
THE MULTIPLIER THEOREM FOR DIFFERENCE SETS 
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In a recent paper (5) Newman proved the following theorem: if D is a dif­
ference set in a cyclic group G and n = q is prime, then q is a multiplier of D. 
U n = 2q and (v, 7) = 1, then g is a multiplier of D. The purpose of this note 
is to point out that a stronger statement than the first part was proved in (1 ), 
to remove the restriction (v, 7) = 1 in the second part, and to give again and 
make some comments about the proof of the theorem which asserts that a 
prime divisor of n is a multiplier of D if prime to v. 

Let G be an abelian group of order v. A subset D of G of order k is a difference 
set if every g Ç G, g ^ e, can be represented in precisely X ways as a difference 
of two elements in D. Equivalent definitions are 

(1) ^ %(g) = Vn> n = k — X, x any non-principal character, 
I Gtg I 

(2) £ ^ « + » = X' h*e, 
D 

where yg = 1 if g Ç Z>, 3^ = 0 otherwise. For any automorphism a of G, g £ G, 
o-(D) + g is a difference set if and only if D is. If <r(D) + g = D, a is a multiplier 
of Z>. If (/, u) = 1, the integer / is a multiplier if <rz, defined by <rt(g) = tg, 
is. We write, as in (3), %(P) f° r Hjg x(g). 

A rephrasing of the definition of difference set is as follows: let D denote the 
element of the group algebra of G, ^D g, and let D~l be J^D g~l. Then in the 
group algebra of G we must have DD~l = ne + \G} {G = 2<?g). 

In (1), Hall showed that if G is cyclic, m \ n and for any prime p dividing m 
there is a j such that pj = £ (mod z;), then ^ is a multiplier of D if (̂ , v) = 1, 
m > \. This theorem was generalized by Menon in (4) to any abelian group G. 
The restriction m > \ appears unnecessary. (For example, in (2) E. Lehmer 
showed that the theorem is true for all known residue difference sets.) 

The formula 

k(v - 2k) + 1 
n — X = : 

y — 1 
shows that n > X if we choose J9 so that 2k < v (by taking the complement of 
D if necessary). Thus Hall's theorem shows that if n = q\ q a prime, (g, v) = 
1 implies that g is a multiplier (a stronger statement than the first part of the 
theorem in (5)). 
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T h e proof of the multiplier theorem, as in (1 , 3, 4, 5) , may be broken up into 
two s teps: if G is an abelian group, D a difference set, form Da(D)~l — XG — 
Y,&gg m the group algebra of G ; here a (D) ~l = Y,D(?{g)-1. The first s tep involves 
showing t h a t only one of the ag is not zero; the second consists of concluding 
t h a t D = a(D)go for some go in G, and is a straightforward computat ion (multi­
ply both sides by <r(D) and simplify). We shall be concerned only with the first 
s tep; we remark a t this point t h a t the proof of the first s tep in (5) is almost 
isomorphic to the one in (1) (the isomorphism arising from the isomorphism 
between the group algebra of the integers (modz;), the ring Z[X]/(XV — 1), 
and the ring of cyclic matrices of order v with integer coefficients). 

The element of the group algebra of G constructed above, J^agg, has the 
proper ty t h a t if x is any character of G, |2&<7x(g)| = n- (This is t rue if x is 
non-principal because then x(G) = 0> and f ° r the principal character , 
XQ(PV{JD)~1 — XG) = k2 — Xv = n.) This is equivalent to the equations 

(1) 2 X = »» 
^agag+h

 = 0> h 9^ C 

I t is clear from (1) t ha t if all the ag are > 0 , all bu t one must be 0. 
We shall show t h a t if G is abelian and t, m are as in the s ta tement of Hall ' s 

theorem, m\ag for all g. The automorphism a = a t leaves invariant all the 
prime ideals dividing m in the field of z;th roots of 1. Therefore for any character 
X, the prime ideals which divide m in x(crZ>) are the same as those in x(D), and 
m\x(D)x(D) implies t h a t rn\x(P)x(<rD). By the orthogonali ty of characters, 

v x \ o / 

Now m E a j x ( g ) fo r all x> because J^ag = n and for non-principal x» H&gX(g) = 
x(P)x{?D). Since (m,v) = 1, m\ah for all h. ag was constructed as an integer 
> — X, and m > X implies ag > 0. (This is a somewhat shortened version of the 
proof in (3).) If a prime p divides n and v bu t divides n to a higher power 
(v = pav\, (y1} p) = 1, pa+b\n, b > 0) and if in addition t = pj (mod v±) for some 

j , we may assert t ha t ph\ag for all g. The automorphism a need not be of the 
form at, b u t we mus t know tha t m\xiP) x(vD)-

I t is easy to construct examples of integers ag which satisfy (1). For example, 
if f7 = 1, f ^ 1, we have 2 = (f + f2 + f4) (f + f2 + r4)- Now 

(f + r2 + r4)2 = r + r2 + 2r3 + r4 + 2f5 + 2r6. 
T h e sum of the coefficients in this expression is 9. Subtract ing Xo f *» w e S e t 

- 1 + f3 + f5 + f6 and therefore the integers (at) = ( - 1 , 0, 0, 1, 0, 1, 1) 
satisfy (1) with n = 2, v = 7. 

Several years ago I remarked to Professor Hall t ha t to conclude the multi­
plier theorem by the preceding proof it was necessary to show tha t there is 
no set (ag) satisfying (1), such tha t the ag arise from the difference set as 
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an = HLg ygy°(g-h) ~ X; Professor Hall emphasized the importance of the second 
condition. 

We shall now show that if n = 2qa, a odd, q prime, {q, v) = 1, q is a multi­
plier of D if G is abelian. Proceeding as before, we find qa\ag, ag = bgq

a. Then 
£^0 — 2, ^bgbg±n = 0 iî h 9^ e. This implies £ ^ 2 = 4; either one ^ is 2 and the 
others all 0, in which case we conclude as before that g is a multiplier, or three 
of the bg are 1 and one is — 1. A computation, such as in (5), shows that 
7\v and that Da{D)~l - \G = h(-e + g + g2 + g4), with h, g £ G, g7 = e. 
(A simple approach to this computation is to verify that all the correlations in 
(1) are 0.) This is done in (5) under the assumption that G is cyclic. We now 
show that this case cannot arise. Since the exponent of q in n is odd, and 7\v, 
q must be a square (mod 7). Let x be a character of G of order 7 such that 
x(g) 7* 1. Then x(D<r(D)-i) = x ( A ) ( _ x + f + f 2 + ^ w i t h f a p r i m i t ive 
seventh root of 1. Thus x W x ^ P ) " 1 ) = xW(f 3 + f6 + f5)2, and since 
f + f2 + f4 generates a prime ideal in the field of seventh roots of 1, we must 
have x(D) = (f3 + f6 + f5)^> with «J a unit (a root of 1 since then \w\ = 1). 
But since <xq(^ + f6 + f5) = f3 + f6 + f5 if # is a square, xiP^D)~l) = 
x(P)x(<rD~l) would have to be divisible by 2, which shows that this solution 
is impossible. The proof applies to n = 2wqia\ qt distinct odd primes, / = gf

&» 
(mod v), provided H s a square (mod 7) if 7\v (which must be the case if at least 
one of the at is odd). 

There are no known counter-examples to the general multiplier theorem 
(q\n, (q, v) = 1, q prime implies g is a multiplier). It seems likely, however, 
(cf. 2) that a general proof must go deeper into the structure of difference sets. 
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