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SNOW PRESSURE ON RIGID OBSTACLES 

By DAVID MCCLUNG'" 

(Geophysics Program, University of Washington, Seattle, Washington 98195, U.S.A.) 

ABSTRA{:T. In this paper a continuum mechanical formulation of snow pressure is given. The snow 
pressure against retaining structures on slopes is considered in two separate parts: (1) the sta tic component 
due to the regression of transverse expansion as discussed by Haefeli, and (2 ) the dynamic component due 
to the interruption of the creep (internal deformation) and glide (slip of the entire snow cover over the 
ground). Snow-pressure calculations made using the non-linear viscous constitutive equations given by 
McClung (in press) are given for the plane strain-rate problem of a rigid barrier on a snow-covered slope. 
These calculations are compared with the previous formulation of snow pressure given by Haefeli for the 
expec ted range of boundary conditions for the structure and for the snow- earth interface. The results 
show that the original formulation by Haefeli gives a dynamic component of similar magnitude to the 
present calculations. Substantial differences are apparl'nt when the up-slope distances for inOterruption of the 
creep and glide processes are compared. 

REsuME. Poussie de la neige sur des obstacles rigides. Une formulation mecanique continue de la pression 
due a la neige est presentee dans cet article. La poussee due a la neige sur des structures de soutenement 
positionnees sur des pentes est consideree on deux parties separees: (1) la composante statique due a la 
regression de I'expansion transversale comme Haefeli I'a discutee et (2 ) la composante dynamique due 
a I' interruption du fluage (deformation interne) et du glissement au sol (glissement de I'ensemble de la 
couverture neigeuse sur le sol ). Des calculs de poussee de neige sont effectues en utilisant les equations 
constitutives non-lineaires et visqueuses proposees par McClung (sous presse), pour le probleme de deforma
tion plane d 'une barrihe rigide sur une pente couverte de neige. Les calculs son t compares avec la formula
tion anterieure pour la poussee des neiges de Haefeli, dans les cas de conditions limites que I'dn peut supposer 
sur la structure et sur la surface de contact neige- sol. Les resultats montrent que la formulation origin ale 
de Haefeli predit pour la composante dynamique un ordre de grandeur semblable a celui des presents 
resultats. Des differences substantielles sont apparentes quand on compare les distances en amont sur 
lesquelles sont interruptees le f1uage et le glissement. 

ZUSAMMENFASSUNG. Schneedruck an starren Hindernissen. Es wird eine kontinuierliche mechanische Formu
lierung zur Berechnung des Schneedruckes prasentiert. Der Schneedruck gegen Verbauungen an Hangen 
wird in zwei gesonderten Teilen errechnet: (1) ein statischer Anteil, der durch die Behunderung der 
Querdehnung erzeugt wird , wie dies Haefeli diskutiert, und (2) ein dynamischer Anteil, der durch Abbruch 
des Kriechens (interne Verformung) und das Anhalten des Gleitens (Abrutschen der ganzen Sc4needecke 
uber den Hang) erzeugt wird. Mittels rheologischer, nicht linearer Grundgleichungen von ° McClung 
(im Druck) wird der Schneedruck gegen eine starre Sperre an einem schneebedeckten Hang fur den Fall 
ebenen Dehnungszustandes errechnet. In dem Bereich von Randbedingungen, die infolge der Sperre 
und Gelandeoberflache zu erwarten sind , werden die Bcrechnungen mit denen nach den friiheren Formeln 
fur Schneedruck von Haefeli verglichen. Es stellt sich heraus, dass die u rsprungliche Formulierung von 
Haefeli dynamische Druckkomponenten von ahnlicher Grossenordnung wie die vorliegende Formulierung 
ergebefl. Wesentliche Unterschiedt; erscheinen, wenn man die ermittelten Stauchungsstrecken oberhalb 
der Sperre vergleicht. 

NOMENCLATURE 

D stagnation depth 
g acceleration due to gravity 
h snow depth measured vertically 
p dynamic component of pressure 
U component of creep velocity parallel to the slope 

UA component of creep velocity parallel to the slope, at the top of the snow-pack 
Uo glide velocity at the ground 
v component of velocity perpendicular to the slope 
x coordinate axis parallel to the slope 

x' back-pressure zone length 
z coordinate axis perpendicular to the slope 
Cl slope angle 

• Present address: Norges Geotekniske Institutt, Oslo 8, Norway. 
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creep angle 
effective bulk viscosity 
effective shear viscosity 
snow density 
longitudinal stress 
first invariant of the stress tensor 
average shear stress a t the base of the snow-pack 
shear stress 

INTRODUCTION 

A calculation of the snow pressure exerted against rigid obstacles on snow-covered slopes 
may be thought of as having two components. The first part is the calculation of a static 
component due to the regression of tranverse expansion as sugges ted by Haefeli (Bader and 
others, 1939). The second component is the calculation ofa dynamic part of the pressure due 
to the interruption o f the viscous processes of creep (internal deformation ) and glide (slip of 
the entire snow cover over the ground). In order to calcula te the dynamic component of 
pressure from a continuum model, two constitutive equations must be known: 

! 
( I ) the relationship between stress and viscous stra in-ra te for c reep within the snow 

cover, 
(2) the relationship between the sh ear stress at the bo ttom of the snow pack and the glide 

velocity. 

Such rela tionships have been discussed by McClung (in press, unpublished) as a result of 
m ea surements of both creep and glide in the neutral zo ne. 

The boundary condition for the re taining structu re may be regarded as lying somewhere 
between the condition for a perfectly rough surface (no slip) and that for a perfectly smooth 
struc ture (no shear stress parallel to the structure) . M cClung (in press) has pointed out that 
for the creep mechanism of glide, the fundamental m easurement , in the neutra l zone, is a 
parameter known as the stagnation d epth . When the stagnation depth is known it is possible 
to formulate the boundary condition at the snow- earth interface. Estima tes of the range 
of stagna tion depths expected from field m easurements provide the range of boundary condi
tions to be expected at the snow-earth interface. 

T he equations given by Haefeli (Ba d er and others, 1939) can be re-stated in terms of the 
t wo fundamental m ea surements in the neutral zone : the creep angle f3 and the stagnation 
d epth D . When this has been done, a direct comparison between the d ynamic component of 
pressure as calculated from the equations of Haefeli and tha t calculated from the present 
formulation is possible. 

CREE P OF WELL-SETTLE D ISOTHERMAL SNOW 

Neutra l-zone m easurements on w ell-settled iso thermal snow which is assumed to o bey a 
viscous fl ow law show that both the sh ear and vertical strain-ra tes a re independent of depth 
(Bader a nd others, 1939; McClung, in press, unpublished ). McClung has pointed out tha t 
the simplest consti tutive law for isotropic creep which is consistent with these observations is 
a two-parameter la w with the effec tive shear viscos ity fL and bulk viscosity Y) proportional to 
L" the first invari ant of the stress tensor (the bulk stress). Such a formalism provides relation
ships which are invariant with respec t to proper orthogonal coordinate transformations as 
required by continuum mecha~ ics . The precise rela tionship between the stress and the viscous 
strain-rate has no t been formula ted a s yet. Several relationships have been proposed , for 
example by Brown and others (1973), M cClung (in press, unpublish ed ) and Salm (in press). 
However, neutral-zone measurements of creep. strongly indicate that , when a two-parameter 
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constitutive law is considered, it is likely that the effective shear and bulk viscosities may be 
considered to b e proportional to the bulk stress. Accordingly, the calculations presented 
below are based on that assumption. The ratio fl-Iri is assumed to be constant in the calcula
tions since the precise form of the constitutive law is unknown. Such an assumption is not 
expected to cause a large error in the magnitude of the calculated pressures. 

FORMU LATION OF THE GLIDE-BOUNDARY CONDITION IN THE ZONE OF INFLUENCE OF A STRUCTURE 

ON A SLOPE 

] t is unlikely that the distribution of glide velocity or shear stress at the snow-earth 
interface wi ll ever be known sufficiently well for a formulation to be made of a ve locity or stress 
boundary condition in the zone of influence of a structure on a slope. The proper boundary 
condition is a relationship be tween the glide velocity and the shear stress at the base of the 
snow pack. The distribution of glide vdocity and shear stress are then to be calculated from a 
constitutive equation for glide. 

M cClung (in press) has suggested a relationship of the form 

fl-Uo 
<T) = 

D 

for the glide constitutive equation in the case where the glide m echanism is that of creep over 
rough obstacles at the base of the snow-pack. < T) is the average basal shear-stress, fl- is the shear 
viscosity, Uo is the glide velocity, and D is the stagnation depth d efined as in Figure I (Nye, 
1969). For the case where the snow is modeled as a linear, incompressible Newtonian fluid, 

z 

D 
1 

V Averaged velocity 
profile 

x 

Fig. /. A definition ofstagnation depth following Nye (1969 ). 

fl- is a constant. In that case, Equation (I) is a continuum mechanical formulation of the 
assumptions made by Haefeli in his formulation of snow pressure. McClung (in press) has 
also given an approximate equation in an attempt to account for the observed non-linearity 
in the constitutive law for creep 

where k is a constant and ~l is the first invariant of the stress tensor. The stagnation depth 
depends upon the bed topography and the d egree of wetness of the interface; this has been 
discussed in detail by McClung (in press). 
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CALCULATIONS OF SNOW PRESSURE 

Figure 2 shows the geometry used m the two-dimensional calculations of snow pressure 
on a rigid retaining structure on a slope. The calculations of dynamic component described 
here are made using the finite-element method. We assume a situation where a plane strain
rate exists and we also assume that the caiculation is made over a time interval short enough 
that overall geometry changes may be ignored. The snow-pack is assumed to be isothermal 
and have a uniform density. This is typical of the conditions which obtain during the late 
winter or early spring in the Cascade Mountains , U .S.A. when maximum snow pressures 
usually occur. Figure 3 shows the finite-element mesh (Zienkiewicz and Cheung, 1967). The 
calculations presented here assume non-linearity in both the creep and glide constitutive 
equations because we treat the effective shear and bulk viscosities as being proportional to the 
bulk stress. The ratio of the shear and bulk viscosity is assumed to be constant and has been 
defined by some field measurements made by McClung (in press, unpublished). 

z 

Fig. 2. A diagram which shows the nomenclature used in this paper. D is the stagnation depth; h , the snow depth; u, the creep 
velocity parallel to the slope; uo, the glide velocity; v, the creep velocity perpendicular to the slope; x', the back-pressure zone 
length; "', the slope angle; and {3, the creep angle. 

u=o u=O 
or 

/ V=O 1'= 0 
(_ xz FREE SURFACE 

o 5 10 15 
UPSl.OPE DISTAN:E I m 
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35 40 

GLIDE BOUNDARY CONDITION 

Fig. 3. The finite-element grid. 
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SNOW DEPTH / m 
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Fig. 4. Snow depth plotted agaillst the dynamic compOlullt of pressure. The solid lille gives the results rif a Ilumerical calculation 
(the back-pressure zone length is 28 m ). The broken line gives the result of calculations involving the equations of Haifeli 
(back-pressure zone length equals 15.5 m ) . The dot- dash line indicates the calculation for constant viscosi!>,. For all 
calculations", = 45°, f3 = 16°, and the stagnation depth = 1.13 m. The boundary condition on the structure is: 
u = v = o. 

SNOW DEPTH /m 

3·60 

2 ·88 

2 . 16 
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Fig. 5. Snow depth p lotted against the dynamic component of pressure. The solid line gives the results rif the numerical calcula
tion. The broken line gives the result of calculations involving the equations of Haifeli . The parameters used in the 
calculations are the same as those used in Figure 4 except for the boundary condition on the structure which is: u = Txz = o. 
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Figures 4- 7 show the results of some calculations of the dynamic component of pressure 
for conditions which might be expected to occur during th.e early spring in the Cascade 
Mountains, U .S.A. Snow density is taken as 550 kg m - 3, the slope angle is assumed to be 45 ° 
and the effective viscous analog of Po is son's ratio is taken to be 0.3 (this corresponds to a creep 
angle f3 of 16°) . 

SNOW DEPTH / m 
3·60 

2·88 

2·16 

1-44 

0·72 

OL-__ ~ ____ -L ____ ~~ __ L-__ ~ __ 

o 5 10 15 20 25 

DYNAMIC COMPONENT OF PRESSURE/kN m-2 

Fig. 6. Snow depth plotted against the dynamic component afpressure.. The solid line gil'es the resuits ~/ the numerical calculation 
(the back-pressure zone length is 2 I m ). The broken line gives the results of calculations involving the equations of Hae.feli 
(back-pressure zone length equals 14 m). For both calculation, 'X = 45°. ~ = 16°. and the stagnation depth = 0.215 m. 
The boundary condition on the structure is: u = l ' ~ O. 

SNOW DEPTH / m 

3 ·60 

2 · 88 

2· 16 

1.44 

0·72 

o ~ __ -L ____ ~ __ ~ __ L--L ____ L-

o 5 10 15 20 25 
DYNAM IC COMPONENT OF PRESSURE I k N m-2 

Fig. 7. Snow depth plotted against the dynamic component 0/ pressure. The solid-line gives the results cif the numerical calcula
tion. The broken line gives the results of calculations involving the equations of Haefeli . The pa.rameters used in the 
calculations are the same as those used in Figure 6 except for the boundary condition on the structure which is: u = TXZ = O. 
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These calculations were made with a computer program call ed PLANE 2 whose algorithms 
assume a condition of plane strain. The program allows the values of viscosity to be different 
for each elem ent. In addition the program has the ability to incorporate the boundary 
condition of non-linear slip by allowing input of the ratio of load to glide velocity on the 
boundary nodes of the snow- earth interface. The calculations were made by an iteration 
procedure which calculated the shear and bulk velocities during each step and used the 
calculated values in each successive iteration until convergence was obtained . This conver
gence condition was usually obtained within three or four ite rations for each calculation. 

The calculations are given for two different boundary condi tions for glide which correspond 
to stagnation d epths of D = 1.13 m (Figs 4 and 5) and D = 0 .215 m (Figs 6 and 7). The 
first of these might correspond to a glide condition in which rain and melt water wets the 
interface whereas the second might correspond to a normal steady-glide condition on a slope 
of moderate roughness (McClung, in press , unpublished) . For bo th boundary conditions for 
glide, the calculations were made for two boundary conditions at the structure . If a structure 
has a perfectly rough surface, this condition is 

u =v= o 
(corresponding to no slip). For a perfectly smooth structure the condition is 

v = T xz = 0 

(corresponding to no fri ction on the structure) . The boundary condition at the snow-air 
interface is assumed to be a free surface. The boundary condition up-slope of the barrier is 
assumed to be the neutra l-zone distribution of creep velocity. 

The static component of pressure may be taken as the neutral-zone longitudinal stress 
perpendicular to the barrier a x . Under the assumption of a constant ratio of shear to bulk 
viscosity the relationship is: 

ax = - (~~ ~::) pg< cos ~ 
= - Kopg;:, cos ~ (5) 

where Ko = 0-43 and is defined by the field measurements of M cClung (in press, unpublished ) . 
In this case , the static component of pressure varies linearly with d epth from zero at the snow
air interface to 5.9 kN m- 2 at the snow- earth interface. These values must be added to the 
calculated dynamic components of pressure in each case to yield the total snow pressure. 

COMPARISON WITH THE EQUATIONS OF HAEFELI 

It is instructive to compare the results presented here with those given by Haefeli (BadeI' 
and others, 1939). Haefeli' s equations may be re-stated in te rms of the two fundamental 
neutral-zone m easurements given by continuum mechanics: the creep angle f3 (Perla, 
unpublished) and the stagnation depth D . . 

Haefeli gives the following relationship for the up-slope zone of influence (back-pressure 
zone) : 

x ' = h [2 cot f3 (I +2 ::) cot ~ T (6) 

where Uo is the creep velocity at the ground, U A is the creep velocity at the top of the snow 
pack and h is the snow depth. The equation may be restated in terms of the geometry given 
in Figure I as 

x' = h [ 2 cot f3 ( 1 + ~~h) cot ccJ ·\ . 

Haefeli gives the dynamic component of pressure as 

p = tx' pg sin ~ (8) 
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where p is the snow density. Figures 4- 7 show comparisons of Haefeli 's estimates of the 
dynamic component of pressure and back-pressure zone lengths with the present resu lts. 
Figure 4 also shows a comparison with the case where the linear creep and glide constitutive 
equations are used. 

The results of such ca lculations indicate that the es timates of the dynamic component of 
pressure made by Haefeli are in reasonable agreement with the formulation presented here. 
Thus, Haefeli 's estimates are very useful when an es timate of the snow pressure is needed 
quickly. On the other hand, when we need to know the distribution of pressure on the 
structure, or when complicated geometries are involved, the numerical method may be 
needed. 

The estimates of back-pressure zone lengths given by the equations of Haefeli do not 
agree very closely with the presen t formulation . The apparent reason is that Haefeli arbi
trarily assumed a parabolic distribution of glide velocity and shear stress in the back-pressure 
zone. The glide velocity and shear stress calculated by the finite element m ethod lead to a 
function which approaches the es timates of the neutral zone more slowly and thus produces 
longer back-pressure zones. 

Figure 8 shows the calculated distribution of glide velocity in the back-pressure zone for 
the c reep and glide constitutive equations in both the linear and non-linear cases when the 
stagnation depth D is taken as 1.13 m. There is no difference between the linear and non
linear formulation for the zone of influence for glide in this case, because tbe constant viscosities 
chosen for the linear calculation were for the estimates at the bottom of the snow-pack in the 
neutral zone. 

GLIDE VELOCITY / nm 5- 1 

15 

10 

,. 
I 

I 

, , , 

5 10 

0-0 Final iteration, non-linear 
glide law 

.-_ . Linear glide law 

15 20 25 
DISTANCE / m 

Fig. 8. The distribution of glide veloci£y ill the bnck-prcHllre ~olle lellgth jor 1/ sll/gllnlioll del}lh oj 1.1311/ and a boundary 
condition OIl the structure of u = v = o. 

SUMMARY 

A method has been given for the calculation of snow pressure. This method stems from a 
continuum-mechanical formulation of the problem. The static component of pressure is 
equivalent to that given by Haefeli (Bader and others, 1939)' The dynamic component of 
pressure is calculated by the finite element method with the assumption of non-linear viscous 
creep and glide constitutive equations. The technique proposed here is potentially very 
powerful. Any slope geometry, barrier ge.ometry, distribution of density and distribution of 
ground roughness are easily incorporated into the calculations. The m ethod gives, in addition, 
the distribution of pressure on the structure. 
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The numerical calculations presented here show a reasonable agreement with the es timates 
of Haefeli for the magnitude of the dynamic compon ent of pressure. There is, however, some 
disagreement in the prediction of the length of the back-pressure zone. T he calculations 
indicate that the pressure is not very sensitive to the boundary condition on the structure, 
and that the dynamic componen t of pressure is sensitive to the snow- earth bounda ry condi 
tion. This agrees with field observations which sugges t that fast glide is an importa nt deter
mining factor for snow pressure . With regard to the calculations in which the larger stagna
tion depth was used , it was assumed tha t increased amounts of water from melting or ra infa ll 
affects glide by inc reasing the stagnation depth . C learly , the properties of the snow will a lso 
be affected by the presence of water. It is then be tte r to regard the calculations as a slUdy into 
the sensitivity with which the chosen model fo r the glide bounda ry condition a ffects the 
dynamic component of pressure. 

Non-linearity in the constitutive equa tions has the effect of increasing the sno w viscosity 
in the vicinity of the structure. Increase in the viscosity causes a d ecrease in the glide velocity 
near the structure as shown in Figure 8. T he m od el chosen here shows that the non-linearity 
in creep tends to increase the pressure and shift the fo rce resultant toward the bottom of the 
structure. Since the exact form of the constitutive equation for viscous creep is, a t present, 
unknown, these results are derived from the assumption of a consta nt ratio of shear to bulk 
viscosity. 
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