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In memory of John Leech
1. Introduction. With much sadness we note the death of John Leech, on 28

September 1992. Perhaps best known for his discovery of the "Leech Lattice" (which
provides the best known sphere-packing in 24 dimensions), John will also be remembered
for his contributions to the use of computers in mathematics, and to computational
algebra in particular.

Only days before his death he visited St Andrews and discussed with us some
questions which remained unanswered from his study of quotients of the (2,3,7) triangle
group A(2,3,7) = {x,y \ x2 = y3 = (xy)1 = 1); see [7] and other references listed there.
These questions concerned finite groups obtainable as quotients of A(2,3,7) by the
insertion of a fourth relator in its presentation.

Leech himself preferred to use the alternative generators A = [y,x] = y~lxyx and
B = (xy)3, in terms of which x = B3AB~2 and y = B3AB~A, the presentation becoming
A(2,3,7) = {A,B \(AB)2 = (A~XB)3 = B1 = 1). His main interest was in those groups
obtained by inserting a fourth relator w of the form w = (ArBs)k for small non-negative
integers r, s and k. For example, he showed in [7] that the presentation

(A, B | (ABf = (A-'Bf = B1 = (A5B6)2 = 1)

defines the simple group L2(13) of order 1092, but could not ascertain whether or not the
insertion of w = (A4B4)3 as fourth relator defines a finite group. Other cases he asked
about included (A2B4)6, (A3BA)4 and {A3B2f.

We provide the answers in three of these (previously unresolved) cases in this paper,
and throw some light on the fourth one, which appears to be quite difficult. Also we look
at a few further cases of the same form, with interesting results. Our approach is mostly
computational, using coset enumeration by machine to find the order (or at least the
index of a subgroup of known finite order) of the group in question.

Many of Leech's computations were done either by hand or on the KDF9 computer
at Glasgow (with rather limited storage) in the 1960s. In contrast, on a SUN workstation
it is now possible to perform enumerations of several million cosets within a matter of
seconds.

2. Further background and some computational results. The triple (p,q,r) =
(2,3,7) provides the largest value of the expression 1/p + 1/q + l/r less than 1 (for
positive integers p, q and r), and for this reason the (2,3,7) triangle group and its
quotients are significant in the theory of automorphism groups of Riemann surfaces of
genus g > 1 and of regular maps on surfaces; see [2] for details and a summary of known
examples.

At the time of writing [2], relatively little was known about those quotients
obtainable by inserting a fourth relator of the form w =Ak (or equivalently, w = [x,y]k),
but now the picture is complete.

The group with presentation (x, y \ x2 = y3 = (xy)7 = [x, y]k = 1) is
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(a) trivial when k = 1, 2, 3, or 5,
(b) isomorphic to L2(7) of order 168 when k = 4,
(c) isomorphic to L2(13) of order 1092 when k = 6 or 7,
(d) a non-split extension of (C2)

6 by L2(7) when k = 8,
(e) infinite when /: > 9.
The cases A: = 10 and k > 12 were dealt with successfully by Holt and Plesken in [4]

(using methods which may be applied easily also to large powers of other words in the
generators), and independently by Howie and Thomas [5]. The last case k = 11 was
completed by Edjvet in [3].

If the inserted fourth relator is of the form w = ArB\ then without loss of generality
l < s < 6 (or otherwise w = Ar), and this implies B e (BS)^{A), making the group cyclic
and therefore trivial.

In more general cases, the following lemma (due to Leech) is useful in reducing the
number of possibilities for the fourth relator w. We give a purely algebraic proof, but
remark that Leech's original proof was almost entirely geometric, based on properties of
the hyperbolic tessellation {3, 7} (see Figure 1 in [10]).

LEMMA. In the (2,3,7) triangle group (A, B \ (AB)2 = (A~XB)3 = B7 = l) the following
elements are mutually conjugate, for every integer m:

(1) A'"B and Am'2B6,
(2) A"'B2 and (Am+1BS)~\
(3) AmB3 and(A"'-3BA)-1.

Proof. The first part is easy: A~\A"'B)A =Am~xBA =A'"~1A~1B~1 = Am~2B6. For
the second and third parts, use the original generators x and y to obtain

x(A'"B2)x = x(y-lxyx)'"(xy)6x = (xy-lxy)"'xy-1 = A'mA~xB2 = A~im+1)B2 = (B5Am+l)-\

and similarly also

= (xy-'xy)'"-\xy)2 = >r(m-3)fl3 = (SM"1"3)-'.

In particular, A2B is conjugate to B~l, AB5 is conjugate to B~2, and A3B3 is
conjugate to fi"4, while A3B is conjugate to AB~l (of order 3). Similar reduction is
possible also for other relators of the form w = (ArBs)k where r and s are small.
Specifically:

(4) A4B =A2AB-'A~' =A2BA~lBA~2, which is conjugate to A~XB2 and therefore
(by the lemma) also to B~5,

(5) AB3 = B~lA~lB2, which is conjugate to A~XB,
(6) A2B3 is conjugate to B3A (by the lemma) and so to AB3 and therefore also to

A~lB (by (5)),
(7) A4B3 is conjugate to (AB4)~\ but AB* = BA'^BA^B-1 = BA~XB2AB~\ so

A4B3 is conjugate to B'2.
In all these cases (along with the trivial case of AB), the insertion of the relator

iv = (ArBs)k is either redundant, or sufficient to cause collapse, depending on the value of
k. Also two other cases reduce to known ones:

(8) ASB is conjugate to A3B6, but A3B6 = A3B~l =A2BA~XBA~X =AB~xA~2BA-\
therefore A5B is conjugate to A~2,

(9) A2B5 is conjugate to {AB2)~l = B'2A~X = B~XAB and therefore to A.
In particular, the fourth relator w may now be assumed to be of the form (ArBs)k,
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with 5 e {1,3,5} and k>2, and r > 6 if s = 1, or r > 5 if 5 = 3, or r > 3 if s = 5.
Equivalently, and better for the purposes of computation (once B6 is replaced by 6~'),
we may assume 5 e {2,4,6} and k > 2, with r > 2 if s = 2 or 4, or r > 4 if 5 = 6.

In such cases, but again for small r and 5 and k, coset enumeration on a small
computer easily gives results (some of which were known to Leech and Sinkov). For
example, if the additional relator is any one of {A2B2)\ (A2B4)3 or (A3B4)3, the
presentation defines a group of order 168, which then has to be the simple group L2(7),
the smallest non-trivial quotient of A(2,3,7). These and other results are summarised
below.

FOURTH RELATOR W
(A2B2)2

(A2B2)3

(A2B2)4

(A2B2)5

(A3B2)2

(A3B2f
(A4B2)2

(A4B2f
(ASB2)2

(A5B2)3

(A6B2)2

(A7B2)2

(A*B2)2

(A2B4)2

(A2B4f
(A2B4)4

(A2B4)5

(A3B*)2

(A3By
(A4B4)2

(A4B4f
{A5B4)2

(A6B4)2

047B4)2

(A4By
(A4B6f
(A5By
(A^By
(A'By

GROUP
trivial
L2(13), of order 1092
L2(7), of order 168
L2(29), of order 12 180
trivial
L2(13), of order 1092
L2(8), of order 504
L2(29), of order 12180
trivial
L2(27), of order 9828
L2(13), of order 1092
L2(29), of order 12 180
trivial
trivial
L2(7), of order 168
trivial
L2(29), of order 12 180
L2(8), of order 504
L2(7), of order 168
trivial
L2(13), of order 1092
L2(13), of order 1092
L2(29), of order 12 180
trivial
trivial
L2(13), of order 1092
L2(13), of order 1092
L2(13), of order 1092
non-split extension of (C2)

6 by L2(7), of order 10 752

Note that already this answers one of the questions raised by Leech: insertion of the
additional relator (A4By does indeed define a finite group, namely L2(13). We will give a
formal proof of this fact in the next section.

On a larger machine, further results are possible. In particular, we have found the
following (by coset enumeration on a SUN workstation):

(a) when w = (A3B2)4 or (/44B6)4, the group is L2(71), of order 178 920,
(a) when w = (A^B4)* the group is L2(13), of order 1192 464,
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following (by coset enumeration on a SUN workstation):
(a) when w = (A3B2)4 or (A4B6)4, the group is L2(71), of order 178 920,
(b) when w = (A5B4)3, the group is L2(13) X L2(13), of order 1192 464,
(c) when w = (A2B4)6, the group is an extension of (C2)

6 by L2(7) X L2(13), of order
11 741184.

(d) when w = (A3B4)4, the group is an extension of a group of order 215 by L2(8), of
order 16 515 072.

Result (c) provides a surprising answer to another of the questions raised by Leech,
who had almost convinced himself the group was infinite. He observed that the relation
(A2B4)6 = 1 was a consequence of each of A7 = 1 and A8 = 1, or equivalently, that the
Hurwitz groups of orders 1092 and 10 752 are both factor groups of

(A, B | (ABf = (A-[B)3 = B7 = (A2B4)6 = 1).

What he did not expect was that the latter group is the direct product of these two
Hurwitz groups! We first found this by using the Reidemeister-Schreier process to obtain
a presentation for the normal subgroup of index 168 in the group in question, and then
performing a coset enumeration on that, but have now confirmed the result by direct
enumeration of cosets of the subgroup generated by B. Result (d), also found in answer to
a question of Leech, will be verified in the next section.

3. Theoretical results. Three of the computational results mentioned above can be
verified using some of the information given by Leech in [7], as follows.

PROPOSITION 3.1. The group (A,B \(AB)2 = (A~lB)3 = B7 = (A4B4)3 = 1) is isomor-
phic to the simple group L2(13) of order 1092.

Proof. First we note that one of the three normal subgroups of index 1092 in the
(2,3,7) triangle group is generated by the conjugates of A6 (=(y~lxyx)6). Indeed if
ao = A6 and a, = B~'a0B' for 1<; '<6 , and bo = AaxA~l and co = A2a5A~2 and fo =
A2a3A~2a0, with b, = B''b0B' and c, = B~'cofl' and / = B~%B' also for 1 < i < 6, then the
elements ah bh c, and f (for 0 ^ / ^ 6) generate this normal subgroup K. Moreover, letting
^)=folbo1f5c2

ia2b3c3a^1 and e,=fi~'eo#' for l < / < 6 , the identical relation
e()e2e4e6exe3e5 = 1 is a defining relation for K, and the conjugates of the 28 generators by
A may be given as follows (see [7, §8]):

flo = flo, bA = ax, CQ = b2, fA

aA = a6, bA = ao{bola^\ cA = a6b0f0e0, fA

^2 — ^6? ^ 2 = ^5? "̂2 = ^5 ^ 5 ^4 ? J 2

^ 3 — ^ 2 ) ^ 3 — ^6> ^*3 — ^ 6 ^ 6 ^ 5 ^5J 1 f J 3

z\ i A A — — 1 — 1 f A

a5-a4X, bA = e2, cA = e4, fA

Also in terms of these generators, (A4B4)3 = a0b6
 laA, so the insertion of the extra

relation (y44fl4)3 = 1 forces b6 = a4a0 and therefore b, = ai+5ai+l for all i (modulo 7). But
then a5 = b2 = (aoa3)

A = a0a2\ so a,-= a/+5a/+2 for all i (modulo 7); in particular this
implies aiaQ = aia5a2 = a3a2, and it follows that the products fl,+ifl,- are all equal. Letting
their common value be z (say), we find atz = a,a,+6a,+5 = zai+5 for all i, and further,
e« = a4 = (a2a6)

A = b6b^= a4aoa6a2 = a4za2, so e, = ai+4zai+2 for all i.
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The identical relation ene2e4ebexe3es
 = 1 n o w gives

1 = a4za2a6za4a1za6a3zala5za3a()za5a2za0

= a4za4za6zaiza3zaszaQza0

= a4a6a3a0a4axa5a0z
7 (since zai+5 = a,z)

= a6a2asz
7.

Conjugating by a4 we get 1 = a4
la6a2a5z

7a4 = aia2z
7a5a4 = a{a2z

s, so that a,a,+i = z~8 for
all i. But on the other hand, a6a0 = (asa0)

A = zA = (aoa6)
A = o0bl = a0a6a2, which gives

z~8 = za2 and therefore a, = £~9 for all /. Hence the a, all coincide, and it follows (e.g.
from a, = ai+sai+2) that they are all trivial.

In other words, the group with presentation

(A, B | {ABf = (A~[Bf = B7 = (A4B4)3 = 1)

is isomorphic to the quotient of (2,3,7) by the normal subgroup K generated by
conjugates of A6, namely L2(13).

PROPOSITION 3.2. The group (A, B \ {ABf = (A~lBf = B7 = (,43B4)4 = 1) is an exten-
sion by L2(8) of a metabelian 2-group of order 215 and exponent 4.

Proof. This is similar to the proof of Proposition 3.1. First, the (unique) normal
subgroup of index 504 in the (2,3,7) triangle group is generated by the conjugates of
(/4354)2; indeed if ao = (A3B4)2 and bu = A~*a0A, then the elements fl, = B"'a()B' and
b, = B~'b0B'(foT 0 < / < 6 ) generate this normal subgroup, subject to a single defining
relation

aob2
{a^b(yasbo{a4^b4a3b';xa2

{b2a^a^b^a(,b^a^b5a4b^a3
xb3,a2b4

xa^bx = 1.

This time the conjugates of the generators by A are as follows (see [7, §5]):

bA = a6,

b4=b;]a5,

bA = b2'a2b5,

The insertion of the extra relation (Y4 3 5 4 ) 4 = 1 is equivalent to forcing any/all of the
a, and 6, to have order 2, and doing so gives the following:

(1) 1 = (al)A = (aVb3)
2 = [a3, b3), so [ah b,] = 1 for all /,

(2) 1 = (a2
5)

A = (&2~ V ) 2 = [°2, a6], so [ah bi+3] = 1 for all i,
(3) 1 = (bl)A = (b2

xa2b5)
2 = a2

2(b2b5)
2 = [b2,b5], so [bhbi+3] = 1 for all i,

(4) 1 = K bo]
A = [bo, bV] = [bo, b6], so [b,, bl+1] = 1 for all i,

(5) 1 = [bo,b3]
A = [bt\bEW] = [be,a4], so [a,,bi+2] = 1 for all i,

(6) 1 = [b4, bo]
A = [bjla5, bil] = [a5, b6], so [a,, bi+l] = 1 for all i.
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Now define «, = [a,-,«,+,] and v, = [a,, bi+5] for 0 ^ / ^ 6. We obtain further:
(7) 1 = [b3, b6]

A = [bo]a4\a3
i] = a4boa3boa4a3 = a4[b(h a3][a3, a4]a4, so [a3, b()] =

[b0, «3]~' = [fl3, a4] and therefore [a,-, bi+4] = u, for all /,
(8) l = [bub4]

A = [a6,bJla5] = a6a5b5a6b5a5 = as[as,a6)[a6,bs]a5, so [a6, b5] =
[a5, a6 ]" ' and therefore [a,, fc,+6] = M,~+6 for a l l ' ,

(9) 1 = [b5,bi]A = [b2
]a2bs, a6] = [a2bs, a6] = b5a2a(la2b5a(, = bs[a2, a6][a6, b5]b5, so

[«6, a2] = [a2, a 6 ]" ' = [a6, b5] = [a5, a 6 ]" ' and therefore [a,-, a1+3] = wf+e for all i,
(10) 1 = [b6, b2]

A = [a3\ b3
laolbo] = [a3, aobo] = a3bQaoa3aobo = bo[bQ, a3][a3, aQ]b0,

so u2 = [a(), a 3 ]" ' = [a3, a0] = [b0, a 3 ]" ' = [a3, b()] = u3 and therefore the «, all coincide.
Letting u = u, (for any /), we find also:

(11) uA - [a4, a5]
A = [bj\b2

lae '] = [b5, a6] = [a6, &5]~' = u5 = u, so u is centralized
by both A and B (and therefore by every element of the group),

(12) u = uA = [a(), b4]
A = [bo, bj]a5] = [b0, bs] = [65, bo]'\ so [b,, bi+2] = u~x for all i,

(13) u=uA = [a2,b6]
A = [ax \a3'] = [aua3], so [a,,a,+2] = u for all i,

(14) u = uA = [a6,/>3]
/1 = [a3

xb3,6(7'aj'] = b3a3a4bl)a3b3boa4 = a3b3a4b3boa3b()a4

= fl3fl4[fl4, Z>3][6o, a 3 ] [ « 3 , a4]a4a3 = a3a4ujlu3]u3a4a3 = a3a4u~la4a3 = M ~ ' , S O M 2 = 1 ,
(15) u = uA = [b2, b4]

A = t&j'ao'&,„ fcj'a5] = boaob3a5b5b3aob()b5a5 = aQb3asb5b3aabsa5u

= a{)b5b3a5b3a{)b5a5 = a()b5aob3a5b3b5a5u = aub5a()b5b3a5b3a5u = v()vjlu, so i>() = v5

and therefore the u, all coincide.
Finally, letting u = u, (for any /), we obtain:

(16) 1/ = [a2, ^o]'4 = Wi, b(\ = v, so v is central,
(17) v = vA = [a(),b5]

A = [b0,b2
]a2b5] = b{)b5a2b2bob2a2b5 = bob5a2b()a2b5u =

b()a2b()a2 = v~\ so v2 = 1, and the identical relation gives

(18) 1 =

= a()b2af,bfla5b()a4b4a3b5a2b2a[b3aobt)a6a5b5a4bf)a3b3a2b4a]v

= a()b2a6bf,a5bi)a4b4a3b5b2alaobi)a(<a5b5a4bf,a3b4a]v

= a()b2a(,be,a5b()a4b4a3b5b2a()b0a(,a5b5a4bf)a3b4u

= a()b2a(,b(,a5b()a4b4a3b2a()boa(,a5a4b(,a3b4uv

= at)b2af,bfla5b{)a4b4b2a{)b{)a(,a5a4b(,b4uv

= a()b2a6b6a5bi)a4b2a0b()a(ta5a4b(,u

= a()b2a6b2a()a6uv

that is, v = 1.
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As the commutators of all possible pairs of the a, and b, are now accounted for, it
follows that in the group (A,B \ (AB)2 = (A'XB)3 = B1 = (A3B4)4 = 1), the conjugates of
(A3B4)2 generate a normal subgroup whose derived group is central and cyclic (generated
by M), of order 2. This, together with the coset enumeration described in Section 2 to
verify the order, completes the proof.

PROPOSITION 3.3. The group (A,B \{ABf = (A~[B)3 = B1 = (A7B6)2 = 1) is a non-
split extension by L2(l) of an elementary Abelian group of order 26.

Proof. First the relations imply BA*B~[ = BAA^6 = A-lB'[A7B6 = A'^B6)2 =
A~*, so that B inverts A* by conjugation, but then of course A* = B7A*B~7 = A~*, so in
fact A* is central. This in turn implies that As is trivial (as shown by Leech in [6], or by the
same sort of argument as in the two proofs above, using the information supplied in
[7, §4]). On the other hand, if /I8 = 1 then clearly (A7B6)2 = (A~lB~])2 = 1, and so the
relation (A7B6)2 = 1 is equivalent to A* = 1 (given the three initial relations (AB)2 =
(>4"'fi)3 = B1 = 1). In particular, the result now follows from [10].

4. Further computational results and final comments. The most difficult of the four
cases Leech asked about is that of (A3B2)5. As he remarked in [7], the group obtained
from A(2,3, 7) by inserting this word as a fourth relator has L2(29) as a factor group. But
it turns out also to have another simple group as a factor group, namely the group /,; see
presentation 15.7 in [1], noting that A3B2 = (y~]xyx)3y~]x. In particular, if this group is
finite then its order is at least 12 180 X 175 560, that is, 2 138 320 800. On the other hand of
course it may be infinite, however we have not been able to show this, despite several
attempts.

Similarly in the case of (A9B2)2, both L2(113) and 7, turn out to be quotients. In fact
it has the group G3'1-™ = (x,y,t | x2 = y3 = (xy)1 = t2 = (xt)2 = (yt)2 = (xyt)w = 1) as a
quotient, for in this group 1 = (y~lxt)i9 = (y~xxty~xxtfy~xxt = (y~^xyxfy~^xt and thus
A^B2 = (_y~'xyx)9y~1.): = /, which has order 2.. It is still unknown, however, whether or not
the group G3 7 ' 9 is finite!

On the other hand, the group (A, B \ (AB)2 = (A~xBf = B1 = (/15B6)3 = 1) is easily
shown to be infinite: it has the extension of a 6-generator free Abelian group by the
simple group L2(7) as a quotient. To see this, let a{) = A* and a, = B~'a0B' for 1 < / <6,
these being generators for the (unique) normal subgroup of index 168 in A(2,3,7),
given by Leech in [7, §4]. Then (ASB6)3 = (A5B~])3 = A4AB-]AA4B~]A5B-] =

BA4B-l=a{)a;]a^a6 (noting here that BA^BA^B^AB'1 =
= BA~^af,AB~x = Ba^a^B~x =a^a^\ by Leech's own calcula-

tions in [7]). It follows that the relation (A5B6)3 = 1 is a consequence of the relations
[a,-, fly] - 1, which are enough to define the sort of extension described.

More easily, we can show (A, B \ (AB)2 = (A~]B)3 = B1 = (AkBy = 1) is infinite for
all k>6, for in each case here the fourth relation (AkB6)3 = l is a consequence of
Ak+3 = 1: if /\*+3 = l then (AkB*)3 = (A~3B-')3 = (A~2BA)3 = A-\A~XB)3A = 1.
Similarly, for all k > 8 the group (A, B \ (AB)2 = (A~XB)3 = B1 = (A'B6)2 = 1) is infinite,
as (AkB())2 = (A-]B~])2 = 1 whenever Ak+X = 1.

Also when the fourth relator is (A2B4)7, the group is infinite, but for slightly different
reasons. In this case the group has a subgroup of index 42 (generated by AB, B2AB~2AB,
B~3A2B2AB-2AB~3 and B~3AB'2AB~3AB-2A2B~2AB-3AB3AB"]) with an infinite
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cyclic quotient. Such a subgroup can be found using the low index subgroups algorithm,
and its Abelianization determined by the Reidemeister-Schreier process.

Undoubtedly there are other examples where the group is infinite—indeed one would
expect it to be so in all but a few cases where the fourth relator is a proper power—and
methods such as those described in [4], [5] and [11] are most likely to be useful in this
respect. What is perhaps surprising is the number and type of finite examples that arise,
especially those direct products and soluble-by-simple extensions we have found.
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