ · · · ≥ λu. Note that if we choose a system of positive

roots ∆+
ω for lω = l ′ + l0, then ∆

+
= ∆

+
ω ∪∆(u ′)∪∆(u) is a system of positive roots

for g. Let Π ⊂ ∆
+ be the corresponding set of simple roots. If ωd is the representative

of the infinitesimal character of the oscillator representation determined by ∆+
ω , then

γΩ + ρ(uω) = λ ′ + ρ(l ′) + ωd0 + ρ(u ′) + ρ(u)

is automatically dominant for all roots in ∆
+
ω ∪∆(u ′). Hence, we only need to show

dominance for the simple roots Π∩∆(u) in ∆(u); this set will turn out to be a single

root.

Without loss of generality, we may assume that qu > 0. Set

ωd
= (0, . . . , 0|d − 1/2, d − 3/2, . . . , 1/2|0, . . . , 0)

and choose the restriction of ρ(l ′) on each factor in a standard way; the choice is

given explicitly (for the last factor Ũ (pu, qu) of L ′ only) in (7.12). Then

Π ∩∆(u) ={−ǫr+1 − ǫr+d+1}.

If we write

γΩ + ρ(uω) = (γ1, γ2, . . . , γr|d − 1/2, d − 3/2, . . . , 1/2|γr+d+1, . . . , γr+d+s),

then the dominance condition reduces to

γr+d+1 + d − 1/2 < 0.
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Note that, given the ω-regularity condition and the shape of ωd, it suffices to prove

that

(8.1) γr+d+1 ≤ d − 1
2
.

We consider the entries of γΩ +ρ(uω) corresponding to the last factor Ũ (pu, qu) of L ′.

These entries were essentially computed in the proof of (Claim (C) in) Proposition

3.2, with the same choice of positive roots, but with different assumptions on the

entries ofµ and a different notation for the parabolic subalgebra of L1 (prime algebras

were replaced by algebras with subscript 2). By equation (4.2) (in Lemma 4.2), the

r-th coordinate of µ is the same as the r-th coordinate of λa + ρ(ua ∩ p) − ρ(ua ∩ k),

which, in turn, is of the form

r − s + k = r − s +
[

g j +

t∑

i= j+1

(si − ri) +
1

2
(s j − r j + 1)

]

for some 1 ≤ j ≤ t (by equations (2.5) and (4.3)). Note that k ∈ Z + 1
2

and k ≥ 1
2
,

because g j ≥
1
2
, ri = 0 (hence si = 1) for all i > j, and |s j − r j | ≤ 1. Similarly, the

(r + d + 1)-th coordinate of µ can be written in the form

r − s − l,

for some l ∈ Z + 1
2

and l ≥ 1
2
. Hence, we can write

µ =

(
. . . , r − s + k, . . . , r − s + k︸ ︷︷ ︸

pu

∣∣∣ c1, . . . , cd︸ ︷︷ ︸
d

∣∣∣ r − s − l, . . . , r − s − l︸ ︷︷ ︸
qu

, . . .

)

with k, l ∈ Z + 1
2

with k, l ≥ 1
2
. (This formula also holds true for d = 0.)

Then, using the equation µ = µ1 +µ0 + 2ρ(u∩p) and the expression for 2ρ(u∩p)

given by (7.10), we find that

µ1 =

(
. . . ,−s − d − 1 + k, . . . ,−s − d − 1 + k︸ ︷︷ ︸

pu

∣∣∣ 0, . . . , 0︸ ︷︷ ︸
d

∣∣∣

r + d + 1 − l, . . . , r + d + 1 − l︸ ︷︷ ︸
qu

, . . .

)
.

Using (7.11), we get

λ ′
= µ1 − 2ρ(u ′ ∩ p)

=

(
. . . ,−qu − d − 1 + k, . . . ,−qu − d − 1 + k︸ ︷︷ ︸

pu

∣∣∣ 0, . . . , 0︸ ︷︷ ︸
d

∣∣∣

pu + d + 1 − l, . . . , pu + d + 1 − l︸ ︷︷ ︸
qu

, . . .

)
,
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hence

γΩ + ρ(uω) = λ ′ + ρ(u ′) + ρ(l ′) + ρ(u)

=

(
. . . , pu − 1 + k, pu − 2 + k, . . . , k + 1, k︸ ︷︷ ︸

pu

∣∣∣ d −
1

2
, . . . ,

3

2
,

1

2

∣∣∣

pu − l, pu − l − 1, . . . , pu − qu − l + 1︸ ︷︷ ︸
qu

, . . .

)
.

If pu = 0, then γr+d+1 = −l < 0, which implies (8.1), so we are done. Therefore, we

may assume that pu and qu are both nonzero. Because λ ′ is constant on Ũ (pu, qu),

we must have pu + d + 1 − l = qu + d + 1 − k, so that l = k + pu − qu. Then

γΩ + ρ(uω) =

(
. . . , pu − 1 + k, pu − 2 + k, . . . , k + 1, k︸ ︷︷ ︸

pu

∣∣∣ d −
1

2
, . . .

. . . ,
1

2

∣∣∣ qu − k, qu − k − 1, . . . ,−k + 1︸ ︷︷ ︸
qu

, . . .

)
.

By ω-regularity and the fact that k > 0, we must have k ≥ d + 1
2
, so the last entry in

this Ũ (pu, qu) factor is

−k + 1 ≤ −d +
1

2
.

Because the entries qu − k, qu − k − 1, . . . ,−k + 1 form a sequence of half integers

decreasing by steps of 1, ω-regularity implies that

γr+s+1 = qu − k ≤ −d −
1

2
,

and we are done.

Notice that this argument also applies in the case d = 0. This concludes the proof

of Proposition 3.6.
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