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1. Introduction

Denote by Nn(a,fi) the number of distinct fractions pjq, where 1 ^ q ^ n
and a < p/q < fi. Let

ND(<x) = lim — NJ<X-^-,GC + ^-\.

„.,«, n n\ In In)
It is shown in Sheng (1973) that

D(oc) = - j if a is irrational

and that

n* \ q

if q > 1 and (p, q) = 1. In this paper we prove two theorems.

THEOREM 1. If(p,q) - 1 and q > 1, then

THEOREM 2. Lef {an} and {ySn} fee (wo sequences satisfying 1 > /?„ > an > 0
andlimn_00«(^n - an) = co. Tnen

»-«, »2(A,-a,,) 7c2'

In other words, the distribution of fractions is uniform over sufficiently long
intervals.

Throughout this paper, /i(n) denotes the Mobius function, 0(n) denotes
Euler's 0-function, and [x] denotes the maximum integer ^ x.
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2. Lemmas

LEMMA 1. Let n be a positive integer. Then

PROOF. This follows from

and, for n > 1,
= 1

LEMMA 2. / / A > 1 and

= o.
d\n

then

PROOF. Using

page 268, lines 9-10)

r l ——-, we obtain (see Hardy and Wright (1960),
d\r "

By Lemma 1,

2X + 2k < 2[A] 2A + 2A

2A A

LEMMA 3. If (j>,q) = 1 and n k qv > 0, fnen

(2.1) JVn I — ,• 1 1 = — E l l 1— \-C
\q q nJ q r = 1 \ vqj r

PROOF. The proof is similar to that of Theorem 4 in Sheng (1973).

LEMMA 4. If (p,q) = 1 and n ^ qv > 0, I/ien
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(2.2) — Nn —, 1 = -T + Q — + 0 •
n n\q q n) n2 \q} \ n J

PROOF. This follows from (2.1) and Lemma 2.

3. Proofs of theorems

PROOF OF THEOREM 1. This follows from

and Lemma 2.

PROOF OF THEOREM 2. Given a positive integer n and real numbers a, B, y
satisfying

0 < a < B < 1 and B - a = — > —,
n n

we choose — e (a, )3) where

Let h/k < p/q < r/s be consecutive terms of the Farey sequence of order q. It is
easy to see that

2L- A - _L_ v

s /c s/c n

for some real number v and that

A < a < J l < / ? < A
fe ~ q H - s

Theorem 2 is proved if

holds.
We prove (3.1) in three possible cases.

CASE 1. Suppose qy gj ni. There exist £ Si 0 and r\ ^ 0 such that

By Lemma 4,

n "v ' ^ n "\q n q) n n\q q

) + m , + ) +

n) n n\q ' q n) n
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which can easily be reduced to (3.1).

CASE 2. Suppose qy > n* and k ^ s. Then there exist ^ ^ 0 and t] > 0
such that

By Lemma 4,

(3-2) ±N.

Clearly,

Thus

n 2nfcv = — < —

kr\ log kr\ 2 log (2n*y)
yfl tit \ ni I

It is now easy to deduce (3.1) from (3.2).

CASE 3. Suppose qy > n* and s < k. Then there exist £ > 0 and ^ ^ 0
such that

Here

and (3.1) follows as in Case 2 from

This essentially proves Theorem 2.

One of us, T. K. Sheng, would like to take this opportunity to correct the
following misprints in Sheng (1973): on page 244, the last term of (1.4) should read

/vglogvgj .ns t ead o f o | > l o g v g j . a n d o n p a g e 245> Une 10 s h o u ,d
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