
1

Introduction

This book describes how to design the real-time software for embedded systems.This
chapter provides an overview of real-time embedded systems and applications and
then describes the major characteristics of real-time embedded systems, both cen-
tralized and distributed.This chapter also provides an overview of the emerging field
of cyber-physical systems, for which real-time software is a critical component. This
chapter then introduces COMET/RTE, the real-time software design method for
embedded systems described and applied in this book, which uses the Unified Mod-
eling Language (UML), Systems Modeling Language (SysML), and MARTE (Mod-
eling andAnalysis of Real-Time Embedded Systems) visual modeling languages and
notations.

1.1 THE CHALLENGE

In the twenty-first century, a growing number of commercial, industrial, military,
medical, and consumer products are real-time embedded software intensive sys-
tems, which are either software controlled or have a crucial software component
to them. These systems range from microwave ovens to Blu-rayTM video recorders,
from driverless trains to driverless automobiles to aircraft that “fly by wire,” from
submarines that explore the depths of the oceans to spacecraft that explore the far
reaches of space, from process control systems to factory monitoring and control
systems, from robot controllers to elevator controllers, from city traffic control to air
traffic control, from “smart” sensors to “smart” phones, from “smart” networks to
“smart” grids, an ever-growing volume of mobile and pervasive systems – the list is
continually growing. These systems are concurrent, real-time, and embedded. Many
of them are also distributed. Real-time software is a critical component of these
systems.

1.2 REAL-TIME EMBEDDED SYSTEMS AND APPLICATIONS

A real-time embedded system is a real-time computer system (hardware and soft-
ware) that is part of a larger system (called a real-time system or cyber-physical sys-
tem) that typically has mechanical and/or electrical parts, such as an airplane or

3

https://doi.org/10.1017/CBO9781139644532.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139644532.002

4 Overview

Input from
Sensor

Input from
Sensor

Input from
Sensor

Output to
Actuator

Output to
Actuator

Output to
Actuator

(UML Deployment Diagram)

Figure 1.1. Real-time embedded system.

automobile. A real-time embedded system interfaces to the external environment
through sensors and actuators, as depicted in Figure 1.1. An example of a real-time
embedded system is a robot controller that is a component of a robot system con-
sisting of one or more mechanical arms, servomechanisms controlling axis motion,
multiple sensors to provide inputs to the system from external devices, and multiple
actuators to control external devices.

Real-time systems are computer systems with timing constraints. The term real-
time system usually refers to the whole system, including the real-time application,
real-time operating system, and the real-time I/O subsystem, with special-purpose
device drivers to interface to a variety of sensors and actuators.Although the empha-
sis in this book is on designing real-time software, in order to develop high-quality
real-time software, it is necessary to consider the complete real-time system, since
many software quality attributes, such as performance, availability, safety, and scala-
bility, are heavily dependent on the total hardware/software system.

Real-time systems are often complex because they have to deal with multiple
independent sequences of input events and producemultiple outputs.Frequently, the
order of incoming events is not predictable. In spite of input events having arrival
rates and sequences that might vary significantly and unpredictably with time, the
real-time systemmust be capable of responding to these events in a predictable man-
ner within timing constraints specified in the system requirements.

Real-time systems are frequently classified as hard real-time systems or soft real-
time systems. A hard real-time system, such as a driverless car or train, has time-
critical deadlines, such as an emergency stop in front of an obstacle,which must
always bemet in order to prevent a disastrous system failure.A hard real-time system
in which a system failure could be catastrophic is also called a safety-critical system
(Kopetz 2011). A soft real-time system, such as an interactive Web-based system, is

https://doi.org/10.1017/CBO9781139644532.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139644532.002

Introduction 5

Real-Time Embedded Application

Computer Hardware

Real-Time Operating System

Figure 1.2. Layered architecture of a real-time embedded system.

a real-time system in which missing timing deadlines occasionally, such as response
time to a user input, is considered undesirable but not catastrophic.

A real-time embedded system can be designed to have a layered system archi-
tecture, as shown in Figure 1.2, consisting of the real-time embedded application,
the real-time operating system (with the likely addition of special-purpose device
drivers), and the computer hardware.

1.3 CHARACTERISTICS OF REAL-TIME EMBEDDED SYSTEMS

Real-time embedded systems (both centralized and distributed) have several char-
acteristics that distinguish them from other software systems:

a) Interaction with the external environment. A real-time embedded system
interacts with an external environment that is to a large extent nonhuman.
For example, the real-time system might be controlling machines or manufac-
turing processes, or it might be monitoring chemical processes and reporting
alarm conditions.

b) Sensors and actuators. Interaction with the external environment necessitates
sensors for receiving data from the external environment and actuators for
outputting data to and controlling the external environment (see Figure 1.1).

A sensor is a device that detects events or changes in a physical property
(e.g., temperature) or entity (e.g., switch) and converts the measurement (e.g.,
of temperature) or event (e.g., switch on) into an electrical or optical signal.
For example, a thermocouple is a sensor that converts a measurement of tem-
perature into an analog voltage. An analog-to-digital converter then converts
the analog voltage into digital inputs to a real-time computer system (Kopetz
2011, Lee and Seshia 2015).

An actuator is the means by which a real-time computer system can con-
trol an external device or mechanism.Many actuators are devices that convert
electrical energy (e.g., in the form of a current) into some kind of motion, for
example to open or close a door, or to switch a light on or off.

c) Measuring time. A real-time system models the passage of time from the past
through the present and into the future. An event occurs at an instant of time
(conceptually lasting zero time).A duration is an interval of time between two

https://doi.org/10.1017/CBO9781139644532.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139644532.002

6 Overview

Speed
Control Motor

Set Point:
Cruising Speed

Enable/Disable

Controlled variable = current speed

Adjustment to
Apply Voltage -> Current SpeedTrain Speed

Note: This figure does not conform to the UML notation.

Figure 1.3. Speed control algorithm for automatically controlled train.

events, a starting event and a terminating event.A period is a measurement of
recurring intervals of the same duration.

There are different units of time in a real-time system. Execution time is
the CPU time taken to execute a given task on a CPU (or CPUs in a multipro-
cessor system).Elapsed time is the time to execute a task from start to finish,
which consists of the task execution time in addition to blocked time, which
is waiting time when the task is not using the CPU, including waiting for I/O
operations to complete, waiting for messages or responses to arrive, waiting
to be assigned the CPU, and waiting for entry into critical sections. Physical
time (or real-world time) is the total time for a real-time command to be com-
pleted, for example, to stop a train, which includes the elapsed times of the
software tasks involved and then the much longer time required to stop the
train physically by applying the brakes and gradually slowing down to a halt.

d) Timing constraints. Real-time systems have timing constraints; in particular,
they must process events within a given time frame.Whereas in an interactive
system, a human might be inconvenienced if the system response is delayed,
a delay in a real-time system might be catastrophic. For example, inadequate
response in an air traffic control system could result in a midair collision of two
aircraft. The required response time will vary by system, ranging frommillisec-
onds in some cases to seconds or even minutes in others.

e) Real-time control.A real-time embedded system often involves real-time con-
trol. That is, the real-time system makes control decisions based on input data
and the current state, without any human intervention. A driverless train has
to control themotion of the train automatically, starting from a stationary posi-
tion, increasing and decreasing speed, cruising at constant speed, slowing down
or stopping in the presence of obstacles, and stopping at stations along the
route.

In some real-time embedded systems, the control function can be viewed as
a process control problem (Kopetz 2011), as shown in Figure 1.3. For example,
consider the speed control algorithm in an automatically controlled driverless
train. The speed control algorithm has a set point, which is the target cruis-
ing speed, and a controlled variable, which is the current speed of the train.

https://doi.org/10.1017/CBO9781139644532.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139644532.002

Introduction 7

The speed control algorithm compares the set point with the controlled vari-
able with the goal of increasing or decreasing the current speed of the train as
required to make the current speed equal to the cruising speed, plus or minus
some small delta value. The positive or negative speed adjustments are con-
verted into electrical voltage and applied to the electric motor, which in turn
increases or decreases the speed of the train.A train speed sensormeasures the
current speed of the train – the controlled variable – and sends the measured
speed to the software at regular intervals.

f) Reactive systems. Many real-time systems are reactive systems (Harel and
Politi 1998). They are event driven and must respond to external stimuli. It
is usually the case in reactive systems that the response made by the system
to an input stimulus is state dependent; that is, the response depends not only
on the stimulus itself but also on what has previously happened in the system,
which is captured as the current state of the system.

g) Concurrency. Concurrent tasking is an effective solution to the design of real-
time embedded systems because it reflects the natural parallelism that exists
in the real-time problem domain, in which there are typically many real-world
events occurring in parallel. For example, in an air traffic control system, the
system is monitoring several aircraft, so many activities are occurring in par-
allel. Changes in weather conditions can lead to unexpected loads and unpre-
dictable patterns of behavior in the system. A design emphasizing concurrent
tasks is clearer and easier to understand because it is a more realistic model of
the problem domain than a sequential program. In multiprocessing systems,
such as multicore systems, concurrent tasks can take advantage of multiple
CPUs, since any given task can execute in parallel with other tasks executing
on other CPUs.

1.4 DISTRIBUTED REAL-TIME EMBEDDED SYSTEMS

Many real-time systems are also distributed. A distributed real-time embedded sys-
tem executes in an environment consisting of multiple nodes that are in locally or
geographically separated locations. In the example given in Figure 1.4, each node
consists of a real-time embedded subsystem. Locally separated nodes are connected
to each other bymeans of a local area network,while geographically separated nodes
are connected to each other by means of a wide area network.

A distributed real-time embedded system has the following advantages:

Distributed control. Instead of being centralized, control is distributed among
several interconnected nodes in configurations that can be hierarchical or peer-
to-peer.

Improved availability. Operation is feasible in a reduced configuration in cases
in which some nodes are temporarily unavailable. It is advantageous to design
the system such that it has no single point of failure.

Flexible configuration. A given system can be configured in different ways by
selecting the appropriate number of nodes for a given instance of the system.

Localized control and management. A distributed subsystem, executing on its
own node, can be designed to be autonomous, so it can to a large extent execute
independently relative to other subsystems on other nodes.

https://doi.org/10.1017/CBO9781139644532.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139644532.002

8 Overview

RT Embedded
Subsystem -

Node 1

«local area network»

RT Embedded
Subsystem -

Node 5

RT Embedded
Subsystem -

Node 4

RT Embedded
Subsystem -

Node 3

RT Embedded
Subsystem -

Node 2

Figure 1.4. Example of distributed real-time embedded system.

Incremental system expansion. If the system gets overloaded, the system can be
expanded by adding more nodes.

Load balancing. In some systems, the overall system load can be shared among
several nodes and can be dynamically adjusted with varying loads.

Figure 1.5 depicts an example of a layered architecture for a distributed real-time
embedded system in which the distributed nodes are interconnected by means of
a local area network. Each node consists of several layers, which are the real-time
embedded application software, middleware, real-time operating system, and com-
munication software, with the computer and network hardware at the lowest layer.
Compared to Figure 1.2, there are additional middleware and communication soft-
ware layers, as well as additional network hardware in the hardware layer. The com-
munication software allows distributed nodes to communicate with each other using
network protocols, such as the Internet Protocol (IP).Middleware is a software layer
that lies above the operating system and communication software to provide a uni-
form platform above which distributed applications can run (Bacon 2003), for exam-
ple, to provide message communication between applications executing on different
nodes. Distributed operating systems often integrate the middleware into the oper-
ating system.

https://doi.org/10.1017/CBO9781139644532.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139644532.002

Introduction 9

«local area network»

Distributed real-�me node

RT Embedded Application Software

Middleware

Computer + Network Hardware

RT Operating System

Communication Software

Distributed real-�me node

RT Embedded Application Software

Middleware

Computer + Network Hardware

RT Operating System

Communication Software

Figure 1.5. Example of layered architecture of a distributed real-time embedded system.

1.4.1 The Internet of Things

The Internet of Things (IoT) is a concept of interconnecting physical things to the
Internet.This is achieved by connecting remote sensors and actuators to the Internet,
with the objective of providing remote access to sensor data and remote control of
physical devices over the Internet (Kopetz 2011). RFID is a technology that can be
used to enable the connection of physical things (referred to as smart objects) to the
Internet. A low-cost electronic RFID tag is attached to a physical product, allowing
the product to become a smart object that can be uniquely identified over the Inter-
net. The IoT provides a means for integrating real-time embedded systems with the
Internet.

1.5 CYBER-PHYSICAL SYSTEMS

A National Science Foundation vision statement describes cyber-physical systems
(CPS) as “smart networked systems with embedded sensors, processors and actua-
tors that are designed to sense and interact with the physical world, and support real-
time,guaranteed performance in safety-critical applications. InCPS systems, the joint
behavior of the ‘cyber’ and ‘physical’ elements of the system is critical – computing,
control, sensing and networking can be deeply integrated into every component, and
the actions of components and systems must be safe and interoperable” (Lee and
Seshia 2015).

The design of cyber-physical systems considers the design and integration of both
the embedded cyber system and the physical processes. Furthermore, the real-time
software design of cyber systems, which monitor and control the physical processes,
is critical in the design of cyber-physical systems.

The automated driverless train described in Section 1.3 is an example of both
an embedded system and a cyber-physical system. In the design of the train CPS,
the design of physical systems such as the electric motor, braking system, speed con-
trol system, and transmission, etc. have to be considered in addition to the design of
the embedded cyber system consisting of the computer hardware, real-time software,

https://doi.org/10.1017/CBO9781139644532.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139644532.002

10 Overview

and network. Computational algorithms need to be designed for controlling physi-
cal processes such as the electric motor and the braking system. Designers of these
algorithms need to have an intimate knowledge of the design and operation of these
physical systems.

1.6 REQUIREMENTS FOR REAL-TIME SOFTWARE DESIGN METHOD
FOR EMBEDDED SYSTEMS

A real-time software design method for embedded systems needs to be capable of
addressing the following characteristics of a real-time embedded system:

■ Structural modeling – tomodel the problem domain,boundary of the total (hard-
ware and software) system, interface between hardware and software compo-
nents, and the boundary of the software system.

■ Dynamic (behavioral) modeling – to model the interaction sequences between
system and software artifacts at the requirements, analysis, and design levels.

■ State machines – to react to external events as determined by both the input and
the current state of the system.

■ Concurrency – to handle multiple input sequences and unpredictable loads by
modeling activities that execute in parallel with each other.

■ Component-based software architecture – to provide an architecture consisting
of concurrent object-oriented components and connectors, such that components
can be deployed to different nodes in a distributed environment.

■ Performance analysis of real-time designs – to analyze the performance of the
real-time system before its implementation to provide an early determination of
whether the system will meet its performance goals.

These requirements are all addressed by theCOMET/RTE real-time software design
method for embedded systems described in this book. How these requirements are
addressed byCOMET/RTE is described inChapter 4.An overview of COMET/RTE
is given next.

1.7 COMET/RTE: A REAL-TIME SOFTWARE DESIGN METHOD
FOR EMBEDDED SYSTEMS

This book describes a software modeling and architectural design method called
COMET/RTE (Concurrent Object Modeling and Architectural Design Method
for Real-Time Embedded Systems), which is tailored to the needs of real-time
embedded systems.COMET/RTE is an iterative use case–driven and object-oriented
method that addresses the requirements, analysis, and design modeling phases of the
system and software development life cycle.

Structural modeling is used to analyze the problem domain from a systems engi-
neering perspective, identifying the static structure of the total hardware/software
system and then the boundary between hardware and software.Requirements model-
ing is used to determine the functional and nonfunctional requirements of the system.
In use case modeling, the functional requirements are described in terms of actors
and use cases. In analysis modeling for real-time embedded systems, the empha-
sis is on dynamic modeling. The use cases are realized to describe the objects that
participate in the use case and their interactions. The state dependent parts of the

https://doi.org/10.1017/CBO9781139644532.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139644532.002

Introduction 11

system are analyzed using state machines. In design modeling, the software architec-
ture is developed, addressing issues of distribution, concurrency, and object orienta-
tion. Concurrent components use a blend of object-oriented and concurrency con-
cepts to enable the distribution of components among several nodes in a distributed
configuration.

1.8 VISUAL MODELING LANGUAGES: UML, SYSML, AND MARTE

The Unified Modeling Language (UML) is a standardized visual modeling language
and notation for describing software requirements and designs. For the UML nota-
tion to be applied effectively, however, it needs to be used with an object-oriented
analysis and design method. Although UML is sufficient for modeling most soft-
ware applications, it needs to be supplemented for modeling real-time embedded
systems. The Systems Modeling Language (SysML) is used to model the total hard-
ware/software system from a systems engineering perspective. MARTE provides
UML extensions for modeling real-time systems.

Modern object-oriented analysis and design methods are model-based and use
a combination of use case modeling, static modeling, state machine modeling, and
object interaction modeling. Almost all modern object-oriented methods (such as
COMET,as described inGomaa 2011) use theUMLnotation for describing software
requirements, analysis, and design models (Booch et al. 2005; Fowler 2004; Rum-
baugh et al. 2005). This book describes how COMET/RTE can be used to design
real-time embedded systems using a blend of the UML, SysML, and MARTE mod-
eling languages and notations.

1.9 SUMMARY

This chapter has described the characteristics of real-time embedded systems and
applications. It has provided overviews of the COMET/RTE design method for
real-time embedded systems and of its use of visual modeling languages and nota-
tions. Chapter 2 provides an overview of the UML, SysML, and MARTE model-
ing language and notations, in particular those parts that are used by COMET/RTE.
Chapter 3 describes the fundamental design concepts on which concurrent object-
oriented design for real-time embedded systems is based. It describes object-oriented
concepts, the concurrent tasking concept including task communication and synchro-
nization, as well as operating system support for concurrent tasks. Chapter 4 pro-
vides an overview of the COMET/RTE design method as well as the system and
software life cycle for real-time embedded systems. Chapters 5 through 18 describe
the details of the method, and Chapters 19 through 23 describe case studies of apply-
ing COMET/RTE to design real-time embedded systems.

A comprehensive and wide ranging textbook on real-time systems is Kopetz
(2011). Other informative textbooks on real-time systems are Burns and Wellings
(2009), Laplante (2011), Lee and Seshia (2015), and Li and Yao (2003).

https://doi.org/10.1017/CBO9781139644532.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139644532.002

