

Near-Homeomorphisms of Nöbeling Manifolds

A. Chigogidze and A. Nagórko

Abstract. We characterize maps between *n*-dimensional Nöbeling manifolds that can be approximated by homeomorphisms.

1 Introduction

A long standing problem (see, for example, [8, TC 10], [3, Conjecture 5.0.5]) of characterizing topologically universal *n*-dimensional Nöbeling space, as well as manifolds modeled on it, was solved recently by M. Levin [5] and A. Nagórko [7]. The Theory of Nöbeling manifolds, developed in [5–7] based on completely different approaches, among other things contains various versions of *Z*-set unknotting theorem, open embedding theorem, *n*-homotopy classification theorem, etc.

In this note we complete the picture by proving that for *n*-dimensional Nöbeling manifolds classes of near-homeomorphisms, approximately *n*-soft maps, fine *n*-homotopy equivalences and UV^{n-1} -mappings coincide. Recall that an *n*-dimensional Nöbeling manifold is a Polish space locally homeomorphic to ν^n , the subset of \mathbb{R}^{2n+1} consisting of all points with at most *n* rational coordinates.

Definition 1.1 For each map f from a space X into a space Y, for each open cover \mathcal{U} of Y and for each integer n, we define the following conditions.

 $(NH_{\mathcal{U}})$ There exists a homeomorphism of *X* and *Y* that is \mathcal{U} -close to *f*.

 $(AnS_{\mathcal{U}})$ For each at most *n*-dimensional metric space *B*, its closed subset *A*, and maps φ and ψ such that the diagram

commutes, there exists a map $k: B \to X$ such that $k|A = \varphi$ and $f \circ k$ is \mathcal{U} -close to ψ .

Received by the editors July 24, 2007.

Published electronically May 11, 2010.

AMS subject classification: 55M10, 54F45.

Keywords: n-dimensional Nöbeling manifold, Z-set unknotting, near-homeomorphism.

- $(FnHE_{\mathcal{U}})$ There exists a map g from Y to X such that $f \circ g$ is \mathcal{U} -n-homotopic¹ to the identity on Y and $g \circ f$ is $f^{-1}(\mathcal{U})$ -n-homotopic to the identity on X (with $f^{-1}(\mathcal{U})$ denoting $\{f^{-1}(\mathcal{U})\}_{\mathcal{U}\in\mathcal{U}}$).
- $(UV_{\mathcal{U}}^{n-1})$ The star of the image of f in \mathcal{U} is equal to Y, and there is an open cover \mathcal{W} of Y such that for each W in \mathcal{W} there exists U in \mathcal{U} such that the inclusion $f^{-1}(W) \subset f^{-1}(U)$ induces trivial (zero) homomorphisms on homotopy groups of dimensions less than n, regardless of the choice of the base point.

Our main result is the following theorem.

Theorem 1.2 For each open cover \mathcal{U} of an n-dimensional Nöbeling manifold Y there exists an open cover \mathcal{V} such that for each map f from an n-dimensional Nöbeling manifold into Y, if (FnHE_V), then (NH_U).

Theorem 1.2 is an analogue of theorems of Ferry on Hilbert space and Hilbert cube manifolds [4] and of a theorem of Chapman and Ferry on euclidean manifolds [2].

Let $(P_{\mathcal{U}})$, $(Q_{\mathcal{U}})$, and $(R_{\mathcal{U}})$ be any of the predicates stated in Definition 1.1. We are interested in which of the implications

$$\forall_{\mathcal{U}} \exists_{\mathcal{V}} \forall_f (\mathbf{P}_{\mathcal{V}}) \Rightarrow (\mathbf{Q}_{\mathcal{U}})$$

are true. We show that if *Y* is an ANE(n)-space, then, with quantifiers understood to be same as above, $(NH_V) \Rightarrow (AnS_U)$ (Lemma 2.2), $(AnS_V) \Rightarrow (FnHE_U)$ (Lemma 2.4) and $(FnHE_V) \Rightarrow (UV_U^{n-1})$ (Lemma 2.5). These implications are standard. To complete the picture, we give an example that shows that (UV_V^{n-1}) does not imply $(FnHE_U)$, even if *X* and *Y* are Nöbeling manifolds (Example 2.6).

Observe that we have the following rule of inference:

$$\left(\forall_{\mathcal{U}} \exists_{\mathcal{V}} \forall_f (\mathbf{P}_{\mathcal{V}}) \Rightarrow (\mathbf{Q}_{\mathcal{U}})\right) \land \left(\forall_{\mathcal{U}} \exists_{\mathcal{V}} \forall_f (\mathbf{Q}_{\mathcal{V}}) \Rightarrow (\mathbf{R}_{\mathcal{U}})\right) \Rightarrow \left(\forall_{\mathcal{U}} \exists_{\mathcal{V}} \forall_f (\mathbf{P}_{\mathcal{V}}) \Rightarrow (\mathbf{R}_{\mathcal{U}})\right).$$

Hence the above mentioned implications yield the following theorem.

Theorem 1.3 For each open cover \mathcal{U} of an n-dimensional Nöbeling manifold Y there exists an open cover \mathcal{V} such that for each map f from an n-dimensional Nöbeling manifold X into Y if

$$(NH_{\mathcal{V}})$$
 or $(AnS_{\mathcal{V}})$ or $(FnHE_{\mathcal{V}})$,

then

$$(NH_{\mathcal{U}})$$
 and $(AnS_{\mathcal{U}})$ and $(FnHE_{\mathcal{U}})$.

Now consider absolute versions of conditions stated in Definition 1.1.

¹See section 2 for definitions.

A. Chigogidze and A. Nagórko

Definition 1.4 For each map f from a space X into a space Y we say that (NH) ((AnS), (FnHE), or (UV^{*n*-1}), respectively) is satisfied if for each open cover \mathcal{U} of Y (NH $_{\mathcal{U}}$) ((AnS $_{\mathcal{U}}$), (FnHE $_{\mathcal{U}}$), or (UV $_{\mathcal{U}}^{n-1}$), respectively) is satisfied.

If a map satisfies (NH), then we say that it is a *near-homeomorphism*. If it satisfies (AnS), then we say that it is *approximately n-soft*. If it satisfies (FnHE), then we say that it is a *fine n-homotopy equivalence*. If it satisfies (UV^{n-1}), then we say that it is a UV^{n-1} -map.

We shall show that if *Y* is an *ANE*(*n*)-space, then $(UV^{n-1}) \Rightarrow (FnHE)$ (Lemma 2.7, which contrasts Example 2.6). Hence we have

$$(NH) \Rightarrow (AnS) \Rightarrow (FnHE) \Leftrightarrow (UV^{n-1}).$$

The above implications combined with Theorem 1.2 yield the following theorem.

Theorem 1.5 The following conditions are equivalent for each map $f: X \to Y$ of *n*-dimensional Nöbeling manifolds:

(NH)	f is a near-homeomorphism,
(AnS)	f is approximately n-soft,
(FnHE)	f is a fine n-homotopy equivalence,
(UV^{n-1})	f is an UV^{n-1} -map.

2 Preliminaries

Definition 2.1 We say that a metric space X is an *absolute neighborhood extensor in dimension* n if it is a metric space and if every map into X from a closed subset A of an n-dimensional metric space extends over an open neighborhood of A. The class of absolute neighborhood extensors in dimension n is denoted by ANE(n) and its elements are called ANE(n)-spaces.

Lemma 2.2 For each open cover \mathcal{U} of an ANE(n)-space Y there exists an open cover \mathcal{V} such that if a map into Y satisfies $(NH_{\mathcal{V}})$, then it satisfies $(AnS_{\mathcal{U}})$.

Proof Choose open covers \mathcal{V} and \mathcal{W} of Y such that the star of \mathcal{W} refines \mathcal{U} and the following condition is satisfied [3, Proposition 4.1.7] for each at most *n*-dimensional metric space *B* and its closed subset *A*.

(*) If one of two V-close maps of A into Y has an extension to B, then the other also has an extension to B and we may assume that these extensions are W-close.

Let A be a closed subset of an at most *n*-dimensional metric space B, and let maps $\varphi: A \to X$ and $\psi: B \to Y$ be such that $f\varphi = \psi | A$. By $(NH_{\mathcal{V}})$, there exists a homeomorphism $g: X \to Y$, which is \mathcal{V} -close to f. By the above stated property of \mathcal{V} , there exists a \mathcal{W} -close to ψ extension $h: B \to Y$ of the composition $g\varphi$. Let $k = g^{-1}h: B \to X$. Clearly, $k | A = \varphi$ and fk is \mathcal{U} -close to ψ .

Definition 2.3 Let \mathcal{U} be an open cover of a space Y. We say that maps $f, g: X \to Y$ are *n*-homotopic if for every map Φ from a polyhedron of dimension less than *n* into

440

X, the compositions $f \circ \Phi$ and $g \circ \Phi$ are homotopic by a homotopy whose paths refine \mathcal{U} .

Lemma 2.4 For each open cover \mathcal{U} of an at most n-dimensional ANE(n)-space Y there exists an open cover \mathcal{V} such that if a map into Y satisfies (AnS_V), then it satisfies (FnHE_U).

Proof Choose open covers \mathcal{V} and \mathcal{W} of Y such that $st_{\mathcal{V}}$ st \mathcal{W} refines \mathcal{U} and condition (*) defined in the proof of Lemma 2.2 is satisfied. By $(AnS_{\mathcal{V}})$, there exists a map $g: Y \to X$ such that $f \circ g$ is \mathcal{V} -close to the identity on Y. By (*), any two \mathcal{V} -close maps from an at most *n*-dimensional metric space are st \mathcal{W} -*n*-homotopic. Hence $f \circ g$ is \mathcal{U} -*n*-homotopic to the identity on Y. Let k be a map into X defined on an at most (n-1)-dimensional polyhedron K. Let $l = g \circ f \circ k$. Since $f \circ g$ is \mathcal{V} -close to the identity on Y, $f \circ k$ is \mathcal{V} -close to $f \circ l$. By (*), there exists a st \mathcal{W} -homotopy $H: K \times [0, 1] \to Y$ of $f \circ k$ and $f \circ l$. By $(AnS_{\mathcal{V}})$, this homotopy can be lifted to a homotopy of k and l in Y, whose composition with f is \mathcal{V} -close to H. Since $st_{\mathcal{V}}$ st \mathcal{W} refines \mathcal{U} , this composition is a \mathcal{U} -homotopy. Hence H is a $f^{-1}(\mathcal{U})$ -homotopy and $g \circ f$ is $f^{-1}(\mathcal{U})$ -*n*-homotopic to the identity on X.

Lemma 2.5 For each open cover \mathcal{U} of an ANE(n)-space Y there exists an open cover \mathcal{V} such that if a map into Y satisfies ($FnHE_{\mathcal{V}}$), then it satisfies ($UV_{\mathcal{U}}^{n-1}$).

Proof Let W be an open cover of Y whose star refines \mathcal{U} . By Theorem [3, 2.1.12], there exists an open cover \mathcal{V} of Y such that for each V in \mathcal{V} there exists W_V in W, for which the inclusion $V \subset W_V$ induces trivial homomorphisms on homotopy groups of dimensions less than n. Let k < n. Let V in \mathcal{V} . Let $\varphi: S^k \to f^{-1}(V)$. We will show that φ is null-homotopic in $f^{-1}(s_V W_V)$, which will end the proof, as $s_V \mathcal{W}$ refines \mathcal{U} . By $(FnHE_V)$, there exists a map $g: Y \to X$ such that $g \circ f$ is $f^{-1}(\mathcal{V})$ -n-homotopic with the identity on X and $f \circ g$ is \mathcal{V} -close to the identity on Y. In particular, φ is homotopic with $g \circ f \circ \varphi$ in $st_{f^{-1}(\mathcal{V})}f^{-1}(V) \subset f^{-1}(s_V V) \subset$ $f^{-1}(s_V W_V)$. By the assumptions, $f \circ \varphi$ is null-homotopic in W_V . Hence $g \circ f \circ \varphi$ is null-homotopic in $g(W_V) \subset f^{-1}(s_V W_V)$. We are done.

Example 2.6 We show that there exists a space Y and an open cover \mathcal{U} of Y such that for each open cover \mathcal{V} of Y there exists a map f from a space X into Y such that $(UV_{\mathcal{V}}^{n-1})$ is satisfied, but both $(FnHE_{\mathcal{U}})$ and $(AnS_{\mathcal{U}})$ are not. We give an example for n > 1 and the map that we construct is onto Y. For n = 1 an example can also be constructed, but the map cannot have a dense image in Y.

Let *Y* be the unit interval [0, 1] and let $\mathcal{U} = \{[0, 1]\}$ be the trivial cover of *Y*. Let \mathcal{V} be an open cover of *Y* and let *V* be an element of \mathcal{V} that contains $\frac{1}{2}$. Let $\varepsilon > 0$ such that $[\frac{1}{2} - \varepsilon, \frac{1}{2} + \varepsilon] \subset V$. Let $X = [0, 1] \times [0, 1] \setminus [\frac{1}{2} - \varepsilon, \frac{1}{2} + \varepsilon] \times \{\frac{1}{2}\}$. Let $f: X \to Y$ be a restriction to *X* of the projection of $[0, 1] \times [0, 1]$ onto the first coordinate. We can verify that *f* satisfies $(UV_{\mathcal{V}}^{n-1})$ from the definition, taking any \mathcal{W} that refines \mathcal{V} and whose mesh is smaller than 2ε . As *X* is homotopy equivalent to a circle and *Y* is contractible, *f* does not induce a monomorphism on fundamental groups of *X* and *Y*. This is easily seen to contradict both $(FnHE_{\mathcal{U}})$ and $(AnS_{\mathcal{U}})$ for n > 1.

It is easy to modify the above example is such a way that *X* and *Y* are *n*-dimensional Nöbeling manifolds.

Lemma 2.7 If a map into an at most n-dimensional ANE(n)-space satisfies (UV^{n-1}) , then it satisfies (FnHE).

Proof Let *f* be a UV^{n-1} -map from a space *X* into an ANE(n)-space *Y*. We will show by induction that for each $0 \le k \le n$, f satisfies (AnS) for polyhedral pairs (A, B) such that dim $A \setminus B \le k$. Let (P_k) denote the last condition. For k = 0 the assertion is obvious, as (UV^{n-1}) implies that f has dense image in Y. Assume that k > 0. Let \mathcal{U} be an open cover of Y. By (UV^{n-1}) , there exists an open cover W of Y such that for each $W \in W$ there exists $U_W \in \mathcal{U}$ such that the inclusion of $f^{-1}(W)$ into $f^{-1}(U_W)$ induces zero homomorphisms on homotopy groups of dimensions less than n. Let S be an open cover whose star refines W. Let B be a subpolyhedron of an at most *n*-dimensional polyhedron A such that dim $A \setminus B \leq k$. Let maps $\varphi \colon B \to X$ and $\psi: A \to Y$ be such that $f \circ \varphi = \psi_{|B}$. Fix a triangulation of A such that for each simplex δ of this triangulation $\psi(\delta) \subset S$ for some $S \in S$. By (P_{k-1}) , we may extend φ over the (k-1)-dimensional skeleton of A to a map k in such a way that $f \circ k$ is S-close to ψ . Consider an k-dimensional simplex δ of A. Observe that k maps boundary of δ into the inverse image $f^{-1}(W)$ of an element W of W. Hence, k extends over δ to a map into the inverse image $f^{-1}(U_W)$. Extend k in this manner over all k-dimensional simplexes of $A \setminus B$ and observe that $f \circ k$ is \mathcal{U} -close to φ . This completes the inductive step and a proof that (P_n) holds for f.

Let \mathcal{U} be an open cover of Y. We will show that $(FnHE_{\mathcal{U}})$ is satisfied. Choose open covers \mathcal{V} and \mathcal{W} of Y such that $st_{\mathcal{V}}$ st \mathcal{W} refines \mathcal{U} and condition (*) defined in the proof of Lemma 2.2 is satisfied. By [3, Theorem 2.1.12(vii)], there exist an at most n-dimensional polyhedron A and two maps $q: Y \to A$, $p: A \to Y$ such that $p \circ q$ is \mathcal{V} -close to the identity on Y. By (P_n) , there exists a map $r: K \to X$ such that $f \circ r$ is \mathcal{V} -close to p. Let $g = r \circ q$. By the construction, $f \circ g$ is st \mathcal{V} -close to the identity on Y. The rest of the proof follows the proof of Lemma 2.4.

3 Proof that (F_nHE_v) implies (NH_u)

For definitions of notions used throughout the proof, we refer the reader to [7]. Let \mathcal{U} be an open cover of an *n*-dimensional Nöbeling manifold *Y*. Let *f* be a map from an *n*-dimensional Nöbeling manifold *X* into *Y*. Assume that *q* is an integer greater that a constant *m* obtained by [7, Lemma 8.4] applied to *n*. Additionally assume that *q* is greater than $36(5N+8)^{n-1}+3$, where *N* is a constant obtained by [7, Theorem 6.7]. By [7, Lemma 8.1], there exists a closed partition $\mathcal{Q} = \{Q_i\}_{i \in I}$ of *Y* that is *q*-barycentric and whose *q*-th star refines \mathcal{U} . Observe that if $\mathcal{P} = \{P_i\}_{i \in I}$ is a closed partition of *X* that is isomorphic to \mathcal{Q} , then by [7, Lemma 8.4], there exists a homeomorphism *h* of *X* and *Y* that maps elements of \mathcal{P} into the corresponding elements of st^m \mathcal{Q} . If $P_i \subset f^{-1}(\operatorname{st}^q_{\Omega} Q_i)$ for each *i* in *I*, then *h* is \mathcal{U} -close to *f*. In this case *h* is a homeomorphism that we are looking for. Let \mathcal{V} be an open cover of *Y* whose star refines \mathcal{Q} . Assume that *f* satisfies (F*n*HE_V). We will show that there exists a closed partition \mathcal{P} of *X* satisfying the above stated conditions. This will end the proof.

Our first goal is to construct an *n*-semiregular, closed, interior N_n -cover of X that is isomorphic to Ω and such that f maps its elements into l-th stars of the corresponding elements of Ω , for some constant l (we obtain l = 9, but the exact value is of no importance). By [7, Proposition 6.4], Q is *n*-semiregular. Hence there exists an anti-canonical map λ of Ω that is an *n*-homotopy equivalence. By (F*n*HE_V), there exists a map $Y \to X$ whose composition with f is \mathcal{V} -close to the identity. Hence there exists a map $\hat{\lambda}$ into X whose composition with f is \mathcal{V} -close to λ . Since X is strongly universal in dimension n, $\hat{\lambda}$ can be approximated by a closed embedding Λ whose composition with f is st \mathcal{V} -close to λ . By the choice of \mathcal{V} , λ is \mathbb{Q} -close to $f \circ \Lambda$. Hence the composition $\lambda \circ \Lambda^{-1}$ is Q-close to the restriction of f to im Λ . Hence $\lambda(\Lambda^{-1}(f^{-1}(Q_i))) \subset \operatorname{st}_{\mathbb{Q}} Q_i$ for each *i* in *I*. By Lemma [7, 6.16], there exists an extension of $\lambda \circ \Lambda^{-1}$ to a map g from X to Y such that $g(f^{-1}(Q_i)) \subset \operatorname{st}_Q^7 Q_i$ for each i in *I*. This implies that g is st⁷ Q-close to f and that $g^{-1}(Q_i) \subset f^{-1}(st_Q^8, Q_i)$ for each i in *I*. Let $R_i = g^{-1}(Q_i)$ for each *i* in *I*. By the construction, $\mathcal{R} = \{R_i\}_{i \in I}$ is isomorphic to Q. By [7, Theorem 4.5], there exists a closed interior \mathcal{N}_n -cover $\mathcal{P}_0 = \{P_i^0\}_{i \in I}$ of X that is a swelling of \mathcal{R} . By taking a small enough swelling, we may require that $P_i^0 \subset f^{-1}(\mathfrak{st}_{\Omega}^9 Q_i)$ for each $i \in I$. By the construction, Λ is an anticanonical map of \mathcal{P}_0 . By [7, Lemma 2.20] and by [7, Corollary 5.1], the composition $f \circ \Lambda$ is an *n*-homotopy equivalence, since $f \circ \Lambda$ is Q-close to λ and λ is an *n*-homotopy equivalence. Since f is n-homotopy equivalence, Λ is n-homotopy equivalence and by the definition, \mathcal{P}_0 is *n*-semiregular.

Hence we constructed a cover \mathcal{P}_0 that satisfies the following condition.

(0) $\mathcal{P}_0 = \{P_i^0\}_{i \in I}$ is a closed star finite 0-regular *n*-semiregular interior \mathcal{N}_n -cover of X that is isomorphic to \mathcal{Q} and such that $P_i^0 \subset f^{-1}(\mathfrak{st}_{\mathcal{O}}^9 Q_i)$ for each i in I.

Our second goal is a construction of a sequence $\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n$ of covers of *X* such that for each $0 < k \le n$ the following condition is satisfied.

(k) $\mathcal{P}_k = \{P_i^k\}_{i \in I}$ is a closed, star finite, *k*-regular, *n*-semiregular, interior \mathcal{N}_n -cover of *X* that is isomorphic to \mathcal{Q} and such that $P_i^k \subset f^{-1}(\operatorname{st}_{\mathcal{Q}}^{9(5N+8)^k}Q_i)$ for each *i* in *I*. Observe that $\mathcal{P} = \mathcal{P}_n$ satisfies the conditions stated at the beginning of the proof. Hence a construction of such a sequence will finish the proof.

Let \mathcal{F} be a cover of Y that refines $\operatorname{st}^{l} \mathcal{Q}$ for some positive integer l < q. Let p be a positive integer such that $2^{p-2} - 1 < l \leq 2^{p-1} - 1$. By the assumption that q is big enough, \mathcal{Q} is p-barycentric. Hence by Lemma [7, Lemmas 6.12 and 6.15], $\operatorname{st}^{2^{p-1}-1}\mathcal{Q}$ is n-contractible in $\operatorname{st}^{2^{p-1}}\mathcal{Q}$. As $2^p - 1 < 4l + 3$, \mathcal{F} is n-contractible in $\operatorname{st}^{4l+3}\mathcal{Q}$. By $(\operatorname{FnHE}_{\mathcal{V}})$, if a cover \mathcal{F} is n-contractible in a cover $\operatorname{st}^{4l+3}\mathcal{Q}$, then $f^{-1}(\mathcal{F})$ is n-contractible in $f^{-1}(\operatorname{st}_{\mathcal{V}}\operatorname{st}^{4l+3}\mathcal{Q}) \prec f^{-1}(\operatorname{st}^{4(l+1)}\mathcal{Q})$. Hence by [7, Theorem 6.7] applied to \mathcal{P}_k , there exists a closed k-regular n-semiregular interior \mathcal{N}_n -cover \mathcal{P}_k that is isomorphic to \mathcal{P}_{k-1} and that refines $\operatorname{st}^N f^{-1}(\operatorname{st}^{4(9(5N+8)^{k-1}+1)}\mathcal{Q})$. By [7, Remark 3.5], we may require that \mathcal{P}_k is equal to \mathcal{P}_{k-1} on the image of Λ . This implies that $P_i^k \subset \operatorname{st}^{N+1} f^{-1}(\operatorname{st}^{4(9(5N+8)^{k-1}+1)}\mathcal{Q})$, hence $P_i^k \subset f^{-1}(\operatorname{st}^{N+1}\operatorname{st}^{4(9(5N+8)^{k-1}+1)}\mathcal{Q})$. By Lemma- [7, 2.1], $\operatorname{st}^{N+1} \operatorname{st}^{4(9(5n+8)^{k-1}+1)}\mathcal{Q} = \operatorname{st}^{(N+2)(4(9(5N+8)^{k-1})+N+1}\mathcal{Q}$ and clearly the latter exponent is not greater than $9(5N+8)^k$. We are done.

4 An Alternative Proof that (UV^{*n*-1}) Implies (NH)

It is known (see [3, Proposition 5.7.4]) that every *n*-dimensional Menger manifold *M* has the pseudo-interior $\nu^n(M)$.

Lemma 4.1 The class of *n*-dimensional Nöbeling manifolds coincides with the class of pseudo-interiors of *n*-dimensional Menger manifolds.

Proof Apply [3, Proposition 5.7.5] and the open embedding theorem for Nöbeling manifolds [5,7]. ■

Next we single out one of the main particular cases in which near-homeomorphisms appear naturally.

Proposition 4.2 Let A be a σZ -set in a Nöbeling manifold N. Then the inclusion $N \setminus A \hookrightarrow N$ is a near-homeomorphism.

Proof Apply Lemma 4.1 and [3, Proposition 5.7.7].

If for a map $f: X \to Y$ the image f(X) is dense in Y (as is the case for approximately *n*-soft maps), then the set of nondegenerate values of f, denoted by N_f , consists, by definition, of three types of points of Y: points in $Y \setminus f(X)$, points whose inverse images contain at least two points, and points $y \in Y$ for which although the inverse image $f^{-1}(y)$ is a singleton, the collection $f^{-1}(\mathcal{B})$ does not form a local base at $f^{-1}(y)$ for any local base \mathcal{B} at y in Y. Note that N_f is an F_{σ} -subset of Y and that the restriction $f|f^{-1}(Y \setminus N_f): f^{-1}(Y \setminus N_f) \to Y \setminus N_f$ is a homeomorphism.

Our next statement extends Proposition 4.2.

Proposition 4.3 Let $f: M \to N$ be an approximately n-soft map of n-dimensional Nöbeling manifolds. If N_f is a σZ -set, then f is a near-homeomorphism.

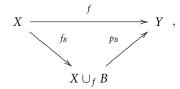
Proof We follow the proof of [1, Proposition 3.1]. Let $\{\alpha_k : k \in \mathbb{N}\} \subset C(I^n, M)$ be a dense subset of embeddings of the *n*-dimensional cube into *M* such that $\alpha_i(I^n) \cap \alpha_j(I^n) = \emptyset$ for each $i, j \in \mathbb{N}$ with $i \neq j$.

The map $f_0\alpha_1: I^n \to N$ can be approximated by a Z-embedding $\beta_1: I^n \to N \setminus N_{f_0}$ which is $\mathcal{U} - n$ -homotopic to $f_0 \alpha_1$ for a sufficiently small open cover \mathcal{U} of N. Note that since $f_0\alpha_1$ and $f_0f_0^{-1}\beta_1$ are *n*-homotopic via a small "*n*-homotopy", the approximate *n*-softness of f_0 implies that α_1 and $f_0^{-1}\beta_1$ are *n*-homotopic in *M* (via a small "n-homotopy", where smallness is measured in N). A version of Z-set unknotting Theorem [5, Theorem 2.2] produces a homeomorphism $h_1: M \to M$ such that $h_1\alpha_1 = f_0^{-1}\beta_1$ and f_0h_1 is close to f_0 . Let $f_1 = f_0h_1$. Requiring additionally that h_1 is fixed outside of a small neighborhood of $f_0^{-1}(f_0(\alpha_1(I^n)))$ we conclude that $f_1^{-1}(f_1(m)) = m$ for each $m \in \alpha_1(I^n)$. Continuing in this manner we construct the sequence $f_0 = f, f_1, \dots$ of approximately *n*-soft maps of M into N so that $f_{k+1} = f_k h_{k+1}$, where $h_{k+1} \colon M \to M$ is a homeomorphism fixed outside of a small neighborhood of $f_k^{-1}(f_k(\alpha_{k+1}(I^n)))$ missing $\bigcup \{\alpha_i(I^n): 1 \le i \le k\}$. As above, $h_{k+1}\alpha_{k+1} = f_k^{-1}\beta_{k+1}$, where $\beta_{k+1}: I^n \to N \setminus N_{f_k}$ is a Z-embedding. Observe also that $\bigcup \{f_{k+1}(\alpha_k(I^n)): 1 \leq i \leq k+1\} \subseteq N \setminus N_{f_{k+1}}, f_k^{-1}(f_k(m))\} = m$ for each $m \in \bigcup \{\alpha_i(I^n): 1 \leq i \leq k\}$ and $f_k | \bigcup \{\alpha_i(I^n): 1 \leq i \leq k-1\} =$ $f_{k-1} \mid \bigcup \{ \alpha_i(I^n) : 1 \le i \le k-1 \}$. If the homeomorphism h_{k+1} is chosen sufficiently close to h_k , then the map $g = \lim \{f_k\}: M \to N$ will be approximately *n*-soft. Note that $g^{-1}(N_g) \cap \bigcup \{ \alpha_k(I^n) \colon k \in \mathbb{N} \} = \emptyset$. It then follows from the choice of the set $\{\alpha_k(I^n): k \in \mathbb{N}\}$ that $g^{-1}(N_g)$ is a σZ -set in M.

444

By Proposition 4.2, both inclusions $i: M \setminus g^{-1}(N_g) \hookrightarrow M$ and $j: N \setminus N_g \hookrightarrow N$ are near-homeomorphisms. Therefore, g (and hence f) can be approximated by a homeomorphism of the form $H_jg_0H_i^{-1}$, where H_i approximates i, H_j approximates j, and $g_0 = g|(M \setminus g^{-1}(N_g)): M \setminus g^{-1}(N_g) \to N \setminus N_g$.

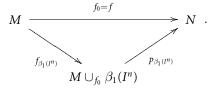
For a map $f: X \to Y$ and a closed subset $B \subseteq Y$, the adjunction space $X \cup_f B$ is defined to be the disjoint union of $X \setminus f^{-1}(B)$ and B topologised as follows: $X \setminus f^{-1}(B)$ itself is open and $f^{-1}(U \setminus B) \cup (U \cap B)$ for $U \subseteq Y$ open in Y. Obviously, the map f factors as follows:



where $f_B: X \to X \cup_f B$ coincides with the identity on $X \setminus f^{-1}(B)$ and with f on $f^{-1}(B)$ and $p_B: X \cup_f B \to Y$ coincides with the identity on B and with f on $X \setminus f^{-1}(B)$. If fis an approximate n-soft map between Polish ANE(n)-spaces and B is a (strong) Z-set in Y, then $X \cup_f B$ is also a Polish ANE(n)-space containing B as a (strong) Z-set and both f_B and p_B are approximately n-soft. If, in addition, X and Y are n-dimensional Nöbeling manifolds, then so is $X \cup_f B$.

Proof of $(UV^{n-1}) \Rightarrow (NH)$. Proof follows the proof of [1, Characterization Theorem]. Let $\{\beta_k \colon k \in \mathbb{N}\} \subset C(I^n, M)$ be a dense subset of embeddings of the *n*-dimensional cube into *N* such that $\beta_i(I^n) \cap \beta_j(I^n) = \emptyset$ for each $i, j \in \mathbb{N}$ with $i \neq j$.

Let $f_0 = f$ and consider the above described factorization of f through the adjunction space, *i.e.*, $f_0 = p_{\beta_1(I^n)} f_{\beta_1(I^n)}$



Note that $N_{f_{\beta_1(I^n)}} \subseteq \beta_1(I^n)$. Since every compact subset of an *n*-dimensional Nöbeling manifold is a strong *Z*-set (see [3, Corollary 5.1.6]), it follows from Proposition 4.3 that there exists a homeomorphism $h: M \to M \cup_{f_0} \beta_1(I^n)$ approximating $f_{\beta_1(I^n)}$ as close as we wish. Let $f_1 = p_{\beta_1(I^n)}h$. Clearly, f_1 approximates f_0 and is one to one over $\beta_1(I^n)$. Proceeding in this manner we construct a sequence $\{f_k: k \in \mathbb{N}\}$ of approximately *n*-soft maps (of *M* into *N*) such that f_{k+1} approximates f_k and is one to one over $\bigcup \{\beta_i(I^n): 1 \leq i \leq k+1\}$. If f_{k+1} is sufficiently close to f_k , then the limit map $g = \lim \{f_k\}: M \to N$ will be approximately *n*-soft. Since *g* is one to one over $\bigcup \{\beta_k(I^n): k \in \mathbb{N}\}$, it follows from the choice of the collection $\{\beta_k\}$ that N_g is a σZ -set in *N*. By Proposition 4.3, *g*, and hence *f*, is a near-homeomorphism.

A. Chigogidze and A. Nagórko

References

- M. Bestvina, P. Bowers, J. Mogilsky, and J. Walsh, *Characterization of Hilbert space manifolds revisited*. Topology Appl. 24(1986), no. 1–3, 53–69. doi:10.1016/0166-8641(86)90049-0
- T. A.Chapman and S. Ferry, Approximating homotopy equivalences by homeomorphisms. Amer. J. Math. 101(1979), no. 3, 583–607. doi:10.2307/2373799
- [3] A. Chigogidze, *Inverse spectra*. North-Holland Mathematical Library, 53, North-Holland, Amsterdam, 1996.
- [4] S. Ferry, *The homeomorphism group of a compact Hilbert cube manifold is an ANR*. Ann. Math. (2) 106(1977), no. 1, 101–119. doi:10.2307/1971161
- [5] M. Levin, *Characterizing Nöbeling spaces*. http://front.math.ucdavis.edu/math.GT/0602361.
- [6] _____, A Z-set unknotting theorem for Nöbeling manifolds.http://front.math.ucdavis.edu/math.GT/0510571.
- [7] A. Nagórko, Characterization and topological rigidity of Nöbeling manifolds. Ph.D. Thesis, Warsaw University, 2006. http://arxiv.org/abs/math/0602574.
- [8] J. E. West, *Open problems in infinite-dimensional topology.* In: Open problems in topology, North Holland, Amsterdam, 1990, pp. 523–597.

Department of Mathematics and Statistics, University of North Carolina at Greensboro, Greensboro, NC, USA e-mail: chigogidze@uncg.edu

a_nagork@uncg.edu

446