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Abstract. Over the last two decades, strong gravitational lensing has emerged as a potential
method for studying the nature and distribution of dark matter on sub-galactic scales. In addi-
tion to the main lens substructure, line-of-sight dark matter haloes contribute greatly to the
subtle perturbations of lensed images. Line-of-sight haloes, unlike dark matter subhaloes, imprint
distinct anisotropic and quadrupole signatures in the maps that depict the divergence and curl of
the effective deflection field, respectively, giving rise to quadrupole moments of the image-plane
averaged two-point correlation function of these maps. In terms of central density evolution and
dark matter halo distribution, the shapes and amplitudes of the two-point function multipoles
alter dramatically in the presence of warm dark matter and self-interacting dark matter. This
method, in conjunction with upcoming large-scale surveys, provides the prospect of improving
the constraints on dark matter at a critical time in strong gravitational lensing research.
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1. Introduction

Dark matter plays a critical role in the hierarchical structure formation in the classic
cold dark matter (CDM) model, where dark matter is spread into haloes with a wide
range of masses. While the largest haloes are known to contain clusters and galaxies and
hence are luminous, the smallest haloes have a relatively Weak gravitational potential
to hold gases and thus are dark. The investigation of such dark haloes, particularly on
small distance scales, might give answers to the inadequacy of the Lambda-CDM model’s
success deep in the non-linear regime.

Strong gravitational lensing is a unique method for studying dark matter haloes at
sub-galactic distance scales. Dhanasingham et al. (2023a) pointed out that line-of-sight
dark matter haloes located between the lensed source and the observer produce a distinct
anisotropic signature in the two-point correlation function of the lensing deflection field
when considering the collective effect of multiplane gravitational lens planes. I summarize
here this anisotropic correlation function approach presented by Dhanasingham et al.
(2023a) as a potential probe of dark matter, as well as how this function behaves in the
presence of different dark matter physics, as discussed in Dhanasingham et al. (2023b).

2. Effective Multiplane Lensing

Photons are deflected repeatedly by dark matter haloes as they travel across the
Universe from a background source to an observer. This multiplane lensing is often han-
dled using a recursive technique that involves solving a lens equation for each lens plane
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Figure 1. Divergence (left) and curl (right) of the effective deflection field for a CDM model,
incorporating contributions from subhaloes (SH) and line-of-sight haloes (LOSH). On the left,
line-of-sight haloes seem deformed in the angular direction, although subhaloes are mainly cir-
cular, and on the right, these line-of-sight haloes are accompanied by quadrupolar structures,
whereas subhaloes contribute nothing to this map. Figure from Dhanasingham et al. (2023b).

(Blandford & Narayan 1986; McCully et al. 2014). Lensing, on the other hand, is intrin-
sically a two-dimensional map from the source plane to the image plane. This map may
be written as a pure gradient of some scalar lensing potential in the single-plane case.
Because of the nonlinear coupling between the multiple lens planes, this map is no longer
a pure gradient for multiplane lensing. Dhanasingham et al. (2023a) thus proposed a
novel approach named “effective multiplane lensing” that took into account the collec-
tive influence of all the lens planes in the strong lens system, where one scalar (φeff) and
one vector (Aeff) effective potential were included to write down the effective deflection
field

αeff(x) = ∇φeff(x) + ∇×Aeff(x), (1)

and thus the lens equation

u(x) = x−αeff(x), (2)

where u and x are the source plane and image plane coordinate systems, respectively. This
decomposition of the effective deflection field is based on Helmholtz’s theorem. Without
any approximation, the two effective scalar and vector potentials encode the full nonlinear
multiplane lensing map from the source plane to the image plane. In this terminology, the
two forms of two-dimensional projected mass densities are defined as κdiv ≡ 1

2∇ ·αeff − κ0
and κcurl ≡ 1

2∇×αeff · ẑ, taking into account the divergence and curl of the effective
deflection field (Gilman et al. 2019; Çaǧan Şengül et al. 2020; Dhanasingham et al. 2023a).
To distinguish the collective effect from dark matter haloes, the main lens convergence
κ0 is deducted from the κdiv equation. Figure 1 depicts the κdiv and κcurl for a CDM
model.

As seen in the left panel of Figure 1, Line-of-sight haloes appear stretched in the tan-
gential direction and generate arc-like patterns due to the distortion on their deflection
field caused by the main lens due to the non-linear nature of multiplane gravitational

https://doi.org/10.1017/S1743921323004866 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921323004866


Dark Matter Microphysics Through Strong Lensing Anisotropies 65

lensing. While these distortions contribute anisotropic signals to the κdiv map, sub-
haloes still seem circular and hence stay isotropic in the κdiv map. When comparing
the κdiv and κcurl maps, one can see quadrupolar patterns in the right panel at the
sites of line-of-sight haloes. These anisotropic and quadrupolar fingerprints, as proposed
by Dhanasingham et al. (2023a), can be utilized to identify line-of-sight dark matter
haloes from the main lens substructure and study dark matter microphysics of these
haloes. Dhanasingham et al. (2023a,b) proposed a method for capturing the useful infor-
mation encoded in these signatures based on the two-point correlation function and its
breakdown into multipoles, as described in the next section.

2.1. Two-point Correlation Functions and Multipoles

As previously noted, the existence of line-of-sight haloes causes a noticeable anisotropy
between the tangential and radial directions in the divergence of the effective deflection
field and the quadrupolar patterns in the curl of the deflection field. Because of these
anisotropies and quadrupoles, the image-plane averaged two-point functions of the κdiv
and κcurl fields have non-vanishing quadrupole moments (Dhanasingham et al. 2023a,b).
The two-point function for a given κ (represents either κdiv or κcurl) is denoted as:

ξ(r) =
1

A

∫
A

d2r1
[
κ(r1) − 〈κ(r1)〉 ] [κ(r2) − 〈κ(r2)〉 ], (3)

where r1 and r2 = r1 + r are the position vectors of two points on the map connected
by vector r, and the A is the area of the image where the correlation is computed.
The multipole decompositions for the two-point functions of the κdiv and κcurl maps are
given by

ξdiv,	(r) =
2 − δ	0
π

∫ π

0

dθ ξdiv(r, θ) cos(�θ) (4)

and

ξcurl,	(r) =
2

π

∫ π

0

dθ ξcurl(r, θ)Aθ sin(�θ), (5)

respectively. Here θ is the angle between r and radial direction and δij is the

Kronecker delta. The parameter Aθ =

{
+1 0≤ θ < π

2 ,

−1 π
2 ≤ θ < π

in equation (5) captures the

useful information hidden in the odd-parity structure in the κcurl map, as detailed in
Dhanasingham et al. (2023b).

Figure 2 depicts the multipole decompositions of the two-point correlation function of
the projected mass densities κdiv and κcurl for a population of CDM subhaloes and line-
of-sight haloes following this approach. The statistical features of the main-lens subhaloes
are completely represented by a monopole (�= 0) term (showing no anisotropy), but the
line-of-sight haloes contribute to both the monopole and the quadrupole (�= 2) moments
as shown in the left panel. This quadrupole moment represents the anisotropies in the
deflection field perturbation induced by line-of-sight haloes between the tangential and
radial directions. Using Fisher forecasting, Dhanasingham et al. (2023a) pointed out
that present space-based telescopes and future extremely large telescopes may identify
the quadrupole signal. Because the main lens substructure makes no contribution to the
κcurl map, the non-zero quadrupole moment presented in the right panel solely reflects
the statistical features of the line-of-sight haloes (Dhanasingham et al. 2023b).
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Figure 2. Multipole moments of the two-point correlation function of a CDM model’s κdiv (left)
and κcurl (right) fields. On the left panel, the monopole is formed by both the line-of-sight
haloes and the primary lens substructure, but the non-zero quadrupole is formed only by the
line-of-sight haloes. The non-zero quadrupole moment in the right panel is entirely due to the
line-of-sight haloes.

3. Multipoles and Dark Matter Microphysics

Dhanasingham et al. (2023b) investigated the use of two-point function multipoles as
a probe of dark matter from two perspectives: first, they investigated how the shapes
and amplitudes of multipoles change with the evolution of the central density in self-
interacting dark matter (SIDM) haloes, and second, they investigated how the abundance
of dark matter haloes affects the multipoles in warm dark matter models. I describe their
findings in this section.

3.1. Self-interacting Dark Matter (SIDM)

By enabling dark matter particles to interchange energy and momentum, self-
interactions can radically modify the internal dynamics of haloes. Initially, a Navarro-
Frenk-White (NFW) (Navarro et al. 1996) halo has a high temperature close to the
outer skirts, so heat flows inward and particles flow outward due to dark matter particle
self-interaction until a low-density isothermal core forms, and this core, with its high
temperature relative to the outer skirts, now favors an outward heat flow. The isother-
mal core eventually begins to shrink, resulting in a sharp density cusp. When compared
to cored haloes, these core-collapsed haloes serve as excellent lenses. The number of
core-collapsed haloes grows as the self-interaction cross-section increases, but the central
densities of cored haloes drop due to the high rate of outward mass flow.

The correlation function multipoles of the κdiv and κcurl maps for SIDM models are
shown in the left panel of Figure 3 as a function of the self-interaction cross-section,
σ(∝ σ0). When σ is small, cored haloes dominate the amplitudes of the multipoles of
the two-point functions, resulting in a lower relative amplitude than the CDM model.
As σ increases, subhaloes can begin to core-collapse, resulting in a steeper and stronger
monopole (ξdiv,0) for lower r values, but line-of-sight haloes are still cored, resulting in
comparatively suppressed quadrupole (ξdiv,2) compared to the CDM model. Subhaloes
and line-of-sight haloes both experience core-collapse as σ further increases, causing ξdiv,0
and ξdiv,2 to grow large and steep at small r values. In addition, due to the core-collapsed
line-of-sight haloes, quadrupole, ξcurl,2, exhibits a slight amplitude increase at small r.
As a result, it is obvious that the monopole and quadrupole moments of the correlation
function multipoles could be used to investigate dark matter self-interactions.
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Figure 3. The monopole (top panel) and the quadrupole (middle panel) of the two-point
correlation function ξdiv, and the quadrupole (bottom panel) of the ξcurl function for SIDM
(left panel) and WDM (right panel) models. The coloured regions represent the 68% credible
intervals. The amplitude and shapes of the multipoles are principally determined by the evolu-
tion of the central density in SIDM models and the abundance in WDM models. Figure from
Dhanasingham et al. (2023b).

3.2. Warm Dark Matter (WDM)

The right panel of Figure 3 depicts the correlation function multipoles of the κdiv and
κcurl maps for three WDM models. As the characteristic half-mode mass (mhm) grows in
WDM models, the abundance of dark matter haloes diminishes because free-streaming
effects erase the structure below mhm. The relative amplitudes of the multipoles fall as
mhm increases at small radial distances, reflecting the suppressed abundance of small
haloes. The difference in amplitudes is small over large radial distances because the
massive haloes that dominate these scales are less impacted by free-streaming effects.
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As a result, the combination of quadrupole and monopole moments includes crucial
information on the physics beneath the minuscule dark matter haloes. Observing it might
put our traditional theory of structure formation to the test.
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