DISTRIBUTION OF RATIONAL POINTS ON THE REAL LINE
 P. ERDÖS and T. K. SHENG

(Received 2 January 1974)
Communicated by E. S. Barnes

1. Introduction

Denote by $N_{n}(\alpha, \beta)$ the number of distinct fractions p / q, where $1 \leqq q \leqq n$ and $\alpha<p / q<\beta$. Let

$$
D(\alpha)=\lim _{n \rightarrow \infty} \frac{1}{n} N_{n}\left(\alpha-\frac{1}{2 n}, \alpha+\frac{1}{2 n}\right) .
$$

It is shown in Sheng (1973) that

$$
D(\alpha)=\frac{3}{\pi^{2}} \quad \text { if } \alpha \text { is irrational }
$$

and that

$$
\begin{aligned}
D\left(\frac{p}{q}\right) & =\frac{2}{q} \sum_{r=1}^{\left[\frac{1}{2} q\right]}\left(1-\frac{2 r}{q}\right) \frac{\phi(r)}{r} \\
& =\frac{3}{\pi^{2}}+O\left(\frac{\log q}{q}\right)
\end{aligned}
$$

if $q>1$ and $(p, q)=1$. In this paper we prove two theorems.
Theorem 1. If $(p, q)=1$ and $q>1$, then

$$
\left|D\left(\frac{p}{q}\right)-\frac{3}{\pi^{2}}\right|<\frac{2}{q}\left(1+\frac{2}{q}\right)
$$

Theorem 2. Let $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ be two sequences satisfying $1>\beta_{n}>\alpha_{n}>0$ and $\lim _{n \rightarrow \infty} n\left(\beta_{n}-\alpha_{n}\right)=\infty$. Then

$$
\lim _{n \rightarrow \infty} \frac{N_{n}\left(\alpha_{n}, \beta_{n}\right)}{n^{2}\left(\beta_{n}-\alpha_{n}\right)}=\frac{3}{\pi^{2}} .
$$

In other words, the distribution of fractions is uniform over sufficiently long intervals.

Throughout this paper, $\mu(n)$ denotes the Möbius function, $\phi(n)$ denotes Euler's ϕ-function, and $[x]$ denotes the maximum integer $\leqq x$.

2. Lemmas

Lemma 1. Let n be a positive integer. Then

$$
\sum_{d=1}^{n} \mu(d)\left[\frac{n}{d}\right]=1 .
$$

Proof. This follows from

$$
\mu(1)=1
$$

and, for $n>1$,

$$
\sum_{d=1}^{n} \mu(d)\left[\frac{n}{d}\right]-\sum_{d=1}^{n-1} \mu(d)\left[\frac{n-1}{d}\right]=\sum_{d \mid n} \mu(d)=0 .
$$

Lemma 2. If $\lambda>1$ and

$$
f(\lambda)=\sum_{r=1}^{[\lambda]}\left(1-\frac{r}{\lambda}\right) \frac{\phi(r)}{r}
$$

then

$$
\left|f(\lambda)-\frac{3 \lambda}{\pi^{2}}\right|<1+\frac{1}{\lambda}
$$

Proof. Using $\phi(r)=r \sum_{d \mid r} \frac{\mu(d)}{d}$, we obtain (see Hardy and Wright (1960), page 268 , lines $9-10$)

$$
\begin{aligned}
f(\lambda) & =\sum_{d=1}^{[\lambda]} \mu(d)\left\{\frac{1}{d}\left[\frac{\lambda}{d}\right]-\frac{1}{2 \lambda}\left[\frac{\lambda}{d}\right]^{2}-\frac{1}{2 \lambda}\left[\frac{\lambda}{d}\right]\right\} \\
& =\frac{1}{2} \lambda \sum_{d=1}^{[\lambda]} \frac{\mu(d)}{d^{2}}-\frac{1}{2 \lambda} \sum_{d=1}^{[\lambda]} \mu(d)\left\{\frac{\lambda}{d}-\left[\frac{\lambda}{d}\right]\right\}^{2}-\frac{1}{2 \lambda} \sum_{d=1}^{[\lambda]} \mu(d)\left[\frac{\lambda}{d}\right] .
\end{aligned}
$$

By Lemma 1,

$$
\begin{aligned}
\left|f(\lambda)-\frac{3 \lambda}{\pi^{2}}\right| & <\frac{1}{2} \lambda \sum_{d=[\lambda]+1}^{\infty} \frac{1}{d^{2}}+\frac{[\lambda]}{2 \lambda}+\frac{1}{2 \lambda}<\frac{\lambda}{2[\lambda]}+\frac{[\lambda]}{2 \lambda}+\frac{1}{2 \lambda} \\
& =1+\frac{(\lambda-[\lambda])^{2}}{2 \lambda[\lambda]}+\frac{1}{2 \lambda}<1+\frac{1}{\lambda}
\end{aligned}
$$

Lemma 3. If $(p, q)=1$ and $n \geqq q v>0$, then

$$
\begin{equation*}
N_{n}\left(\frac{p}{q}, \frac{p}{q}+\frac{v}{n}\right)=\frac{n}{q} \sum_{r=1}^{[v q]}\left(1-\frac{r}{v q}\right) \frac{\phi(r)}{r}+O(v q \log v q) . \tag{2.1}
\end{equation*}
$$

Proof. The proof is similar to that of Theorem 4 in Sheng (1973).
Lemma 4. If $(p, q)=1$ and $n \geqq q v>0$, then

$$
\begin{equation*}
\frac{1}{n} N_{n}\left(\frac{p}{q}, \frac{p}{q}+\frac{v}{n}\right)=\frac{3 v}{\pi^{2}}+O\left(\frac{1}{q}\right)+O\left(\frac{v q \log v q}{n}\right) . \tag{2.2}
\end{equation*}
$$

Proof. This follows from (2.1) and Lemma 2.

3. Proofs of theorems

Proof of theorem 1. This follows from

$$
D\left(\frac{p}{q}\right)=\frac{2}{q} f\left(\frac{q}{2}\right)
$$

and Lemma 2.
Proof of theorem 2. Given a positive integer n and real numbers α, β, γ satisfying

$$
0<\alpha<\beta<1 \text { and } \beta-\alpha=\frac{\gamma}{n}>\frac{1}{n}
$$

we choose $\frac{p}{q} \in(\alpha, \beta)$ where

$$
q \leqq y \forall \frac{x}{y} \in(\alpha, \beta),(x, y)=1, y \geqq 1
$$

Let $h / k<p / q<r / s$ be consecutive terms of the Farey sequence of order q. It is easy to see that

$$
\frac{r}{s}-\frac{h}{k}=\frac{1}{s k}=\frac{v}{n}
$$

for some real number v and that

$$
\frac{h}{k} \leqq \alpha<\frac{p}{q}<\beta \leqq \frac{r}{s} .
$$

Theorem 2 is proved if

$$
\begin{equation*}
\frac{1}{n \gamma} N_{n}(\alpha, \beta)=\frac{3}{\pi^{2}}+0\left(\frac{1}{\gamma}\right)+0\left(\frac{\log n}{n^{\frac{1}{2}}}\right) \tag{3.1}
\end{equation*}
$$

holds.
We prove (3.1) in three possible cases.
CASE 1. Suppose $q \gamma \leqq n^{\frac{1}{2}}$. There exist $\xi \geqq 0$ and $\eta \geqq 0$ such that

$$
\alpha=\frac{p}{q}-\frac{\xi}{n}, \beta=\frac{p}{q}+\frac{\eta}{n}, \xi+\eta=\gamma
$$

By Lemma 4,

$$
\begin{aligned}
\frac{1}{n} N_{n}(\alpha, \beta) & =\frac{1}{n} N_{n}\left(\frac{p}{q}-\frac{\xi}{n}, \frac{p}{q}\right)+\frac{1}{n} N_{n}\left(\frac{p}{q}, \frac{p}{q}+\frac{\eta}{n}\right)+\frac{1}{n} \\
& =\frac{1}{n} N_{n}\left(\frac{q-p}{q}, \frac{q-p}{q}+\frac{\xi}{n}\right)+\frac{1}{n} N_{n}\left(\frac{p}{q}, \frac{p}{q}+\frac{\eta}{n}\right)+\frac{1}{n}
\end{aligned}
$$

$$
=\frac{3}{\pi^{2}}(\xi+\eta)+O\left(\frac{1}{q}\right)+O\left(\frac{q \gamma \log q \gamma}{n}\right)
$$

which can easily be reduced to (3.1).
CASE 2. Suppose $q \gamma>n^{\frac{1}{2}}$ and $k \leqq s$. Then there exist $\xi \geqq 0$ and $\eta>0$ such that

$$
\alpha=\frac{h}{k}+\frac{\xi}{n}, \beta=\frac{h}{k}+\frac{\eta}{n}, \eta-\xi=\gamma .
$$

By Lemma 4,

$$
\begin{align*}
\frac{1}{n} N_{n}(\alpha, \beta) & =\frac{1}{n} N_{n}\left(\frac{h}{k}, \frac{h}{n}+\frac{\eta}{n}\right)-\frac{1}{n} N_{n}\left(\frac{h}{n}, \frac{h}{k}+\frac{\xi}{n}\right) \tag{3.2}\\
& =\frac{3}{\pi^{2}}(\eta-\xi)+O\left(\frac{1}{k}\right)+O\left(\frac{k \eta \log k \eta}{n}\right)
\end{align*}
$$

Clearly,

$$
k \eta \leqq k v=\frac{n}{s} \leqq \frac{2 n}{q}<2 n^{\frac{1}{2}} \gamma
$$

Thus

$$
\frac{k \eta \log k \eta}{\gamma n}<\frac{2 \log \left(2 n^{\frac{1}{2}} \gamma\right)}{n^{\frac{1}{2}}}=O\left(\frac{\log n}{n^{\frac{1}{2}}}\right)
$$

It is now easy to deduce (3.1) from (3.2).
CASE 3. Suppose $q \gamma>n^{\frac{1}{2}}$ and $s<k$. Then there exist $\xi>0$ and $\eta \geqq 0$ such that

$$
\alpha=\frac{r}{s}-\frac{\xi}{n}, \beta=\frac{r}{s}-\frac{\eta}{n}, \xi-\eta=\gamma .
$$

Here

$$
\frac{1}{n} N_{n}(\alpha, \beta)=\frac{3}{\pi^{2}}(\xi-\eta)+O\left(\frac{1}{s}\right)+O\left(\frac{s \xi \log (s \xi)}{n}\right)
$$

and (3.1) follows as in Case 2 from

$$
s \xi<2 n^{\frac{1}{2}} \gamma
$$

This essentially proves Theorem 2.
One of us, T. K. Sheng, would like to take this opportunity to correct the following misprints in Sheng (1973): on page 244, the last term of (1.4) should read $O\left(\frac{v q \log v q}{n}\right)$ instead of $O\left(\frac{v p \log v q}{n}\right)$; and on page 245 , line 10 should read

$$
D\left(\frac{p}{q}\right)=\frac{2}{q} \sum_{r=1}^{\left[\frac{1}{2} q\right]}\left(1-\frac{2 r}{q}\right) \frac{\phi(r)}{r}
$$

References

G. H. Hardy and E. M. Wright (1960), An Introduction to the Theory of Numbers, (Oxford, 4th ed., 1960).
T. K. Sheng (1973), 'Distribution of rational points on the real line’, J. Austral. Math. Soc. 15, 243-256.

Mathematical Institute
Hungarian Academy of Sciences
Budapest
Hungary.
Faculty of Mathematics
University of Newcastle
New South Wales, 2308
Australia.

