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Abstract

In this paper, it is shown that any connected, small category can be embedded in a semi-groupoid
(a category in which there is at least one isomorphism between any two elements) in such a way
that the embedding includes a homotopy equivalence of classifying spaces. This immediately
gives a monoid whose classifying space is of the same homotopy type as that of the small category.
This construction is essentially algorithmic, and furthermore, yields a finitely presented monoid
whenever the small category is finitely presented. Some of these results are generalizations of
ideas of McDuff.
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In 1976, D. M. Kan and W. P. Thurston [5] proved that there is a functorial
construction which associates to any path-connected space a discrete group
G and a map BG — X that is a homology equivalence. The kernel of the
surjection G = [1;BG — II; X is a perfect, normal subgroup P, such that
the Quillen ( )* construction applied to the pair (G, P) yields a space having
the same weak homology type as X. Central to their proof is the functorial
construction of a homological cone for any discrete group, that is, a natural
embedding of a group into an acyclic group. In their construction, (r is always
uncountable even when X is a finite CW-complex. They posed the following
question: given a finite CW-complex X, might one produce a K(G,1) that
is a finite CW-complex homologically equivalent to X. In other words, is
it possible to construct a group G as above whose classifying space has the
homotopy type of a finite CW-complex. Such a group is said to be geomet-
rically finite. Following this paper, G. Baumslag, E. Dyer, and A. Heller [1],
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showed that the category of pointed, connected CW-complexes with homo-
topy classes of maps is equivalent to a suitable category of fractions of the
category of pairs (G, P) where G is a group, P a perfect, normal subgroup. In
this context they used a variant of the homological cone construction to give
a construction of the group, G, which associates a geometrically finite group
to a finite CW-complex.

Although the homology type of any path-connected space can be realized
as a K(G, 1), clearly this is not true of the homotopy type. However, along the
lines of Kan and Thurston, D. McDuff [10] showed that every path-connected
space has the weak homotopy type of the classifying space of a monoid.

With McDuff’s results in mind, we see that given a small category, one can
construct a monoid of the same homotopy type as the given category, that
is, that of its classifying space, by going through Top. We show that, given
a connected, small category, one can find an effective construction entirely
within the category of small categories which yields a monoid of the same
homotopy type. The construction is totally algebraic and effective. Given
a category presented by generators and relations, we construct a monoid of
the same homotopy type also presented by generators and relations. Further-
more, for a finitely presented category, one gets a finitely presented monoid
and once the selection of a spanning tree for the given category has been
made, the construction is algorithmic.

1. Preliminaries

Given a connected, small category, we embed it in a semi-groupoid, that
is, a category having at least one isomorphism between any two objects, with
the same homotopy type as the given category. At each vertex (object) of
the semi-groupoid is a monoid having the same homotopy type as the semi-
groupoid. If the semi-groupoid is presented in terms of generators and re-
lations, we need only fix an object and select a set of isomorphisms, one
between the fixed object and each of the other objects, then pull back the
generators and relations via these selected morphisms to obtain a monoid
presented in terms of generators and relations.

The construction of the semigroupoid from a given category, with object
set I, involves only categories with the same object set, thus it is convenient
to work in Cat;, the subcategory of small categories all having the same ob-
ject set, I. We begin by showing that if the initial legs of the following
push-out diagram in Cat; satisfy a certain freeness condition, we can gener-
alize to small categories the word theorem in group theory for free products
with amalgamation [6] and the generalization proved by McDuff for monoids
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[10]. Since groups and monoids can be thought of as small categories with
one object, their elements being morphisms from that object to itself, these
theorems can be viewed as special cases of a more general theorem about
categories. In the presence of right-freeness, we apply the classifying functor,
B [12], to the push-out and use the word theorem to show that the induced
map BN'Ug; BN2 — B(N'+; N?) is a homotopy equivalence. This is a gen-
eralization of McDuff’s theorem for monoids [10] and J. H. C. Whitehead’s
theorem on asphericity [13].

L A
izl k lj, (k= jiiy = j2i2)

N2 ———’12 N=N1*LN2
DIAGRAM 1.1

These results provide the tools necessary to construct the desired semi-
groupoid. This is done by constructing a mapping cylinder for an arbitrary
morphism F: L — N in Cat;, then using the mapping cylinder to embed the
category in a semi-groupoid.

The above generalizations require that the arguments be stated in the lan-
guage of categories. For instance, the tensor product used in an argument
by McDuff [10] generalizes to the left Kan extension ([4] and [9, pages 232~
238]). The methods used to calculate the homology of a category are de-
scribed in Hilton and Stammbach [3, pages 321-330]. We also note that if
for two functors, f and g, there exists a natural transformation 7": f — g,
then BT: Bf — Bg is a homotopy and we refer to f and g as homotopic
functors.

2. A word theorem for push-outs in Cat;

The notion of “right-free” inclusion we introduce below ensures that for
two small categories in Cat;, one included in the other, the subcategory
induces a decomposition of the larger category into disjoint “cosets” in a
manner analogous to that for groups. When this definition is satisfied, each
“coset” is in bijective correspondence with any other, and there is a fixed set
of “coset” representatives such that any element of the larger category can
be written in a unique way as the composition of a “coset” representative
with an element from the smaller category. In general, the inclusion of a
submonoid into a monoid is not a right-free inclusion. In the case where
the categories are groups, the definition of right-free inclusion reduces to the
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statement that one group is a subgroup of another. The definition of right-
freeness generalizes from groups and monoids [10] what is needed for a word
theorem in Cat;.

In particular, if L is a subgroup of N, then Z(N) if a right-free module over
Z(L), that is Z(N)®zr) — is left exact (preserves injection). Analogously, if
i: L — N is a right free inclusion of categories, then the left Kan extension
[4; 9] along i, thought of as a generalization of the tensor product above, is
left exact. We use this left exactness in a “change of rings” type argument

12].

DEeFINITION. Given two categories, L, N, in Cat;, i: L — N an inclusion,
we say i is a right-free inclusion if for all x,y € I,

N(x,y) < L(x,y)11 (]_[ N(z,y) x L(x, z))
zel
where N(x,y) € N(x,y) is a fixed set for each x,y € I, and 1 ¢ N(x, x) for all
x € I. The arrow maps L(x,y) into N(x,y) by inclusion and N(z, y)x L(x, z)
into N(x,y) by composition. We will let N = [| N(x,y) and refer to N
as the set of generators over L.

The composition of two right-free inclusions is right-free: if the functors
iI:L - M and j: M — N are right-free inclusions, M and N the set of
generators of M over L, and N over M, respectively, then using the definition
above, we can write

x,yel

N(x,y) = L(x,y) I (]_I [(M(z,y) IIN(z,y)
zel
I (H N(z’,y) x M(z, z'))) x L{x, z)]) .

z'el
The set MIINII (],c; N(z,y) x M(x, z)) serves as a set of generators of N
over L. Every element of M is in N by inclusion and (n,m) € ([[,c; N(z,y)x
M(x, z)) represents nm € N, a generator in N over L. We can now state the
first theorem,
THEOREM 1. Given the following push-out diagram in Caty,

L —h A

T
N2 2 Nl N2=N

DiAGrAM 2.1
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where iy, iy are right-free inclusions, N' the set of generators of N/, i = 1,2,
over L, then every morphism of the push-out, N' x; N2, can be represented
uniquely by an (alternating) sequence (ny,my_,,...,ny,ny,1), A >0, where [ is
a morphism in L, and ny,n,, ..., n; come alternately from N! and N2, in such
a way as to be composable in N' x; N2,

Proor. Define the set W, , = {(ny,...,ny,n;,/)}, where x R x5 x —

=X R\ y. The graph, W, will consist of the objects, I, together with
edges of the form W, ,. The map p: W — N'*; N2, which is the identity on
objects and maps (n;,...,n;,n;,/) — no---ompon; o/ is surjective since any
element of N! x; N2 can be factored in at least one way into an alternating
string of coset representatives followed by an element in L.

We next define the category, 20, with objects, I, and morphisms, 20(x,y) =
I1,c; Sets(Wx, -, W),.), where composition of morphisms is just composition
of set maps. We define the functor f1: N' — 920°, for a: x — y in NI,
(mg,...,my,my,0)in W, ;, by

Sfle)(ny, ..., my,my, 1)
(my,...,my,n;,n, /")  wheren; € N2 and /o =n//,
_{ (ny,...,my,m0") where n; € N! and n;/a = n/’.
We define f2: N2 — 90° in the same way and observe that they agree on L,
giving the following commutative diagram
L —— NI

! !

N2 —— 9p°r

The universal property of push-outs yields a map ¥: N! x; N2 — 90°°, We
show that p is injective by showing that ¥ o p is injective. Consider w =
(my,...,m,n, /) in Wy . Then Wop(w) restricts to a map from W, , to W, ,.
Since ¥ is the unique map that makes the above diagram commute, then
it must take the identity in W, , to (m;,...,n2,n;,/) in W, ,. Thus different
elements of W yield different maps in 20°°, and p must be injective, and
hence N! x; N2 is bijective correspondence with W.

COROLLARY. The terminal legs, j,: N' — N'x; N* and j,: N> — N'x; N?
are right-free inclusions with generators G' = {(n,,...,m,n,,/) € N|n; € N?}
and G? = {(ng,...,m,n;,/) € N|n; € N'} and hence, so is the composition
map k = jii, = jaiz: L — N %y N? with generators N = G! 11 G2.

PRroOOF. Since i; is a right-free inclusion, n € N! can be written as n/ in
a unique fashion, with n € N!, [/ € L. The map j; merely sends n to n/,
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its representation in N! x; N2, So j, is clearly an inclusion. We have just
shown an element in N! +; N2 can be writtenas n =m;o---omon;o/ina
unique way. If n; € N2 then n =n;o0---omyon’ where n’ =n;/ € N is clearly
a unique representation of n as the product of a generator and an element
of N'. Thus we see G' = {(n,...,ny,n;,/) € N|n; € N2} gives us a set of
generators of N over N!. We conclude j; is a right-free inclusion. We reason
analogously to conclude j; is a right-free inclusion. It follows immediately
that k&, the composition of two right-free inclusions is a right-free inclusion
with generators

[[G*(z.y) x N*(x,z)| .

N =N'TIG'I|[]G!(z,y) x N'(x, z)} = N2IG21I
z€l

zel

We see that G! = N21I[[],, G*(z,y)xN2(x, z)] and G* = N'II[[],, G'(z,»)
x N!(x, z)]. Then N = G! 11 G2.

3. Preservation of homotopy type in the presence of right-free
inclusions: BN! Ug; BN? = B(N! +; N?)

THEOREM 2. Given the following push-out diagram in Cat,

L 1 N
izl k lj, (k = jii1 = jai2)

N 2 N = Nls N2

DiAGrAM 3.1

With iy, i, right-free inclusion of categories, then the map induced by applying
the classifying functor, B: BN' Ug; BN? — B(N! x; N2), is an equivalence.

ProOF. The proof will proceed by showing

(I) IT;(B(N" ;. N?),x) = I1;(BN' Ugy BN?,x), and

(II) B: BN'upy BN? — B(N'x; N?) induces an isomorphism in homology
with all local coefficients.

Proor oF (I). Applying I', the groupoid reflection, to the above diagram
yields TN = T'N! «r; ' N? because I' is a left-adjoint and thus preserves
pushouts. To get Il;, we consider the vertex groups of these categories at x.
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Doing this yields the following diagram which in turn gives the desired result.

I"Nl(x) = (TN +r; TN?)(x)
4 4
[(N)(x) = TN!(x) #r1 ) TN?(x)

21 ¢
II(BN,x) = II(BN',x)*m,pLx i (BN?, X)
14

HI(BNI UsL BNZ,X)

Since i; and i, are inclusions, we know that I'({;) and I'(i;) are inclusions
also, which implies that ('N! #r; TN?(x) S T'N!(x) #rzx TN?(x). For
any category N, IN(x) = I1;(BN, x) [11]. We use this to get both vertical
isomorphisms for the bottom square. From the van Kampen theorem, we
have IT;(BN! Ug, BN?,x) 5 II}(BN', X) *n,(pLx) I11 (BN?, x), and thus we
conclude that IT;(B(N' x; N2),x) S I1;(BN' Ug, BN?, x).

ProoF oF (II). Again, considering Diagram 3.1, we let T be a morphism-
inverting functor from N to Ab and 1 be the category with one object and
one morphism. Then consider

I

iz k jl
. Y
Nz___JZ—>N1*LN2 =N
T
\
1 Ab

By first pulling 7 back to each of the other categories, then taking the appro-
priate Kan extensions, we get the following commutative diagram in Ab".

Lang k*T —2— Lan,, jiT

N I
Lan;, j;T —, r

DIAGRAM 3.2
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The maps in this diagram come from adjoint pairs of the form Lan;j, j*,
where j = iy, i, j1,j» or k. For instance, Lan, k*T = Lan; ; (j,i))*T =
Lanj,(Lan;, i7)j; T — Lanj, j; T by ¢;,. This diagram commutes from straight-
forward application of properties of adjoints, Lan, etc. Further useful prop-
erties of this diagram are proved in the following lemmas.

LEMMA 1. The map (¢, €;,): Lang, k*T — Lan; jiT @ Lany, j3T is an
injection.

ProOOF. We observe that for i: L — M a right-free inclusion, M, we may
exploit the bijection M(x,y) < L(x,y) I (II,¢; M(z,y) x L(x, z)) to write
(Lan; F) is a particularly simple way. We do this by writing (Lan; F)(y) as
a co-end (denoted by an integral sign), then using the fact that N(x, —) is in
Sets® [9, pages 236-239], we get

(Lan; F)3) = [ " N(z.y) x F(2)

_ / [L(z,y) 1 (]_[ N(z, ) x L(z,z’))] x F(z)

z'el

- / [L(z,y) x F(z)1I [H N(Z',y) x L(z, z')J x F(z):l ,

z'el

by the definition of right-free inclusion and the fact that colimits commute.
The left Kan extension along an identity map leaves the functor unchanged
so [* L(z,y) x F(z) is merely F(y), and since N(z’,y) contains no variable
of integration, we pull it out from under the integral sign [9, page 210]. Thus

(Lan; F)(y) = F(y) I [H N(z',) x / LGz, 2) x F(zn}
z'el

=F(y)1I []_[ N(z',y) x F(z’)] .

z'el
Thus we have the following expression
(Lan; F)(y) = F(») I [H N(z,y) x F(z)] :
zel

Using this expression for (Lan; F)(y), it is easy to see that Lan; preserves
injections whenever / is a right-free inclusion.
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We can now rewrite Diagram 3.2, evaluated at y, in the following manner.

1011 ([[NGy) x 7)) — 70)1 (16 ) < 7))

z€l zel
o |
1)1 ([[64z.) < T(2)) . T(y)
zel

This diagram is in the category of abelian groups. The maps are clear for
elements T(y). By the corollary to Theorem 1 we have N = G' 11 G2. If (n, )
is such that n € G', then n = g'n’, where g € G2 org'=1and n ¢ N!. In
this case (n, ) is mapped as in the diagram below.

8,’l

(ll, t) - (n5 t)

“| 1

(8, T(')(1)) —— (T(@)T(')(1)) = (T(m)(2))
A similar statement holds in the case that n € G2.
Let (n,?) € kere¢;, Nkere;,. Suppose that n € G!, then

(&, T()() = (n,7) 5 (m, 1) = (n, 0)

which implies ¢ = 0. The argument is the same if n € G?, and thus ker(e;, &;,)
= {0}, and (¢;, &;,) is an injection.

LEMMA 2. Diagram 3.2 is a pushout.

PrOOF. We consider the following diagram in Sets™.

8.
Langk*T ———» Lan;, j:T

€iy €jy

Lan,j37 2 , T i

%)
S

Given y»¢;, = €, we obtain 8: T — S from the following commutative
diagram.
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*
8/1

Sets N (T, S) ~Sets "(Lan;, j; T, S) y,

N\ 4

Sets (T, §)———s-Sets N (i1 T, ji S)

J2 i

Sets™'(j3T, j38) ———,SetsN(k* T k*5)

7 N

&} Y

b —Sets N(Lan k* T, S)

N

Sets "(Lan,, j; T, S)

'

v —T = Y&, = Y1,

We take the adjunctions of v, v, and t = y1¢;, = y;¢;,, thereby moving
from the outer square to the inner square. These adjunctions agree on objects,
so we can define 8 = ¢t and show it will satisfy the necessary commutativity
conditions for naturality.

From the word theorem, any w € N = N! «x; N2 can be written uniquely
as w = myn;_, - --nyn;/ where the n; come alternately from N! and N2, / € L.
If x -y, for x,y € N, then the following diagram

T(x) =25 T(p)

.| [#

S(x) =2, §(x)

DiAGrRAM 3.4

can be expanded to the following form
T(ny)

Tx) 2% 7o) % T(xn) —- — Tx) 2% 7()

lox lo,l 160 l% 10y

S(x) '§'(‘Q’ S(xy) Ste), S(x) —--— Sx) S(m,) S)

where x - x1 3 x; — -~ > x; 3 y. Each square in this ladder lies entirely
in L, N1, or N2, and commutes because 8 is a natural transformation in the
appropriate category.
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The commutativity of each square gives the commutativity of Diagram 3.4.
Thus, 6 is a natural transformation from T to S. The uniqueness of 8 fol-
lows from the commutativity requirements it must satisfy and the universal
property of the left Kan extension.

We now complete the proof of (II). Since Diagram 3.2 is in Ab", an abelian
category, Lemmas 1 and 2 give the following exact sequence.

0 — Lang k*T — Lanj, jiT @ Lan;, j;T - T —0
This, in turn, yields the long exact sequence
-~ — H,(N,Lan, k*T) — H,(N,Lan; jiT)
® H,(N,Lanj, j5T) = H,(N,T) — ---

from the commutativity of H, with &.

Since for any right-free inclusion, i: M — N, Lan; preserves injections,
we have H,(N, Lan,; i*T) ~ H,(M,i*T). Thus we may rewrite the long exact
sequence to yield the top row of the following diagram.

= Ha(L,k*T) —  Ha(NjIT)® Ho(N2,j5T) — Hp(N,T) — -+
2 T 2 T 2 IH,,(BN,AT)
-+ = Hy(BL,k* A7) — Hn(BN',j} A7) ® Hn(BN?, j3 A7) — Hn(BN'Ugy BN?, A7) — ---
where Ar is the local coefficient system associated with 7. Using the 5-
Lemma we get H,(BN' Ugy BN?, A7) = H,(B(N' *; N?), A7).

4. Construction of a mapping cylinder

Let L, N be two categories in Cat; and f: L — N be a functor which is the
identity on objects. The following theorem allows us to construct a mapping
cylinder, Cyl(f), for the functor f.

THEOREM 3. There exists a factorization of f

Cyl(f)

L N

with the following properties:
(i) pi=f;
(ii) i is a right-free inclusion;
(ii1) p is a homotopy equivalence.
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Proor. We describe the mapping cylinder in terms of generators and re-
lations, that is,

CyI(f) = (L, M, tx|tya = atx, t,f = Bty ta =1t, f(a),
and 2 =t,, fora,f: x > y,a€ L, € N,x,y € I).

Consider the following diagram in Cat;.

Cyl(f)

The functors i, j, i’, j' are the obvious inclusions, and p is defined as the
identity on objects and on generators of Cyl(f) by

p(@) = fla), a€lL,
p(B)=B, BEN,
D(ty) = 1y.

Property (i) is satisfied by definition of p. To show property (ii), that the
inclusion i: L — Cyl(f) is right-free, we note that i’ is right-free inclusion
and show that (i’ j’) is also. Then i = (i’ j') o i’ will be a right-free inclusion,
since composition preserves this property. We now show that (¢ j'): L« N —
Cyl(f) is a right free inclusion with generators Cyl(f) = {¢,|x € I}. It is clear
that (i’ j') is an inclusion and we need only show that any element y € Cyl(f)
can be written in a unique way as w or f,w where w € L * N. Note that the
defining relations of Cyl(f) and the definition of p imply that forw € Lx N,
wity = tyw = typ(w), suppressing the notation for the inclusion, j. Any
element, y, in Cyl(f)\L * N can be written as the product of generators,
that is, y = w twyt---twy, where w; € L* N. Then y = twyw;---w, =
tp(wiwy - - - wy). Observe that p(y) = p(w)p(ws) - - p(wi) = p(wiwz - - Wy),
so we can write ¥y = tp(y). The uniqueness follows immediately from the fact
that y; = y, implies that p(y,) = p(y2).

We know that p; = 1y, so to show that p is a homotopy equivalence, it is
sufficient to show there is a natural transformation jp — l¢y s since such a
transformation becomes a homotopy when we apply the classifying functor.
We define T': jp — lcyy s by Tx = tx and observe that for y: x — y in Cyl(f)
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the following diagram commutes, showing that T satisfies the conditions for

naturality.
x — o x
lc,lmml ljp(r)
y L, y
Thus, pj = 1y and l¢ys) = jp, and we conclude that p is homotopy equiv-
alence.

5. Embedding a category into semi-groupoid
of the same homotopy type

To prove the last theorem, we need the following result from graph theory:
every connected category, L, has a contractible subcategory, Lj, with at most
one morphism between any two objects (that is, Ly is a preorder), and Ob L =
Ob L.

We are now ready to prove our main result.

THEOREM 4. Given a connected category L, we can embed it by a right-
free inclusion in a semi-groupoid, N, where the inclusion induces a homotopy
equivalence.

PrOOF. Let L be a contractible subcategory of L, with Ob Ly = Ob L and
I(Lg) the indiscrete category containing Lg. Using the mapping cylinders of
ir: Lo — L and ij: Ly — I(Ly), respectively, we take the push-out indicated

in the diagram below.
L
i

Ly ————— Cyl(iy)

iI/
I(Lo) i J

Pl\

oyliy) — 2
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The maps / and i’ are the right-free inclusions of L, into the mapping cylin-
ders Cyl(i.) and Cyl(i;), respectively. Thus the terminal legs, j and j’, of
this push-out are right-free inclusions, by the corollary to Theorem 1. The
map I(Lg) — Cyl(iy) is a right-free inclusion by Theorem 3, therefore I(L)
is contained in N as a subcategory, making N a semi-groupoid. Then by
Theorem 2, we have BN =~ B(Cyl(i.))Upr, B(Cyl(i;)) ~ BLUgr,BLy ~ BL.

Since any semi-groupoid is the product of a contractible category and a
monoid, the homotopy type of a monoid at any vertex of a semi-groupoid
is the same as that of the entire semi-groupoid. Thus, for any connected
category in Cat;, we can find a monoid with the same homotopy type.

The mapping cylinder is constructed so that, if we start with a category,
L, presented in terms of generators and relations, then the mapping cylinder
constructed from L will be in terms of generators and relations. This implies
the same is true of the semi-groupoid constructed in Theorem 4. If we denote
by N(xg, xg) the monoid at a fixed vertex, xg, of N, then ¢: N — I(Lg) x
N(xp,x0) takes n: x — y to (I,I='n): (x,x0) — (¥, x0), where [ € I(Lgy),n €
N, and!/: x — y. By composing with the canonical projection onto N(xo, Xp),
we have a surjection of N onto N(xg, Xo). Using this surjection, we can easily
show that the monoid at any fixed vertex is presented by the generators and
relations of N pulled back to that fixed vertex by the isomorphisms provided
by I(Ly).

The cardinality of new morphisms introduced is that of I, the cardinality
of new relations is that of the morphisms of L. If L is finitely or countably
presented then the associated monoid can be presented likewise. This con-
struction can be carried out explicitly once the selection of a spanning tree
for L has been made.

References

[1] G. Baumslag, E. Dyer and A. Heller, “The topology of discrete groups,” J. Pure Appl.
Algebra 16 (1980), 1-47.

[2] H. Cartan and S. Eilenberg, Homological algebra (Princeton Univ. Press, Princeton, N.J.,
1956, 116-119 and 149-150).

[3] P. J. Hilton and U. Stammbach, 4 course in homological algebra (Springer-Verlag, New
York, Heidelberg, Berlin, 1971).

[4] D. M. Kan, “Adjoint functors,” Trans. Amer. Math. Soc. 87 (1958), 294-329.

[5] D. M. Kan and W. P. Thurston, “Every connected space has the homology of a K(=#,1),”
Topology 15 (1976), 235-258.

[6] A. G. Kurosh, The theory of groups, transl. by K. A. Hirsch (Chelsea, 1956).

[7] D. M. Latch, “The uniqueness of homology for the category of small categories,” J. Pure
Appl. Algebra 9 (1977), 221-237.

https://doi.org/10.1017/51446788700031621 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700031621

[15] On the homotopy theory of monoids 185

[8] D. M. Latch and R. Fritsch, “Homotopy inverses for nerve,” Bull. Amer. Math. Soc. (N.S.)
1 (1979), 258-262.

[9] S. Mac Lane, Categories for the working mathematician (Springer-Verlag, New York, 1971).
[10] D. McDuff, “On the classifying spaces of discrete monoids,” Topology 18 (1979), 313-319.
[11] D. G. Quillen, “Higher algebraic K-theory 1,” Algebraic k-theory 1, pp. 85-147 (Lecture

Notes in Mathematics, 341, Springer, New York, Heidelberg, Berlin, 1973).
[12] G. G. Segal, “Classifying spaces and spectral sequences,” Publications in Mathematics 34,
pp. 105-112 (Institute Haute Etudes Science, 1968).

[13] J. H. C. Whitehead, “On the asphericity of regions on a 3-sphere,” Fund Math. 32 (1939),
149-166.

[14] J. H. C. Whitehead, “Combinatorial homotopy. I,” Bull. Amer. Math. Soc. 55 (1949), 213-
245.

William Paterson College
Department of Mathematics
Wayne, New Jersey 07470
US.A.

https://doi.org/10.1017/51446788700031621 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700031621

