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"LAWS" OF MORTALITY FROM THE BIOLOGICAL
POINT OF VIEW.

By MAJOE GREENWOOD, F.R.S.

FOR some years one of my principal interests has been to study, in collabora-
tion with my colleagues, E. M. Newbold, W. W. C. Topley and J. Wilson, the
epidemiological phenomena observable in communities of mice exposed to
risk of infection. In this work we have often found it convenient to sum-
marise part of our results under the form of what we call a Life Table. We
treat the entrants to our communities as live-births and determine the rate
of mortality prevalent in the community over a certain epoch for each day
of life, in the familiar life-table form. The result has a formal resemblance to
a life table, but, from the nature of the case, it can have little or no bearing
upon the course of events in a normal community. Naturally, however, one
desired to set up some normal standard of mortality for the animal species
used and, having obtained some scanty data, one was led to speculate further
upon the biology of the so-called "laws" which have been from time to time
proposed to describe the course of mortality in man. In this paper, I have
brought together the imperfect results of such study as I have been able to
make. Their practical value, from the point of view of the description of
human mortality, is, it need hardly be said, negligible, while as a contribution
to the history of "laws" of mortality what is omitted is perhaps as important
as what is discussed. I have, however, felt justified in printing this essay in
the hope that it might be accepted as a tribute in piam memoriam of my
friend and colleague John Brownlee. The title of one of Brownlee's papers—
"The Biology of a Life Table"—was the inspiration of much of his life-work.
He approached the problem with an erudition, both biological and mathe-
matical, to which I have no pretensions and, had his power of exposition been
equal to his natural sagacity and learning, there would have been small need
of any other writer.

THE CONCEPT OF A LIFE TABLE.

A Life Table may be looked at from so many angles and may be con-
structed in so many ways that it is easy to fall into confusion as to what can
and what cannot be learned from it. Let us begin with that ideal form which
those of us whose duty it is to lecture, first describe to students. We assume
n individuals all born on the same day and all exposed from the cradle to
the grave to unchanging external conditions and we suppose them all to be
under observation until the last survivor is dead; we have, to use the German
term, a complete Order of Dying-out. Let it now be supposed that we really
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268 "Laws" of Mortality
had observed n individuals under such conditions and that n is large and the
sample typical of its "universe"; we shall, perhaps, wish to graduate the
empirical series of IJs,1 (a complete series for all values of x from 0 to that
value of x for which lx = 0), that is to say, we shall wish to replace the observed
values by values which, while not differing materially from the observed values,
have some advantage over them. The advantage in the last sentence might
be one of several kinds. It might be, for instance, that some hypothesis
adopted on, let us say, biological grounds as to the intrinsic connection between
age and mortality could be clothed in an arithmetically manageable form
and would give us values not substantially different from the observations.
Pro tanto, such a result would be a justification of our biological hypothesis.
Or, again, it might be that some assumed relation between the measures of
age and of mortality, although without biological justification, would take an
arithmetical form enabling us to determine readily some practically useful
results dependent upon the probability of survivorship, such as the values of
annuities on lives. Finally we might content ourselves with a method which
without biological affinities or indirect arithmetical usefulness still expressed
the functional relation between age and mortality with mathematical neatness
and precision.

As a matter of history, no human life table closely approximating to the
ideal has ever been used. The first life table made, that of John Graunt, of
course diverged widely from it and his method of graduation (Graunt, Chap. XI)
—for the pioneer with respect to the conception of an Order of Dying-out was
actually the pioneer of graduation—is uncertain (Greenwood, 1928). Halley's
Breslau Table was better than Graunt's but, like his, a population life table
not an Order of Dying-out. The biological interest of a Life Table, in Brown-
lee's sense, was hardly thought of two hundred years ago, but the practical
uses to which the method of that table could be put very soon commanded
attention. Hence the importance of a graduation or "law" which could
facilitate the monetary calculations to be based upon the Life Table, in days
when arithmometers were not used. That need was the motive of the first
useful hypothesis of graduation, Abraham de Moivre's. It is common form to
speak of de Moivre's hypothesis, that the decrements of lx are constant, with
a certain condescension and to be told, for instance, that "de Moivre's hypo-
thesis is only a rough approximation to the truth." By "truth" is here
meant the form of lx columns of tables constructed two or more generations
after de Moivre was dead. Let us recur to de Moivre's own account of the
hypothesis. He first notes that Halley's Breslau Table was based upon but
a few years' experience and so was "not so entirely to be depended upon as to
make it the foundation of a fixed and unalterable valuation of annuities on
lives." He then pointed out that, in Halley's table, "the decrements of life,
for considerable intervals of time, were in arithmetical progression; for in-

1 For the sake of any readers who may be unfamiliar with the notation, a short note is ap-
pended to the paper.
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stance, out of 646 persons of 12 years of age, there remain 640 after one year,
634 after two years, 628, 622, 616, 610, 604, 598, 592, 586, after 3, 4, 5, 6, 7,
8, 9, 10 years respectively, the common difference of those numbers being 6.
Examining afterwards other cases, I found that the decrements of life for
several years were still in arithmetical progression; which may be observed
from the age of 54, to the age of 71, where the difference for 17 years together
is constantly 10." That is to say, de Moivre knew that, even for Halley's
table, the lx's did not uniformly decrease in a single arithmetical progression.
He therefore contemplated composing a table of the values of annuities "by
keeping close to the tables of observation; which would have been done with
ease, by taking, in the whole extent of life, several intervals whether equal
or unequal." But, "before I undertook the task, I tried what would be the
result of supposing those decrements uniform from the age of twelve; being
satisfied that the excesses arising on one side, would be nearly compensated
by the defects on the other; then comparing my calculations with that of
Dr Halley, I found the conclusion so very little different, that I thought it
superfluous to join together several different rules, in order to compose a
single one." With respect to the assumption involved in his calculations that
the extreme limit of life is 86 years, he remarked, firstly, that Halley's ob-
servations ceased at 84; secondly, that Graunt's table gave no survivor after
86—"this was deduced from the observations of several years both in the
city and the country, at a time when the city being less populous, there was
a greater facility of coming at the truth, than at present"; thirdly, that some
Swiss tables of observation also gave the limit of life as 86. "As for what is
alleged, that by some observations of late years, it appears, that life is carried
to 90, 95, and even to 100 years; I am no more moved by it, than by the
examples of Parr, or Jenkins, the first of which lived 152 years, and the other
167. To this may be added, that the age of purchasing annuities for life seldom
exceeds 70, at which term Dr Halley ends his tables of the valuation of lives."
These quotations are from the preface to de Moivre's work. In the text
(p. 2 of third edition) he again says explicitly: " I will not say that the decre-
ments of life are precisely in that proportion (i.e. in arithmetical progression),
still, comparing that hypothesis with the table of Dr Halley, from the obser-
vations made at Breslau, they will be found to be exceedingly approaching."
In other words, de Moivre's position was that the hypothesis while not ex-
actly describing the scanty observations at his command, only diverged from
them to an extent which did not materially affect the value of the functions
he desired to calculate.

The distinguished actuary W. M. Makeham used language we might all
adopt when he wrote: "Although subsequent observations have shown that
de Moivre's attempt in the discovery of the law of mortality was made in
the wrong direction, yet the idea was a happy and ingenious one, and the
hypothesis by no means deserves the contumelious terms in which the late
Mr Morgan permitted himself to speak of it. De Moivre, we may be quite
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270 " Laws " of Mortality
sure, was as fully alive as Mr Morgan could be to the shortcomings of his
hypothesis; but he was also equally alive (which the other was not) to the
defects of the tables formed with the means of observation then existing"
(J. Inst. Actuar. XIII, 347). In the century between his work and that of
Gompertz no contribution was made to the subject which, whether from the
point of view of biological plausibility or of practical utility, was a real im-
provement upon de Moivre's "law"1.

Benjamin Gompertz (1779-1865) the son of an Amsterdam diamond
merchant of the Jewish race, and, like Boole, one of the small number of first
rate mathematicians who were wholly self-taught, takes rank with such men
as Woolhouse, Sprague and George Francis Hardy among the great masters
of actuarial science. Augustus de Morgan, one of the first to recognise the
significance of his work, said that "Had the law (i.e. Gompertz's) been pro-
pounded in the days of Newton, vitality would have been made a thing of,
like attraction" (Adler, p. 13) and was his doughty and witty champion against
attempts to deprive him of a rightful priority2. De Morgan, too, seems to
have been the first to demonstrate the convenient property of Uniform
Seniority to which Gompertz's method and its first modification by W. M.
Makeham largely owed their usefulness in actuarial practice3.

This is not the place, nor am I the person, to write a detailed account of
the reception of Gompertz's method and Makeham's modification by the
actuarial profession. I think, however, that the following is a not unfair
summary of what happened. The attractiveness of the fundamental idea, its
ease of algebraical expression, the fact that tables graduated by its help did
not materially distort the observations, and the simplification of calculations
involving annuities on joint lives which a table graduated by the Makeham-
Gompertz hypothesis introduced, gave the Makeham-Gompertz "law" a
position from which no other "law" (such for instance as those of Thiele and
Wittstein) has shown the least likelihood of ousting it4. That, in our own time,

1 While I do not fall behind Dr Singer in my respect for the memory of de Moivre, Dr Singer's
statement that de Moivre's hypothesis "was under discussion for a century, but is now accepted"
(Singer, p. 167) is, I think, benevolent rather than accurate. It may be added that Mr King's
account of the history of the subject on pp. 68—70 of the second edition of Institute of Actuaries'
Text Booh (Part 2) does complete justice to de Moivre's position.

2 See particularly the discussion initiated by Dr Morgan in the 9th volume of the Journal of
the Institute of Actuaries (Assurance Magazine). I cannot resist quoting one sentence of de Morgan's
rejoinder to Edmonds, "the process of bringing Dr Price into the paper is one which has been
repeated many and many a time. When A is charged with dealing unfairly with the writings of
B, he tries to prove—sometimes he does prove—that he has dealt just as unfairly with C " The
importance of Gompertz's work was not at once realised. Thomas Young, an admirable Crichton,
who ought to have perceived its significance, in a paper published in the Phil. Trans, for 1826
(Part 3, pp. 251-303) made a colourless reference to Gompertz's "reduction and interpolation"
of Morgan's data and proposed a method of graduation which seems to have neither theoretical
nor practical recommendations.

3 de Morgan, J.I.A. 8, 1860, 181.
* Cf. the 4th and 5th of Hardy's lectures on The Theory of the Construction of Tables of Mortality.

London, 1909.
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the hypothesis is of less practical importance than it was a generation ago is
not because a better "law" has been discovered, but because improvements
in the semi-skilled work of computation and the introduction of mechanical aids
have reduced the demand for formulae or "laws" which may serve as labour-
saving devices. What may be called the physiological interest of a Life Table,
the sort of interest which would attach to the analysis of a real Order of
Dying-out under uniform conditions, does not attach to the useful statistical
fictions which we call Population Life Tables which tell us how a human
generation would die out were it exposed from the cradle to the grave to rates
of mortality to which no generation has been exposed, or is likely to be
exposed. This criticism does not, no doubt, apply with the same force to tables
based upon office experience, particularly that of assured lives of a social
class and within a range of age with respect to which secular changes of mor-
tality are slight. But the limitation implied and the further consideration
that, to an actuary, a life table is not a subject for curious speculation but a
working tool, are sufficient to explain why, in actuarial circles, interest in
biological "laws" of mortality is lukewarm. But there are some lines of
research in which such speculations have interest. With the ultimate object of
learning how to describe, to formulate the "laws" of epidemic mortality,
Topley and his colleagues exposed animal communities to special risks of
death. The experience has covered the lives of many thousands of individual
animals (mice) and we have expressed the results both in secular terms and
also in the form of "real" life tables, actual Orders of Dying-out (subject to
a limitation to be mentioned). Here we have the evolution of mortality with
age under abnormal environmental conditions; one naturally asks what would
be the development under more favourable conditions and whether it could
be effectively described by some biologically plausible "law." Data for the
study of the Order of Dying-out of animals living under "normal" conditions
are far from numerous. For the animal interesting me, the mouse, I have at
command two rather scanty series. Raymond Pearl and his associates—
whose work on the biology of dying is of first rate importance—have provided
and analysed more extensive data for the fruit fly Drosophila melanogaster.
These "normal" series will be the, rather exiguous, basis of fact for what
follows.

First, however, we must consider with some care the physiological implica-
tions of Gompertz's hypothesis and try to see how far it is worthy of the
praise it received, that it "is based upon a physiological principle of high
probability" (Adler, 13).

Gompertz's original enunciation of his principle in the memoir of 1825
(p. 517) has been reprinted so often that it is sure to be familiar to any reader
of this paper. The paper he presented to the International Statistical Congress
of I8601 (reprinted on pp. 329-344, J. Inst. Actuar. xvi, 1872) contains his

1 It occupies pp. 454-462 of the "Programme and Report of the Proceedings etc." of the
Congress, printed in 1860.
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272 uLaws" of Mortality
definitive opinions1 and is less well-known. In this paper the author discusses
a generalisation which amounts to replacing kg0*1 by a product of four terms,
two of which are of the familiar form2, the object being to graduate the whole
life table from birth to extreme old age, which the original expression failed
to do. With these modifications I am not concerned in this paper, because,
for the animals and the range of age with which I have to deal, the force of
mortality is increasing—the complication of points of inflection does not
arise. Hence I am only interested in Gompertz's physiological interpretation
of his increasing geometrical factor, the q* of the 1860 paper (now usually
written c*). He writes: " I shall first pay attention to the force qx, which, as
q is above unity, will increase with x, and not decrease, as the density of the
air in the receiver of an air-pump, by x equal strokes of the piston, but in
indirect proportion, which I mention because the indefinite mode of expression
I by some chance used in the article of my paper in the Philosophical Trans-
actions of 1825, in the comparison I made of that force to the density of air
in the receiver which remained after x strokes, may seem to express that q*
is in direct proportion to the reduced density, which is impossible when x
increases, if q be greater than 1; and I observe that in the other forces, such as
AXe. ex, where e is less than 1, the force might be expressed properly by stating
it to be directly as the diminished density in the receiver by the strokes of
the piston. This force qx is a force to destroy life, or, in other words, a force
diminishing the effect of the forces which preserve life. But though I thought
the comparison an apt one to relieve the mind in search of a reason why the
tables introduced the expression qx, I had no wish to bind the theory of
mortality to having sprung from such a cause, for there are a variety of actions
which may arithmetically lead to the same numbers." Gompertz then repeats
and illustrates his air pump analogy. This I need not quote, for, as he says, it
is only an analogy and possibly nowadays Brownlee's chemical comparison is
more enlightening. Brownlee (p. 43) observed that the Gompertz formula
"implies that the substances or capacities on which life depends decay
according to the law of the unimolecular reaction, that is, that the amounts
present at the end of equal intervals of time can be represented by the terms
of a geometrical progression."

The reader may have perceived that there is a possibility of confusion
between individual and average, or statistical, formulae. Thus, he might urge,

1 Makeham wrote of this paper: "this paper, which I believe is very little known, was drawn
up by Mr Gompertz for the International Statistical Congress, during the preparation of his
more elaborate contribution to the Royal Society in June, 1861. It contains much interesting
matter, not included in the last mentioned paper—relating more especially to the physiological
basis of the author's theory of mortality. The omission to incorporate this matter in his later
paper arose doubtless from a fear of infringing the rule of the Royal Society against the admission
to its "Transactions" of anything previously published. That it did not arise from any wish on
the author's part to suppress any opinions expressed in the accompanying paper, is sufficiently
proved by the fact that my copy was presented to me by Mr Gompertz in July, 1861, and, there-
fore, after his paper had been read before the Royal Society" (J. Inst. Actuar. 16, 1872, 344).

2 See Appendix.

https://doi.org/10.1017/S002217240000961X Published online by Cambridge University Press

https://doi.org/10.1017/S002217240000961X


MAJOR GREENWOOD 273

while the concept of the individual life running down in terms of, say, a
particular unimolecular change, is plausible—even if too beautifully simple
to be likely to be true—Gompertz is not dealing with individuals but aggre-
gates. Thus if the law be true of the individual, then should not the force of
mortality for the aggregate of N individuals be represented not by Be? but
rather by , i=Ar

As a matter of fact such a modification was actually introduced and sometimes
figures in the literature under the name of Lazarus (Blaschke, p. 161). That
Gompertz himself was quite alive to the difficulty appears from the following:
"And to show that the formula does not require all persons of a birth to live
to the same age whatever the causes may be on which the formula depends,
suppose, instead of considering the terms kex, k'xe'x, nq" etc. as they stand in
the formula, we take a function Ap° on the supposition that it belongs to
the formula, as by substitution of the elements it could be made to express
either, as, if p be greater than 1, it might stand for q; if p be less than 1, it
might stand for e or for e'; and supposing the different individuals of a birth
were called 1, 2, 3, 4, etc., and that their portions referable to the term Apx

were Ajj)^, A2p2
x, A3p3

x, etc., all different or not from each other, which
supposition supposes only that Ap* can for all values of x be

= Atff + A2p2
x + Asp3

x etc.,

and'then it would appear that the formula does not require all individuals of
the same birth to live to the same age. Now, if plt p2, p3, etc., were all equal
to each other, the supposition would only require A to be equal to

A1 + A2 + A3 + At etc.,

without requiring Ax, A2, A3 to be equal to each other; and if p1, p2, p3 differed
so little from each other that, though they were different, some would be but
a small matter greater than some approximate value p, and some a small
matter less, in such sort that p might be approximately taken for them, it
would follow that ApF might be taken for an approximate result of the effect
qn the whole number of persons of which Lo consists, though owing to the
effect which is various on the individuals." Although Gompertz is in part
addressing himself to an unreal objection (for I do not see why anybody should
require his hypothesis to involve so simple a particular case as that of the
equality of all individual life spans) it does take account of a difficulty. We
determine from the data the mean force of mortality experienced by a group
of N persons, we find that this mean value increases geometrically with age, is
this consistent with the individual hypothesis ? In other words is it probable that

1 i=N

N • * B*c*

will be approximately equal to Bcx, where B and c are mean values?
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274 " Laws " of Mortality
Writing the former expression

v ' s (B + e() (5 +

where B and c are the means and et and t]i deviations from the means we see
that it is equal to

5c* + Be* (^ {X~ l) & + XJ*-J

_ x (x— 1) _

where the /x's are moment coefficients of c, and p's product moment coefficients
of B and c.

If, as would in practice happen, B is a positive proper fraction, the second
corrective term is likely to be the more important. It seems probable
that Gompertz's surmise that the mean values would give a sufficiently
close approximation is correct. For instance, Blaschke (p. 161) quotes
the Gompertz constants for four different life tables and these, expressed as
forces of mortality, are as follows: 0-0077 x 1-0261*, 0-0067 x 1-0164*,
0-0047 x 1-0307* and 0-0039 x 1-0282*. The greatest force of mortality is
almost double the smallest for x = 20. Now suppose a population constituted
of equal groups of individuals the characteristics of each group being the four
pairs of values of B and c, how would the real values of the forces of mortality
for x = 10 and x = 20 differ from those reached by taking the mean values of
B and c? The mean values of B = 0-00575 and c = 1-02535. The values of
0-00575 x 1-02535* for x = 10 and x = 20 are 0-007385 and 0-009486. By
direct calculation the true values would be 0-007339 and 0-009393. Turning
to the expansion, we see that all the terms except the first in each bracket

will not affect the first four decimal places. We find c~ = 0-0000279 and
c

pn = - 0-0000044825. Hence for x = 10, we must add to 0-007385,
0-007385 x 4-5 x 0-0000279 = 0-00000927186

and must subtract

1-2844 x 9-752767 x 0-0000044825 = 0-0000548539.
We have

0-007385 - 0-0000548539 + 0-00000927186 = 0-0073394,
which is correct to the number of places required. The corresponding cor-
rections for x = 20, viz. - 0-00014425 and + 0-000050285, give for the force of
mortality 0-009392, again correct. This is, of course, a mere arithmetical
illustration, but it suggests that if the individual biological law were true,
the average results—which are all we can possibly arrive at, since the dis-
persion of the individual c's and B's of the hypothesis and their frequency
function, are not open to investigation—ought not to give a bad representa-
tion of the facts. It might be suggested that we should surmount the difficulty
by fitting ab initio a sum of terms. As mentioned above, Lazarus proposed
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to do this. In Blaschke's words: "As Makeham's table only correctly re-
produces the mortality from 29-90 it was generalised by Lazarus who took
into consideration the forces of mortality relative to the individual causes of
death. If for n causes of death we have the forces of mortality

«i + hqf, a2 + b2q2
x ... an + bnqn*

we reach tf> (x) = % + a2 + ... an + bxq^ + b2q2
x + ... bnqn

x.

Hence lx = c^k^x Jc2*'x... kn"«x.
The application of this generalised form has led to the result that in all

cases lx = c.s*.*!**. V is sufficient." (Blaschke, p. 161.)
This passage does not do historical justice to either Gompertz or Makeham,

both of whom added generalising terms to the formulae which go under their
names. The reason why their extended formulae are forgotten is that the
modifications deprived the "laws" of the practical advantages they possessed
for actual computation. There is also, I think, a logical objection to identifying
Gompertz's individual resisting powers with the mortalities assigned to
different "diseases." It seems to me that the formal application of Gompertz's
individual hypothesis to an aggregate requires us to assume that his B and
c are continuous variables and that the force of mortality at age x is:

SS(j)(c,B)dcdB '

This, however, is merely formal.

CONSTITUTIONAL AND ENVIRONMENTAL FACTORS OP MORTALITY.

Gompertz conceived the force of mortality as compounded of two factors,
one independent of constitution and age, the other, in the mathematical sense,
a direct function of age, its scale being fixed by the peculiarity of the individual
make-up. He did not himself (in 1825) introduce into the "law" the former
factor, that step was taken by Makeham, and the Makeham-Gompertz ex-
pression is the first acceptable formulation of what the "law" of mortality
would be if the whole chance of death were compounded of two factors in-
dependent one of the other. Were that separation credible, that is to say, if
the Order of Dying-out of any animals, really depended upon two independent
factors, one of which was wholly independent of the physiological constitution
of the individuals composing the population, the Makeham-Gompertz formula
would be the ideal biometer—as Farr would have said—of the public health
officer. Confronted with two Orders of Dying-out, say for Manchester and the
Eastern Counties Rural Districts, then if the advantage of the rural districts
were purely environmental (environmental in the man in the street's sense of
preventable or removable without resort to eugenic action) he should find
that the forces of mortality of the two life tables differed only in the A term.
As a matter of statistical fact, this is not what one finds. Some years ago,
stimulated by a paper of a German physiologist, Putter, who thought he could
make such a distinction (Putter did not use the Gompertz-Makeham formula
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276 " Laws" of Mortality
but a slightly different and perhaps less convenient one), I Makehamised
(Greenwood, 1924) a large number of life tables in order to see whether, for
instance, the improvement of adult mortality at different epochs, that is under
a (presumably) improving environment, were mainly due to a change of A1.
Up to a point, the results were not inconsistent with the hypothesis, viz., on the
whole, the A term did change much more than the term in B(f when one con-
sidered, for instance, the series of Swedish National Life Tables. But the theory
is destroyed by a few awkward facts. Thus Trachtenberg found that the gradua-
tion of the English sectional table for the Kural Districts (1911-12) required
an A term half as large again as that for London. It would require a bolder
speculator than I am to believe that rural environment is 50 per cent, worse
than that of London, and that the more favourable mortality of the country
is due to the superior constitutional qualities of the exposed to risk—although
Brownlee has used phrases respecting physiological age which might bear
that interpretation. I conclude that this easy separation of the environmental
and constitutional is far too good to be true and that we must try to be a
little clearer as to what we mean by these words.

I do not propose to epitomise here the definitions of physiological con-
stitution which have been proposed in the course of the two thousand years
during which the subject has been discussed. Some account of the Greek
doctrine will be found in my paper on Galen (Greenwood, 1921), while Giinther
(pp. 9 et seq.) and Pearl (pp. 97 et seq.) describe adequately the more intelligible
of modern hypotheses. Whether we speak of a characteristic pattern, an indi-
vidually characteristic labile chemical substance, or whatever mental picture we
please, it is not (to me) possible to separate completely in the terms of a " law "
of mortality, the constitutional from the environmental. Gompertz thought of
the rate of decay of a something characteristic of the individual. Suppose
one has a specific chemical substance undergoing change, the result will be
affected by temperature, which in the present sense is a purely environ-
mental factor. So it would be a reasonable hypothesis to argue that the
original Gompertz "law" has already its environmental factor in the B term,
that innately identical individuals brought under different environments
should die out by Gompertz's law, the c's to be identical but the B's different.
Statistically this is as close to (or as far from) the facts as the surmise that in
the Makeham-Gompertz "law" A measures environment and Be? constitu-
tion. I have found, for instance (vide infra), that two Orders of Dying-out of
mice kept under different environments were both well graduated (well, that
is, having regard to the probable errors involved) by the simple Gompertz
term. The c's differed very little, some 4 per cent., the B's enormously. But
the whole discussion is trivial, for it virtually assumes that environmental
mortality rates will be independent of age. This can seldom be literally true.
If, for instance, an Order of Dying-out could be constructed in the following
way, we should realise the condition. Of the survivors at age x, p per cent.

1 G. F. Hardy and H. J. Rothery made a similar trial (J. Inst. Actuar. 27, 1888, 179).
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are taken out by lot and destroyed, where p is constant for all values of x.
Under those circumstances we should bring into the expression for log lx a
term linear in x and the larger the p and the smaller the rate of mortality from
other causes the more nearly would log lx approximate to a straight line. On
that assumption the separation by formula would succeed. But (with certain
exceptions to be noted later) this is not the way environment operates. Suppose
for instance that the whole of the risks associated with occupations of males
or with the bearing of children in females were wholly independent of in-
dividual constitution; still, in the expression of the force of mortality, they
would not be independent of x. If, of course, we admit a relation between
constitutional make-up and liability to succumb to environmental assaults,
the importance of the correlation with x is increased, because, on, e.g., Gom-
pertz's hypothesis, the proportion of individuals with small c's (i.e. great
resisting powers) who survive to age x will be larger than the proportion of
survivors with large c's.

I conclude that, certainly for human mortality, probably for all mortality,
it is unlikely that environmental factors would be covered by a term in the
expression of the force of mortality which is independent of x. That is perhaps
a pragmatic justification of the course which, I suggested, seemed illogical of
leaving Gompertz's ground and considering the forces of mortality of separate
"causes." It might of course be that the functional relation between the
force of mortality due to a cause of death such as tuberculosis, which has a
maximum at a finite value of x, and x is really constitutional; but it is not
a priori impossible that variations of exposure independent of constitution
are the cause. That is the case for such a "law" as Thiele's. But, in practice,
we could not thus separate the environmental from the constitutional, because
the most wholehearted believer in the exposure doctrine of mortality from
tuberculosis would shy from the proposition that the constitutional factor is
entirely negligible. I now pass to the actual data.

THE " L A W " OP MORTALITY OF NORMAL MICE.

In the course of the joint work of Newbold, Topley, Wilson and the present
writer several life tables (nine so far) have been constructed showing the Order
of Dying-out of mice exposed to risk of death by infection. The work has
involved the use of many thousands of mice and although the form of the
calculations has been that of an Order of Dying-out, it does not relate to the
Order of Dying-out from birth but from the date of entry into our herds, an
unknown age, which might perhaps, on the average, be three or four months.
But within the range of life open to our inspection, three things were obvious.
First, that the actual average life span was very short, in no case much more
than 60 days. Second, that the probability of dying, qx, increased to an early
maximum. Third, that when the maximum was passed there was no regular
increase with age. These findings suggested that here the conditions were
such that the factor of ordinary mortality which is of primary importance,
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viz. that due to the increasing lability of the organism itself with increasing
age was, relatively to the external factor, quite insignificant. To take a rough
analogy, if a "life table" were constructed in terms of days at the front,
starting a card for each soldier as he entered the trenches, it is quite certain
that the influence of increasing natural age would be inappreciable upon the
graph of qx where x stood for "trench age" in days or weeks. We could study
the effects of experience at the front with complete disregard of natural age. It
seemed to us probable that this would be true for our epidemiological work.
But there was this difficulty, that we knew nothing, and by inquiry could learn
very little, about the way mice died when not exposed to heavy risk of fatal
infection. It was possible that a proper mortality table for mice might differ
very much in form from a human mortality table. A priori we did not anticipate
a fundamental difference, having regard to Pearl's work on Drosophila which,
biologically, is even more remote from man than is the mouse. Pearl—to
whose work I shall return—found that the distribution with x of lx for normal
Drosophila, on certain plausible assumptions was closely similar to that of a
human life table. To test the matter for mice two series of data were available.
The first I owe to the kindness of Dr Leonard Hill, F.R.S., Director of the
Department of Applied Physiology in the National Institute of Medical
Research, the second to the kindness of Dr J. A. Murray, F.R.S., Director of
the Imperial Cancer Research Fund.

Dr Hill carried out a research into the effects of various diets upon the
mortality and fertility of mice (see Hill, A. B., J. Hygiene, 1925, xxiv, p. 232).
The diets used were adequate and the mice used bred and reared at Hampstead
under the charge of Miss Brad. The environment of these mice appears to
have been very favourable; no epidemic broke out amongst them and the
neonatal mortality was extraordinarily low. Of 269 mice born (the numbers
are too small to admit of separate statistical treatment of the sexes) only one
died within 60 days of birth and the average duration of life was 636-5 days.
That the record is an exhaustive enumeration of all viable foetuses, that there
was absolutely no cannibalism on the part of parents (a habit which experi-
enced breeders affirm to be always found in a proportion of mice) cannot be
proved; Miss Brad is, however, sure that losses in this way must have been,
if there were any at all, very few.

We have here a real Order of Dying-out of a small but well-observed popu-
lation. In the second column of Table I are shown the actual survivors at
intervals of 50 days, in the third the Makeham-Gompertz and in the fourth
the simple Gompertz graduations; the constants were obtained by the method
of summation (4 consecutive sums of 213 days were formed). The equation
for the Makeham-Gompertz graduation was:

log lx = 2-43078 + 0-0000136z - 0-0039009 (1-006645)*,

that is an "absurd" value for the linear term—and for the Gompertz gradua-
t l 0 Q ' log lx = 2-43222 - 0-0039009 (1-006645)*.
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Table I. Hill's Normal Mice.

Ag
(in days)

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850

Observed

269
269
265
263
259
258
254
249
244
237
223
193
162
140
105
76
51
22

Makeham-
Gompertz

graduations
' -

267-2
266-7
265-8
264-4
262-3
259-3
254-9
248-8
240-5
229-1
2141
194-7
170-4
141-5
1091
76-0
45-8
22-7

Gompertz
graduations

268-1
267-2
265-9
264-1
261-6
258-1
253-4
247-0
238-3
226-7
211-5
1920
167-8
1391
1071
74-4
44-9
22-2

The two graduations differ very little and, by mere inspection, seem good.
We have for x2 respectively 1-987 and 2-483. Were it proper to apply the usual
"Goodness of Fit" test, these values would imply P's little less than unity.
But that test is inappropriate. A more satisfactory plan is to compare the
deviations in the observed g '̂s, which are the really fundamental variates,
with their respective standard deviations of sampling. This comparison is
effected in Table II. If we seek to make a summary comparison, we may,
assuming a "normal" distribution of errors, and ignoring the fact that the
reduction to unit standard deviation has not allowed for the "weights" of
the determinations of the individual standard deviations, proceed as follows.
The mean absolute deviation of a Normal Curve with unit standard deviation

/2
is KJ - = 0-798. For a sample of size 16 this will be subject to a standard error

* 77"

of 0-141. The actually observed mean absolute deviations are 1-09 for the
Makeham-Gompertz and 0-99 for the Gompertz graduation. Either might
have arisen without difficulty in sampling a "universe" characterised by
0-798 ± 0-141. The experience is a small one, but, one may suppose, the result
would have given pleasure to Gompertz or to Brownlee. Dr Murray lent me
the individual cards of female mice bred in connection with a study of the
inheritance of cancer some years ago. For my purpose, the cards of 619
females were available, but the Order of Dying-out has been followed only
from age 182 days because it appeared that the records of the first six months
of life were not exhaustive. Table III sets out the data at intervals of 50 days.
Remembering that the origin is 182 days, comparison with the Hill experience
shows that the mortality is heavier. The mean after life time at age 182 days
was for the Hill experience 466-8 days, for the Murray experience only 278-6
days (but still, of course, immensely longer than in any of our epidemic series).
These data were graduated by Gompertz's "law" with the result shown. The

https://doi.org/10.1017/S002217240000961X Published online by Cambridge University Press

https://doi.org/10.1017/S002217240000961X


280 "Laws" of Mortality
Table II. Hill's Normal Mice.

Makeham-Gompertz.

Age x
0

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800

Absolute

Gompertz.
0

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800

Absolute

Observed ±s.D. of
observed qx

0-0149 ±0-0044
0-0075 ±0-0045
00152 ±00055
0-0039 ±0-0067
0-0155 ±0-0080
00197 ±0-0096
0-0201 ±00114
0-0287 ±0-0136
00591 ±00161
01345 ±00192
01606 ±00238
0-1358 ±00295
0-2500 ±0-0355
0-2762 ±0-0449
0-3289 ±00561
0-5686 ±0-0700

mean

00149 ±0-0056
0-0075 ±0-0050
0-0152 ±00060
00039 ±00071
00155 ±00083
0-0197 ±00099
0-0201 ±0-0117
0-0287 ±0-0138
0-0591 ±0-0163
0-1345 ±0-0194
0-1606 ±00239
01358 ±0-0296
0-2500 ±0-0356
0-2762 ±0-0449
0-3289 ±0-0561
0-5686 ±00700

mean

Calculated
0-0052
0-0053
00079
00116
0-0168
00238
00337
0-0472
0-0656
00908
0-1246
0-1697
0-2287
0-3040
0-3964
0-5055

00084
0-0068
00095
00132
0-0183
00254
00352
0-0487
00671
0-0922
0-1260
01711
0-2299
0-3049
0-3975
0-5061

<i

qx qx - qx

00097
00022
0-0073

-0-0077
-00013
-0-0041
-00136
-00185
-0-0065

0-0437
00360

-00339
00213

-0-0278
-00675

00631

0-0065
0-0007
00057

-00093
-00028
- 00057
-00151
-00200
-00080

00423
00346

-00353
0-0201

-0-0287
-0-0686

0-0625

Expected value of the absolute mean by the normal curve=0-798 ±0-141

Frequencies of——---*.

Range
Over 4
3 to 4
2 to 3
1 to 2
0 to 1

Expected by
normal curve

0-001
0042
0-685
4-349

10-923

Observed
A

r s
Makeham-
Gompertz Gompertz

graduations graduations

—
2 1
7 7
7 8

tx ~9x
aQx
2-20
0-49
1-32

-1-15
- 0 1 6
-0-43
- 1 1 9
-1-36
-0-40

2-28
1-51

- 1 1 5
0-60

-0-62
-1-20

0-90

1-06

116
014
0-95

-1-31
-0-34
-0-58
-1-29
-1-45
-0-49

2-18
1-45

-1-21
0-56

-0-64
-1-22

0-89

0-9912

16-000 16 16

equation for log lx is 3-20453 - 0417749 (1-021669)*, wherein the unit of x is
10 days. The testing of concordance, by the method above suggested is shown
in Table IV. Taking the summary comparison, it will be seen that the average
mean absolute error differs but little from its expectation, the latter, since
n is 13 instead of 16, being subject to a rather larger standard error, viz.
± 0-156, than before. Again, we can hardly be dissatisfied with the graduation.
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x (days)
0

50
100
150
200
250
300
350
400
450
500
550
600
650

Age a;
0

50
100
150
200
250
300
350
400
450
500
550
600

Absolute
Expected

Murray's mice
(observed)

619
553
494
421
353
308
259
213
172
133
95
62
36
23

Table ]
Observed ±S.D. of

observed qx

0-1066 ±0-0122
01067 ±00135
0-1478 ±0-0150
0-1615 ±00169
01275 ±0-0192
01591 ±0-0214
0-1776 ±0-0242
0-1925 ±0-0277
0-2267 ±00320
0-2857 ±0-0374
0-3474 ±0-0457
0-4194 ±00581
0-3611 ±0-0782

value of the absolute

Freqi

Range
Over 4
3 to 4
2 to 3
1 to 2
Oto 1

Table III.
Murray's mice

(Gompertz
graduations)

612-1
548-9
486-3
424-9
365-7
309-4
256-9
208-9
1660
128-3
96-5
70-2
49-3
33-2

Hill's mice (taking 0 of
Murray'i3 experience=day
182 of Hill's experience and
making the Z182 of Hill = 619)

[V. Murray's Mice.

Calculated qx

01033
0-1140
01263
01393
0-1540
0-1697
01868
0-2054
0-2271
0-2479
0-2725
0-2977
0-3266

Ix-Vx
0-0033

-00073
00215
0-0222

- 00265
-00106
- 0-0092
-0-0129
-0-0004

00378
0-0749
01217
00345

619
610
600
588
581
565
538
473
410
348
278
195
139
71

1x~9x

0-27
-0-54

1-43
1-31

-1-38
-0-50
-0-38
-0-47
- 0 0 1

101
1-64
2-09
0-44

0-8823
mean by the normal curve=0-798 ±0-156.

^IPYSPIP" PIT
a"x

Expected by
normal curve

0001
0034
0-556
3-533
8-875

Observed

—
1
5
7

12-999 13

Unless we suppose that different samples of mice differ greatly in innate
biological quality—as perhaps they may—it would appear that the Murray
mice did not live out their lives under such favourable conditions as those
reared for Dr Hill. The c's of the two simple Gompertz graduations are not
widely different—less than 2 per cent.—but the \ogg terms are far apart.
I may, however, remark that it was not found possible to graduate the Murray
data on the assumption that in Makeham's A + B<f, the second term was
that of the Hill experience. To test the matter, approximate values of the
force of mortality at 50 day intervals were computed from the Murray data
and equated to A + Bcx where B(f was taken as known. The resultant gradua-
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tion was quite unsatisfactory. For reasons given already, it was not probable
that this method would succeed.

Does it follow from these results that the Gompertz formula more effectively
represents the law of mortality in mice than in men ? To answer that question,
at least in a way that is satisfactory to me, requires an experiment. After all,
our data are ludicrously sparse; we have only a few hundreds of individuals
while in the human experiences which, it is agreed, cannot be graduated by
a Gompertz formula, the basal data ran to tens or hundreds of thousands. In
the former case when the observed value is, for instance, 51 and the computed
value 44-9, the contribution to, say, x2> is trifling although the percentage
discrepancy is 13-5. A graduation giving precisely the same relative agreement
as shown in the Hill case, but based upon a hundred times as many observa-
tions would have given us a x2 n ° t of 2-486 but of 248-6. All we can fairly say
is that, considering the size of the experience, the Gompertz graduation is an
excellent one. Let us then see if a human experience, reduced to the same
scale, obeys Gompertz's rule as effectively.

I made the following experiment.
To bring the mice to the same time scale as the human experience, we note

that for the mice qx is a minimum at the beginning of life while f or> men
(English Life, No. 9) the minimum is at age 11. If we take the expectation of
life at 11 as 55 years (the mean of the values for males and females) then as
the mean expectation for mice is 636-5 days, the 55 human years are equivalent
to 636-5 mice days. Or we might take the interval which elapses in the two
cases before the survivors are reduced to 1 per cent, of the entrants (Pearl
took 0-1 per cent, in his larger data). This requires us to equate (approximately)
1010 mouse days to 81 human years. By the former 1 mouse day would corre-
spond to 0-086 human years, by the latter to 0-081 human years. Quinquennial
intervals of a human table would correspond to from 58 to 62 mouse days.
The next table (Table V) gives in the second column the actual survivors of
the mouse experience at intervals of 62 days, and in the third the lx's of

Table V.
Interval re (62
days for mice,

5 years for men)
0
1
2
3
4
5
6
7
8
9

10
11
12
13
U
15

Hill's
mice ln

269
268
264
261
258
253
247
240
225
184
152
118
80
49
17
7

English Life
Table, No. 9

(males)
269
266
262
257
252
246
238
229
217
201
180
152
117
77
41
15

B.L.T.
Gompertz

graduations
265-7
264-2
262-0
259-0
254-8
249-0
241-0
230-3
215-9
197-2
173-6
145-0
112-5
78-7
47-6
23-4
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English Life Table, No. 9 (Males) at quinquennial intervals from ln, each
entry having been multiplied by 269 and divided by the tabular value of ln.
This column is therefore in magnitude and time-scale roughly comparable
with the second column. Let us now graduate by Gompertz's hypothesis.
Fitting from three sums of five (i.e. using all the data but the last entry) we
reach log lx = 2-430637 - 0-00619036 x 1-409123*. The graduated values are
shown in the fourth column, x2 = 5-3105 for this graduation. The test used
before is applied in Table VI. The deviations of qx are almost identically

Table VI. English Life Table. No. 9 (Gompertz Graduations).
Observed ±S.D. of Qx~'ix

observed qx Calculated qx qx - qx aq
00112 ±00045 00056 00056 1-24
00150 ±0-0056 00083 00067 1-20
00191 ±0-0066 00115 00076 1-15
0-0195 ±00079 00162 00033 0-42
0-0238 ±0-0094 00228 00010 011
00325 ±00112 00321 00004 004
00378 ±0-0134 0-0444 -00066 -0-49
00524 ±0-0160 00625 -00101 -0-63
00737 ±0-0191 00866 -00129 -0-68
0-1045±0-0229 0-1197 -00152 -0-66
0-1556 ±00276 01647 -00091 -0-33
0-2303 ±00338 0-2241 00062 018
0-3419 ±00424 0-3004 00415 0-98
0-4675 ±0-0557 0-3952 00723 1-30
0-6341 ±0-0781 0-5084 01257 1-61

Absolute mean 0-7347
Expected value of the absolute mean by the normal curve=0-798±0-146.

Frequencies of —.

Expected by
Range normal curve Observed
Over 4 0001 —
3 to 4 0040 —
2 to 3 0-642 —
1 to 2 4077 5
0 to 1 10-241 10

15-001 15

distributed in accordance with "expectation" and the mean absolute devia-
tion is 0-73, sensibly the same as its expectation. If only an experience of this
order of magnitude had been available, it would have been fair to say that
the Gompertz formula described the " law " of human mortality over the range
from age 11 to age 86. The answer, therefore, to my question is, that we have
no sound reason for thinking that the force of mortality in mice increases
with age more nearly geometrically than the force of mortality in men. On
the contrary, it is probable that if our statistical experience of mice were as
great as that of men, we should reach the same conclusion with respect to
the applicability of the "law" as actuaries have reached for human experience.
To some readers this demonstration will be superfluous, but there may be a
few who will benefit by it; it is not very difficult to be impressed by agreement
between observation and hypothesis and to forget the scale of our observations.

Journ. of Hyg. xxvm 19
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Some years ago Mr Elderton, speaking of the x2 test, said: " I have found,

in applying this test, that when the numbers dealt with are very large, the
probability is often small, even though the curve appears to fit the statistics
very closely. The explanation is that the statistics with which we deal in
practice nearly always contain a certain amount of extraneous matter, and
the heterogeneity is concealed in a small experience by the roughness of the
data. The increase in the number of cases observed removes the roughness,
but the heterogeneity remains. The meaning, from the curve-fitting point of
view, is that the experience is really made up of more than one frequency-
curve ; but a certain curve, approximating to the one calculated, predominates''
(Elderton, p. 142). If this reasoning were just, we might suppose that for
both mice and men one element of mortality is really expressed by Gompertz's
"law" and agree with de Morgan that Gompertz made an important discovery
and with Brownlee that a geometrical law is a partial explanation of the facts
of animal life.

The conclusions reached with respect to mice hold for Pearl's flies. Pearl's
largest series consisted of 1407 male and 1415 female flies and he graduated
the experiences (separately) by means of the formula

log lx = edx (a + bx + ex2 + dxs).

Table VII compares the actual values of lx, at intervals of 6 days, with the
sums of Pearl's graduations, a simple Gompertz and a Makeham-Gompertz
graduation of the data (sexes not distinguished). Here again the Makeham-

Table VII. Pearl's Normal Drosophila (both Sexes).

x (days)

1
7
13
19
25
31
37
43
49
55
61
67
73

Observed lx

2822
2781
2753
2693
2522
2337
2109
1763
1438
1070
510
272
111

Gompertz -
Makeham

graduations lx

2824
2792
2740
2657
2534
2357
2114
1796
1409
983
576
262
82

Gompertz
graduations lx

2839
2792
2726
2630
2496
2310
2061
1742
1559
943
551
249
77

Pearl's graduations
(sum of males
and females)

2822
2798
2733
2635
2500
2328
2106
1820
1463
1046
624
278
80

Gompertz graduation requires an absurd (positive) value of s. The values of
X2 are 37-49 for Pearl's graduations, 45-06 for the Gompertz graduations and
27-94 for the Makeham-Gompertz graduation. The relative deviations of the
qx values in all three cases are also improbably large, having mean values of
3-34, 2-99 and 3-10 (see Table VIII). There is little to choose between these
results, none is a good fit by the usual criterion and each would have been an
excellent fit, by that criterion, had the data been one-tenth as extensive, i.e.
on the scale of the Hill experience.
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Table VIII. Pearl's Flies.

285

Gompertz-Makeham graduations.

Ages
1
7
13
19
25
31
37
43
49
55
61
67

Observed qx±s.D.
00145 ±0-0020
00101 ±0-0026
00218 ±0-0033
00635 ±00040
0-0734 ±00051
0-0976 ±00063
0-1641 ±00078
0-1843 ±00098
0-2559 ±00121
0-5233 ±00151
0-4667 ±0-0221
0-5919 ±00281

Calculated qx

0-0113
00186
0-0303
00463
00698
01031
0-1504
0-2154
0-3023
0-4140
0-5451
0-6870

00032
-0-0075
-0-0085

00172
0-0036

-0-0055
00137

-00311
-00464

01093
-00784
-00951

V
1-60
2-88
2-58
4-30
0-71
0-87
1-76
3-17
3-83
7-24
3-55
3-38

Absolute mean

Gompertz graduations.

Age a:
1
7
13
19
25
31
37
43
49
55
61
67

Observed qx±s.D.
0-0145 ±0-0024
00101 ±00029
0-0218 ±0-0035
0-0635 ±00042
0-0734 ±0-0052
0-0976 ±00064
0-1641 ±00079
0-1843 ±0-0099
0-2559 ±0-0122
0-5233 ±00151
0-4667 ±0-0220
0-5919 ±00281

Calculated qx

00163
00239
00350
0-0512
00745
01079
0-1548
0-2195
0-3060
0-4163
0-5478
0-6896

-00018
-00138
-00132

00123
-00011
-00103

0-0093
-0-0352
-00501

01070
-00811
-0-0977

2-989

0-75
4-76
3-77
2-93
0-21
1-61
118
3-56
411
709
3-69
3-48

Absolute mean

Pearl's graduations.
Age x

1
7
13
19
25
31
37
43
49
55
61
67

Observed fa
00145 ±0-0017
00101 ±00029
00218 ±0-0035
00635 ±0-0042
00734 ±00050
00976 ±00061
01641 ±00075
01843 ±0-0095
0-2559 ±0-0119
0-5233 ±00150
0-4667 ±0-0220
0-5919 ±00275

Calculated qx

00085
00232
00358
00512
0-0688
00954
01358
0-1962
0-2850
0-4034
0-5545
0-7122

00060
-00131
-0-0140

00123
00046
0-0022
00283

-00119
-0-0291

01199
-0-0878
-01203

3095

3-53
-4-52
-4-00

2-93
0-92
0-36
3-77

-1-25
-2-45

7-99
-3-99
-4-37

Absolute mean 3-34
Expected value of the absolute mean by the normal curve=0-798 ±0-163.

Frequencies of ••

Observed

Range
Over 4
3 to 4
2 to 3
1 to 2
0 to 1

Expected by
normal curve

0001
0032
0-514
3-262
8192

12-001

Makeham-
Gompertz

graduations
2
4
2
2
2

12

Gompertz
graduations

3
4
1
2
2

12

Pearl's
graduations

3
4
2
1
2

12

19-2
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286 "Laws" of Mortality
If it were true that the Gompertz "law" expressed some important

element of biological truth, would its distortion when adequate data, from a
numerical point of view, are at command depend upon the fact, (a) that its
functional expression is imperfect, or (b) upon the blurring effect of the "en-
vironmental" factors which it cannot be supposed adequately to express?
I surmise that both explanations are true. So far as the improvement of the
mathematical expression of the "law" is concerned, there is little reason to
suppose that we shall make any more progress by statistical experiment
upon the data of human mortality. The data I have for mice are too scanty
to justify further manipulation, for, so far as they are concerned, the Gompertz
formula is adequate and we could not prove that any other imagined expression
was better. Pearl disposed of more extensive material and in the next section
I discuss some of his conclusions.

PROFESSOR PEARL'S RESULTS.

Pearl remarked that the forms of the function log lx which have been
observed lie between two straight lines drawn from that point on the axis of
log lx which corresponds to x = 0 (the arbitrary radix of the survivorship
table). These two straight lines imply that the force of mortality is constant;
the upper (Pearl's rectangular type) is the log lx line if the force of mortality is
zero within the range of observation, so that no deaths occur; the lower when
the force of mortality is a constant greater than unity. It will be noticed that
the first form emerges from Gompertz's formula when c approximates to 0 and
the second form when c approximates to 1. For, by Gompertz's formula,
loglx—k — BcF/logc, and log l0 is an arbitrary constant, say N, so that
k = N + B/log c, or log lx = N + B (1 — e*)/log c which is N when c = 0
and N — Bx when c tends to 1. Above the diagonal would fall all the cases
of c greater than 1. For instance, if 1000 entrants decreased logarithmically
so that at the end of 80 years there were only one survivor, the logarithms
(common) of the survivors after 10, 40 and 60 years would be 2-625, 1-500
and 0-750. If the population obeyed Gompertz's law with c = 1-1 and the
other constants so chosen that after 80 years there was one survivor, the
log lx for x = 10 would be 2-998, for x = 40, 2-935 and for x = 60, 2-555, the
graph—which would, of course, be convex upwards—forming a bow with
the diagonal as its string, attached at x = 0 and x = 80.

The domain below1 and to the left of the diagonal would be occupied by
types which Pearl notes are theoretically possible but which have not yet
been realised in practice, viz. when the rate of mortality decreases with age.
This could be represented by a Gompertz formula with c less than one (if c

1 Of course the convex (upwards) and concave curves are respectively above and below the
"diagonal" only when the assumption is made that the curves intersect the "diagonal" at some
finite distance to the right of the origin, an assumption made by Pearl in reducing his tables to
a common measure (see above, pp. 282-283, where I have virtually adopted Pearl's method of re-
duction). Naturally by a suitable choice of constants a convex curve might lie wholly below and
to the left and a concave curve wholly above and to the right of any given "diagonal."
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is less than one, log lx — k + Me?, where M is a positive quantity) and, in
the imagined case of an expression giving one of a thousand surviving to age
80, the bow would be below and to the left of the diagonal string, the curve
being concave upwards. If we took c = 0-9, the values of log lx for x = 10,
40 and 60, would be 1-046, 0-044 and 0-005. Of course in the three imagined
cases, with increasing x, the proportion of survivors diminishes indefinitely
in the diagonal and upper domain cases and in the lower domain case is asymp-
totic to a constant value. Pearl finds that the closest approximations to the
rectangular type yet observed are those of a human life table and of that of the
normal wild type of Drosophila, while that of the much shorter lived vestigial
type approximates more closely to the diagonal curve for log^. He is here refer-
ring to the comparison of the transformed graphs (see chart, Pearl, p. 43), where
the fly curves are expressed in a time unit which makes all the lx's the same
for x = 0 and x = k, where k is different for different species. The vestigial
Drosophila were reared under precisely the same environmental conditions as
the longer lived wild type. Pearl next deals with the survivorship curves of
flies reared under different conditions and shows first of all that there is an
optimum density of population, from the point of view of survivorship. "The
survivorship distributions of the extremely high densities approximate closely
to the ' straight diagonal line' type of life curve which has been discussed in
Chap. Ill, and shown to be characteristic of vestigial flies" (Pearl, p. 59).
Finally, Pearl compares the Order of Dying-out of flies completely deprived of
nourishment and finds, once more expressing the results by the method of
transformation, that the log lx curve of the starved flies differs little in form
from that of the fed flies which, we have already seen, is closely similar to a
human log lx curve (Pearl, p. 107). It was also found that, under conditions
of starvation, variations of density of population did not affect the form of
log lx nor was there any significant difference between normal wild and vestigial
flies. He remarks: "this result I take to mean the following things:

" 1 . That the inherent vitality of an individual fly is not, in fact, altered
by the environmental circumstances in which its life is lived. It is, on the
contrary, of the nature of a constant for the individual, in the sense that the
morphology of a leg, for example, is constant for the individual.

"2. That the difference between normal wild type flies and vestigial flies
in respect of duration of life, which under normal conditions of feeding (that
is when it is the expression of the total vitality implicit in the normal A + B
physiological economy) follows the Mendelian laws of inheritance, is not
dependent upon a fundamental difference in inherent vitality. This difference,
on the contrary, appears merely to be due to the fact that under the environ-
mental conditions represented by the standard fly husbandry of the laboratory
(the A of our schema) vestigial flies were not able to bring their inherent vitality
to so complete expression in duration of life as were the wild type flies under
the same conditions" (Pearl, p. 127). Part of Pearl's argument turns upon
the congruence or want of congruence of the functions log lx for different
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species when reduced to a common scale. Algebraically, Pearl's method of
reduction is this. We have two functions of x, fx (x) and /2 (x), such that
/ i (0) = / 2 (0) while for all finite values of x greater than 0,/i (x) is greater
than/2 (x) and both functions decrease with x. A value of x, say a, is chosen
and the value of x is found for which/2 (x) =f1 (a). Suppose this value is b,

where of course b is less than a, then /2 (x) is replaced hy f2(r.x). In the

particular case of the two functions being Gompertz functions which difEered
only in respect of the c term, i.e. A — Bcf and A — Bcf where Cg is greater
than %, the transforming factor would be log Cj/log c2 so that the transformed
function would coincide with its standard. If

fx (x) = Ax - B^f and/2 (x) = A2 -

with the condition Ax — Bx = A2 — B2. Then the substitution in/2 (x) of:

log^ log

log

H

1 -

Ax-b
B2

Ax-L
B,

Hi - A )

- A )

for x will fulfil the conditions, where A (Ax — Bx) is the value of fx (x) to
which /2 (x) is to be equated. Here 0 < A < 1 while B2 <£ Bx.

Obviously here—and indeed generally—the transforming factor is a
function of A and the question arises as to what should be the criterion deter-
mining it. Pearl has taken A = 0-001x and the second and third columns of
Table IX compare the values of lx for normal male and "vestigial" male

tiles
life
ian

0
5

10
15
20
25
30
35
40
45
50

Line 107
males
1000
997
988
973
952
924
890
847
794
730
654

Vestigial
males

A = 0-001
1000
989
938
851
738
613
486
371
274
196
137

Table
Vestigial

males
A=0-5
1000
999
989
971
943
908
866
817
763
707
648

IX.
Centiles

of life
span

55
60
65
70
75
80
85
90
95

100

Line 107
males

564
466
363
258
167
94
45
17
5
1

Vestigial
males

A = 0-001
94
65
44
30
21
14
9
6
3
1

Vestigial
males

A=0-5
588
529
471
365
317
274
235
200
170
144

Drosophila so standardised. The third column gives the figures obtained when
the point of agreement is the median, viz. A = 0*5. So far as the graphs of
the results (whether of lx or log lx) are concerned, the greater A the more nearly

1 I am not quite clear what precise value was taken to reach Table XXI of Pearl's book. It
appears from Tables XVII and XIX that wild males are reduced to 0'001 times the entrants in
81 days and vestigial males in 42 days but the survivorship table of vestigial males at intervals
of 42/81 days, or (on the centile basis) wild males at intervals of 0-81 days and vestigial males at
intervals of 0-42 days do not precisely reproduce Table XIX. The difference is not, however,
important.
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the graphs will resemble one another because agreement is imposed where
the values of y are large. In dealing with empirical data limited in extent,
there is a disadvantage in making A small, because the probable error of the
number of survivors is large; we have a very poor approximation to the
mathematical expectation of the value of x which makes lxjl0 = 0-001.

Of course if the function it is proposed to transform either really is or
approximates at all closely to a linear function of x (as when the force of
mortality is sensibly constant for all values of x), all that happens is that its
slope is changed. If the curve to which it was to be standardised decreased
very little over a considerable range of x, by a suitable choice of A the stan-
dardised curve would, over that range, lie very close to the standard of re-
duction, i.e. if A be so chosen as to make the straight line intersect the curve
at the point where the latter's rate of mortality began to increase sensibly.
Thereafter, the standard curve would lie wholly below the standardised straight
line. These considerations, although tending to show that the method of
reduction to equivalent life spans is by no means free from difficulties, do not,
I think, affect any of the conclusions drawn by Pearl. Thus, in the last imagined
case, the increasing divergence between the standard and the transformed
straight line would be a perfectly cogent proof of diversity between the
"laws" or mortality of the two species of samples, provided the equivalent
spans were so chosen that the observations available for values of x after the
value for which the ordinates were equal were not too scanty.

In Table X I give some results of the method of standardisation in mice.
A comparison is made of the survivorships of the normal mice (Murray's
sample) and the mice which formed the subject of Experiment 2 of Greenwood
and Topley's 1925 memoir. The full details of survivorship of these latter
mice will be found in the memoir (Greenwood and Topley, 1925, pp. 75 et seq.).
The number of mice under observation from the time of entry into the in-
fected herd until death was 2354, and the mean after life time (expectation of
life) at entry was 21-48 days. As already stated, Murray's mice numbered
619 and the mean after life time at the age of 182 days was 278-58 days. In
Table X, second column, we have the survivorship of the normal mice at
intervals of 20 days and in the third column that of the mice exposed to
pasteurellosis. In the fourth column we have the transformed values when
agreement is imposed at the medians, the fifth column contains the results
when the standardisation is based upon equality when lx is 100 and the
sixth column contains the results when lx is 10 in each experience. The first
standardisation is of the form mentioned in the last paragraph, quite close
agreement is imposed for a considerable distance, until interval 23, and thence
an increasing and enormous divergence is obvious. The other transformations
produce agreement only in the vicinity of the arbitrary points of accord. It
will be noticed that, if the data for mice under experiment had numbered
235 instead of 2354, one might easily have been impressed by the closeness of
agreement between the normal and transformed experimental series over
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Table X. (20 days interval for Normal Mice.)
Mice of Experiment 2

Equivalent
intervals

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Normal mice
ln (Murray)

1000
958
910
885
834
798
748
704
648
596
570
536
504
481
454
418
389
363
334
302
278
267
231
210
179
153
128
111
87
71
58
52
42
34
29
24
16
13
8
3

Observed

1000
293
138
85
46
28
19
10
4
3
2
1
0

—
—
—
—
—
—
—
—
—
—
—
—
—
—
—

—
—
—
—
—
—
—
—

—

A = 0-5
1000
977
943
905
847
794
742
693
052
609
371
541
511
480
447
412
379
351
325
301
280
261
243
229
219
211
203
194
185
178
172
168
163
160
154
149
146
144
141
137

A=0-l
1000
946
858
756
668
586
528
468
402
347
299
261
230
212
197
181
170
162
152
146
140
134
129
124
118
114
109
102
96
91
87
81
77
73
71
68
61
60
56
52

A = 001
1000
870
685
548
435
325
250
210
180
162
146
130
120
116
106
95
86
76
71
62
58
50
42
41
38
36
32
28
26
26
25
22
19
17
14
13
12
11
10
8

that part of the range for which the observations were numerous and have
been inclined to explain away the subsequent discrepancy on the ground of
paucity of observations. Even when the data of Pearl are in question, I am
not quite sure that Pearl's graph of the log ^.'s really justifies his remark that
"From these life table curves several results of interest emerge. In the first
place it is evident that the distribution of mortality in the different parts of
the biologically equivalent life span is substantially identical quantitatively
in an inbred strain of Drosophila (line 107) and in human beings of the present
time" (Pearl, p. 44). As my own reduction of normal mice to the human scale
(see Table V supra) diverged sensibly from the "equivalent" human values,
even when allowance was made for errors of sampling, I at first thought
that, possibly owing to less adequate stability of environmental conditions,
my reduction was less successful than Pearl's. An experiment, the results of
which are set out in Table XI, leads me to doubt this. From Pearl's tables it
appeared that for male (normal) Drosophila 1000 entrants had diminished to
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Table XI . Wild Male Drosophila and English Life Table, No. 9
(Males) reduced to equivalence.

E.L.T. No. 9 Drosophila
0
1
2
3
4
5
6
7

B.L.T. No. 9
1407
1392
1368
1340
1309
1270
1222
1162

Drosophila
1407
1400
1380
1348
1303
1241
1161
1058

8
9

10
11
12
13
14
15

1082
970
816
621
397
193
63
13

929
775
599
418
252
124
46
13

9 after 75 days' exposure. Taking the survivors at age 11 of English Life
Table, No. 9 (males) as the basis it appears that these entrants will have
decreased to 0-9 per cent, of their strength at age 92-477 years. Hence 81-477
human years are biologically equivalent to 75 Drosophila days (A = 0-009).
That is if we interpolate the human table at intervals of 5-432 years we may
compare the values with those of the Drosophila table at intervals of 5 days.
If we then take l0 as 1407 (the number of male Drosophila entrants) we have
values comparable, on the hypothesis, and of the right scale. These form the
second and third columns of Table XI. Clearly the agreement of the two series
is not close. Calculating the qx's of the standard series and of the Pearl ob-
servations and comparing the differences between observed and calculated
qx's with the standard error of the latter as before, one can satisfy oneself
that the discrepancies are unlikely to have arisen as errors of sampling (see

Table XII.

Age a;
0
1
2
3
4
a
6
7
8
9

10
11
12
13
14

Absolute

Drosophila
qB±s.D.

00050 ±00027
00143 ±00035
00232 ±00038
00334 ±00041
0-0476 ±00047
00645 ±00054
0-0887 ±0-0063
0-1219 ±0-0078
01658 ±00100
0-2271 ±00131
0-3022 ±00174
0-3971 ±0-0235
0-5079 ±00315
0-6290 ±00421
0-7174 ±00597

mean

English Life
Table, No. 9, qx

00107
00172
0-0205
00231
0-0298
00378
00491
0-0688
0-1035
0-1588
0-2390
0-3607
0-5139
0-6736
0-7937

-0-0057
-00029

0-0027
00103
00178
0-0267
00396
00531
00623
0-0683
00632
00364

-0-0060
-00446
-00763

Expected value of the absolute mean by the normal curve=0-

Frequencies of **—^a

a..

Range
Over 4
3 to 4
2 t o 3
1 to 2
Oto 1

"X

Expected by
normal curve

0001
0040
0-642
4-077

10-241

Observed
5
2
2
3
3

Ix-Ix
"tx

-211
-0-83

0-71
2-51
3-79
4-94
6-29
6-81
6-23
5-21
3-63
1-55

- 0 1 9
-1-06
-1-28

314

798 ±0146.

15001 15
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Table XII). It is, of course, but one experiment, a different value of A might
have given a better result1, but I see no reason to believe that any such trans-
formation would render the functions substantially identical, if by that phrase
we mean render the transformed function such that the values might easily have
arisen in random sampling within a universe typified by the standard function.

After all, our function is rather hampered by conditions. The orginal
function must decrease, or at least not increase, with x and the transformed
function must agree with the standard at two values of x. Take the logarithm
of such a function, plot on a small scale, and much real discrepancy is com-
patible with graphical similarity.

Pearl, of course, does not base his case merely upon this, as I think, slender
evidence. His beautiful experiment upon the effects of pure starvation, showing
a congruence of the log lx curves of wild and vestigial flies, is not dependent
upon the method of translation. That experiment illustrates well the operation
of a factor which, in one sense, is environmental, but in the sense of this paper
is not environmental at all but purely constitutional.

CONCLUDING OBSERVATIONS.

With respect to the logical basis and applicability of "laws" of mortality
to the phenomena of human life, it appears that nothing of real importance
has been added to the work of Gompertz and that his "physiological" hypo-
thesis, involving a geometrical rate of increase with age of the force of mor-
tality, has not been improved upon. Owing to the impossibility of following
out entrants at any age until death under conditions such that no factor of
mortality save those inherent in the physiological make-up shall intervene,
the validity of the hypothesis for human mortality cannot be adequately
tested. Modifications of the original formula having the intention of taking
account of these physiologically extraneous factors, such as Makeham's
first modification, tacitly assume an improbable state of affairs, such as an
environmental factor of mortality independent of age; the justification of
these formulae is purely pragmatic. Given two Orders of Dying-out one of
which is adequately and the other inadequately graduated by the textbook
Makeham-Gompertz "law," no conclusion as to biological or environmental
difference can safely be drawn. In particular we cannot separate "nurture"
and "nature" into the two factors of the formula. That, upon human data,
the validity of physiological hypotheses can ever be satisfactorily tested, is
unlikely. The least unpromising material would be afforded by the Order of
Dying-out of a select community, such as the "administrative" class of the
home civil service. The faint practical interest of such an inquiry for those
in a position to have access to data holds out small hope that it will ever be
pursued.

1 If f, (x) and / , (x) are known functions of x, we can determine the value of u for which
MAx)-fAW

/.
is a minimum.
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Passing to the "laws" of mortality describing the survivorship of other
animals than man, we find that we are in the infancy of the subject. I believe
it is literally correct to say that Raymond Pearl and—in a limited sense—
my colleagues and I are pioneers. The conclusions that can be drawn from these
first researches are scanty. So far as appears, having regard to the scale
of the observations, I see no reason to think that any more complex formula-
tion of a physiological "law" would describe the observed facts better than
Gompertz's century-old simple formula. I also find no proof of essential
diversity in Order of Dying-out between mice and flies. So far as the one
practically important result embedded in this discursive paper is concerned,
viz. a test of the truth or falsehood of the hypothesis that in the analysis of
the epidemic data physiological age influence is negligible, I think I have
demonstrated the influence to be really negligible. That finding of course
simplifies our treatment of the epfdemic problem.

The general biological problem is, however, left in an unsatisfactory state,
unless Pearl's brilliant researches, as I hope may happen, stimulate others to
imitate him. It seems, indeed, strange that it is only with respect to a few
hundreds of mice and a few thousands of flies that Orders of Dying-out have
been studied. I must suppose that the information is really not available
with respect to blood stock in horses. I hope that, in time, my colleagues and
myself may accumulate sufficient data for normal mice to extend the present
tentative conclusions, but we have other work to do. I fear that to collect
and analyse such data is too simple and unexciting a task to attract young
"researchers," while when one has reached the age at which the grass-hopper
becomes a burden, even the relatively exiguous life-span of the mouse is a
consideration, so that veterans independent of Research Fellowships will not
attempt it.

Whether, in our existing state of ignorance of herd physiology and biology,
many deductions from "crucial" experiments upon laboratory animals are
not as futile as the speculative philology and etymology of the days of
Horne-Tooke, is an interesting question1.

APPENDIX.

Note on Terminology.

It is usual to represent the number surviving to the beginning of the ccth
time-unit by lx, and the ratio lx+1 to lx by px; 1 — px is represented by qx.
The differential coefficient of the logarithm of lx with respect to x taken nega-
tively, viz. — -j^.l/lx,is called the Force of Mortality and represented by the

symbol fix.
If this is an integrable function of x, when its value is known, we know

log lx and therefore lx. All investigations of "laws" of mortality, since Gom-
1 I am indebted to my colleague Miss Newbold for valuable criticism and verification and to

Mrs Wallace and Mr Martin for laborious computations.
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pertz's time, have started from some assumption as to the form of fj.x and all
of them are included in the expression:

to = A + S [Bt<f>t (a;)] + -8 [c,eW*>].
i i

Gompertz's first (1825) "law" made A = 0, S [B<f>{ (»)] = 0, j = 1, <&, (a;) = a;.

Makeham's first (1860) modification of this made A =(=0.
Makeham's second modification (1889) made S [Bi^>i (x)] = Bx.

i
Other modifications have been either putting i 4= 1 and 0j (a;) a polynomial
in x, or _? =j= 1 and <£3- (a;) a polynomial in a;.

If, as in Thiele's form, it is desired to bring into the "law" a symmetrical
exponential function, such as the "normal" function, one gets over the
difficulty that the indefinite integral of the normal function cannot be evalu-
ated, by noting the fact that, by definition:—

f°
log (lx/l0) = to dx,

J X
rx+i

so that log (lx/lx+1) = — log px = ^x dx.
J X

It may be added that in all English textbooks what I have termed e*»
is written (f and that when one passes from the logarithm of lx to lx the letters
used for the constants in, e.g., Gompertz's first "law" are k, g and c, i.e.
lx = hg°*.
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