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A MAXIMUM PRINCIPLE FOR 
DIRICHLET-FINITE HARMONIC FUNCTIONS ON 

RIEMANNIAN SPACES 

Y. K. KWON AND L. SARIO 

Representations of harmonic functions by means of integrals taken over 
the harmonic boundary AR of a Riemann surface R enable one to study the 
classification theory of Riemann surfaces in terms of topological properties 
of AR (cf. [6; 4; 1; 7]). In deducing such integral representations, essential 
use is made of the fact that the functions in question attain their maxima 
and minima on A^. 

The corresponding maximum principle in higher dimensions was discussed 
for bounded harmonic functions in [3]. In the present paper we consider 
Dirichlet-finite harmonic functions. We shall show that every such function 
on a subregion G of a Riemannian iV-space R attains its maximum and 
minimum on the set ( G H AR) U dG, where dG is the relative boundary of 
G in R and the closures are taken in Royden's compactification R*. As an 
application we obtain the harmonic decomposition theorem relative to a 
compact subset K of R* with a smooth d(K f~\ R). 

We start by stating in § 1 some preliminary results, using the notation 
and terminology of [3]. In § 2 we prove a topological correspondence of 
Royden's compactification G* of a subregion G and its closure G in R*. The 
maximum principle for Dirichlet-finite harmonic functions and the harmonic 
decomposition theorem are established in § 3. 

1. Given a Riemannian iV-space R, Royden's algebra M(R) consists of 
bounded real-valued continuous functions on R with finite Dirichlet integrals 
over R. Royden's compactification R* of R is defined by the following 
properties: 

(i) R* is a compact Hausdorff space, 
(ii) R is an open dense subspace of R*, 

(iii) every function in M(R) has a continuous extension to R*, 
(iv) M(i?) separates closed sets in R*. 
The vector lattice $I(i?) of Dirichlet-finite real-valued continuous functions 

on R is complete in the CD-topology: if / = CD-limw/n on R for fn £ $l(R), 
i.e., DR(f — fn) - > 0 a s w - ^ o o and {fn} converges to / uniformly on compact 
subsets of R, then / £ M(R). If we further have uniform boundedness of 
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{fn} on R we write / = BD-l'imnfn on R. Clearly M(R) is BD-complete. 
For a detailed discussion we refer the reader to [1; 7]. 

Let Mo(i^) be the algebra of functions in M(i£) with compact supports in 
R and MA(R) the BD-closure of M0(R) in M(R). The harmonic boundary 
AR = {p ç. R*\f(p) = 0 for a l l / G MA(R)} is a compact subset of the Royden 
boundary TR = R* - R. The CD-closure MA(R) of M0(R) in M(R) also 
plays an important role in our discussion. 

The following theorem was proved in [3]. For any non-empty compact 
subset E of TR — AR, there exists an Evans superharmonic function, i.e., a 
positive continuous function v on R*, superharmonic on R, such that v = 0 
on AR, v = oo on E, and v has a finite Dirichlet integral on R. 

2. Let G be a subregion of a given Riemannian iV-space R. We can construct 
two compactifications of G, viz., Royden's compactification G* of G and the 
closure G of G in R*. First we shall show that there is a topological relation 
between them (cf. [7]). 

PROPOSITION 1. There exists a unique continuous mapping rj of G* onto G 
such that 

(i) v(P) = p for p £ G, 
(ii) f(P*) = f(v(P*)) for p* G G* and f G M(R). 

Proof. Observe t h a t / | G belongs to M(G) for e v e r y / G M(R) and s o / | G 

has a continuous extension to G*. 
For each p* G G* define a character xp* on M(G) by xp*(g) = g{p*) for 

all g G M (G). We can consider Xp* a s a character on M(i£) by the above 
observation. We shall first show that there exists a unique point rj(p*) G G 
such that xp*(f) = f(v(P*)) for a l l / G M(i?). Since M(i?) separates points 
in i?*, the uniqueness of such an rj(p*) is obvious. 

Let I = {/ G M(i?)| #**(/) = 0 } . It is easy to see that 7 is a non-trivial 
maximal ideal of the algebra M(R). Suppose that there exists an fp G 7 for 
each p G G such that /^(^) ^ 0. On squaring and then multiplying by a 
constant we may assume that /^ ^ 0 on R and fp(p) > 1. Since G is compact, 
there exists a finite subset {pi, . . . , >̂w} of G such that 

/=£/*,•>! 
on G. Define/on i?* b y / ( £ ) = / ( £ ) for/(£) > 1 and f(p) = 1 for/(/>) ^ 1. 
Clearly / _ = / on G and / G M(i?). Hence xp*(f) = xp*(f) = 0 since / G 7 
and 1 = / • (1//) G I, which violates the maximality of 7. We have shown 
that there exists a unique point rj(p*) G G such that f(rj(p*)) = 0 for all 
/ G 7. For a n y / G M(R),f-f(p*) G 7 and/(??(£*)) =/(/>*). 

We can define a mapping 77: G* —» G such that 

/(*>*) =/0» (*>*)) 
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for all p* G G* and / G M(R). Since M(R) separates points in R*, rj(p) = p 
for p (z G. To prove the continuity of rj choose an arbitrary net 

î^x* G G* I X G A and A is a directed set} 

which converges to p* in G*. Since eve ry / G M(i?) can be considered as a 
continuous function on G*, the net {/(£x*)| X G A} converges to f(p*). Since 
fifix*) = /0?(Px*)) and/(^*) = /fote*)), the net { / (^x*) ) | X G A} converges 
to f(v(P*)) for all / G M(i?), and ??(£*) is a cluster point of the net 
{^(^x*)! X G A} in G in view of the Urysohn property of M(R). Since G is 
compact, it suffices to show that rj(p*) is the unique cluster point in G. On 
the contrary, suppose that there exists a subnet { (̂̂ x»*)} which converges 
to p in G with p ^ v(p*). Choose an / G M(i?) such that f(p) ^f(v(p*)). 
On the other hand, 

f(p) = lhnf(n(p,*)) = l im/( , fo*)) = /(*(*>*)), 
Xi X 

a contradiction. 
It remains to show that 77 is surjective. Let p be an arbitrary point in G. 

Since G is dense in G, there exists a net { x̂| X G A} in G which converges 
to p in G. Since i?x G G C G* and G* is compact, we may assume that the net 
{px\ X G A} converges to a point p* in G*. For eve ry / G M(i?), 

/ (£) = l imx / (&) = /(/>*) 
and so p = rj(p*). 

In general, the projection 77: G* —> G is not a homeomorphism but its 
restriction to a certain subset of G* yields a homeomorphism. This result is 
essential for the proof of the maximum principle for Dirichlet-finite harmonic 
functions. 

We are ready to show the following result (cf. [7]). 

PROPOSITION 2. Let 0(G) = (G — dG) C\ TR. Then the projection 

v: {p* G G*| v{p*) £GV /3(G)} -+ G U 0(G) 

is a surjective homeomorphism. 

Proof. In view of the previous proposition, all we have to verify is that rj 
is injective and r\~1 is continuous. 

First we shall show that rj is injective. Suppose that there existed two points 
p1*,p2*inG* such that v^*) = 77(̂ 2*) = p G G U 0(G). Choose a g G M (G) 
such that g (pi*) 9^ g(p2*). Since {p} and (R — G) are disjoint closed subsets 
of R*, there exists a function / G M(R) such that / (£ ) = 1 and / = 0 on 
(R — G). Clearly /g G M (G). Since / = 0 on R — G, we can consider fg as 
an element of M(R). By Proposition 1, 

(fg)(p) .= (fg)(v(pi*)) = (/*)(*<*) =f(pt*)g(pi*) =i(pk(pn = g(pi*), 
i = 1, 2. 

This contradicts the choice of g. Thus v, is injective. 
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To prove the continuity of rç-1, take a net {p\\ X G A} in G U 13(G) which 
converges to a point p in GU@(G). Since G* is compact, the net 
{v~1(P\)\ ^ € A} has a cluster point in G*, i.e., there exist a point £* G G* 
and a subnet {^-1(^xJ} °f the net {^_1(^x)l ^ € A} which converges to p* in 
G*. By the continuity of rj: G* —> G, the net {p\i\ converges to rj(p*). Hence 
P = v(P*) since G is a Hausdorff space. Thus r)~l{P) 1S a cluster point of the 
net \v~1(P\)\ X G A}. As in the proof of the previous proposition, it suffices 
to show that r)~l(p) is the only cluster point in G*. Suppose that there existed 
another cluster point q* G G* and a subnet {y)~l(p\j)\ of the net 

iv-'ipx)] x G A} 

such that {v^iPxj)} converges to q* in G*. For eve ry / G M(i?), 

/(8*) = H m / O r i f o , ) ) = l i m ^ ^ y ) =f(P) 

and similarly/(£*) = f(p). Thus we have 

/(£*) = /(<Z*) or équivalents / ( i ^ * ) ) = /(ij(<Z*)) 

for all / ^ M ( 4 Hence ri(q*) = r)(p*) = p G G W /3(G) and q* = £* since 
T?-1 is well-defined o n G U /5(G). 

The proof of the proposition is herewith complete. 

COROLLARY. Every f G M(G) &as a continuous extension to GW /3(G). 

3. Let ^ G be the class of Riemannian spaces on which there exist no 
Green's functions. It is known that the class HD(i?) of Dirichlet-finite 
harmonic functions on R consists of constants for R G û G (cf. [8] ). Throughout 
our discussion we understand that HD(i?) = {0} for R G û G. Thus the 
class HBD(i?) = {u G HD(i?) | sup^M < oo} is identical with UD(R) for 
R G 0 G- Our next question is: How many HBD-functions are there in the 
space HD(R) for an arbitrary Riemannian space R? 

First we prove the following result. 

LEMMA. Every f G M (R) has a unique decomposition in the form 

f = u + g, 

where u G HD(i^) and g G MA(R). In particular, u can he chosen as the 
CD-limit of a sequence in the space HBD(i^). 

Proof. By our convention HD(i?) = {0} for R G 0 G it suffices to prove 
the assertion for R G 0 G. 

First we assume t h a t / ^ 0 on R. For each n ^ 1 set/w = / C\ n G M(-R). 
Let {R^o™ be a regular exhaustion of R such that Ro and i^i are parametric 
balls at a fixed point po G i^. 

Since fn G M(i£), it has the unique decomposition 

Jn Un T &ni 
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where un 6 HBD(i?) and gn 6 UA(R). Here un = BD-lim 
m Wnm Oil R, with 

unm e M(R), unm 6 H(Rm), and ^ m = fn on i? - 2?OT (cf. [3]). 
Let wm be the harmonic measure of dRm with respect to Rm — J?i, i.e., 

wTO = 1 on ^ i , wm Ç H(i?w — .Ri), and wm = 0 on R — i?m. By Green's 
formula, 

-D«(/n — wM, T O = DRm-Bl(fn — unmi wm) 

= J (fn — Unm) *dwm 
*Jd{Rm-Ri) 

= I unm *dwm - I fn *dwm. 
*JdRi <sdRi 

Hence in view of *dwm ^ 0 on dRi and unm ^ 0 on R, we have 

I inf unm ) • DB(wm) = ( inf wnm I • ( - *dwm ) 

*-s. dRi 

^ - I fn *dwm + \DR(fn ~ Unm, Wm)\ 
JdRi 

^ (supfn) • DB(wm) + 2DB{fn)*DB(wm)K 
\ dRi / 

On the other hand, w = BD-limm wm exists on R and D B(wm) ^ DB(w) > 0 
since R $ Û G. Thus we obtain 

UnmiPo) û k inf unm g & inf unm 
dRo dRi 

g k\supfn + 2DB(fn)
h • Duty*)-*} ^ kisupf + 2Z?B(/)4 • DaW+î 

\ dRi J \ dRi J 

for all m and n ^ 1, where k = k(R0, Ri) is Harnack's constant fori^i. 
Since wn = BD-limm unm on J?, the sequence {un(p0)} is bounded. On taking 
a subsequence if necessary we may assume that {un(po)} is convergent. Since 
Un+v ~ fn) = (un+p - Un) + (gn+P - gn) is the decomposition of fn+v - fn in 
a lemma in [3, § 2, Lemma] we have 

DB(fn+v — fn) = DB(un+p — Un) + D B(gn+p — gn). 

Because of lim„ DR(fn+p — fn) = 0, the sequences \un} and \gn) are D-Cauchy 
on R. Thus by the convergence theorem in [8, p. 128], 

u = CD-limw un 

exists on R and u G HD(i^). Since / = CD-\\mnfn on R, g = CD-limw gn 

exists on R and g Ç 5/1 A CR) in view of the CD-completeness of MA(R). 
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For an arbi t rary / £ M(i?) we can construct decompositions of / U 0 and 
— / H O separately and combine them to obtain 

/ = u + g, 
where £ Ç M A ( ^ ) and u £ HD(R) is the CD-limit of a sequence in the 
space HBD(R). 

To prove uniqueness let / = u' + g' be another decomposition. Then 
v = u — u' = g' — g e HD(R) Pi MA(R). Choose a sequence {vm} in M0(i?) 
such that v = CD-limw vn on i?. Then DR(v,vm) = 0 by Green's formula 
and v is a constant on i?. Since v = 0 on A^, y = 0 on R, as desired. 

Using the above lemma we shall prove the following result (cf. [5; 4]). 

PROPOSITION 3. For an arbitrary Riemannian space R, the space HBD(R) 
is CD -dense in HD(i?). 

Proof. As we remarked earlier, we may assume that R (? Û G. By virtue of 
HD(i?) C M ( i ? ) , every u £ HD(i?) has a unique decomposition by the 
above lemma. Since u = u + 0 is such a decomposition, u is the CD-limit 
of a sequence in HBD(i^). This completes the proof. 

As a direct consequence we have the following result (cf. [5]). 

COROLLARY. The Virtanen identity 

is valid for Riemannian spaces. 

We are now ready to establish the maximum principle for HD-functions. 
It is one of the most important theorems in the study of HD-functions. In 
the case of a Riemann surface, the proof offers no difficulties since the double 
of a subregion can be used (cf. [7]). 

THEOREM 1. Let G be a subregion of an arbitrary Riemannian space R. If 
u £ HD(C7) has the property 

m ^ lim inf u(p) ^ lim sup u(p) ^ M 

for all a Ç ( G H A ^ U JG, then 

m :g u S M 
throughout the subregion G. 

Proof. It suffices to show that u ^ m on G whenever 

lim inf u(p) ^ m 
P£G,P^Q 

for all q £ (G r\ AR) U dG. We may assume that m > — co. Observe that 
every g £ M (G) has a continuous extension to G* and therefore to G [U 13(G) 
by the corollary in § 2. 
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Set 

En = iqe G lim inf u(p) ^ m — -

for all n ^ 1. It is easily seen that En is a closed set in TR — AR. Let vn be the 
Evans superharmonic function on R such that vn = oo on jEn and yB = 0 on 
A 22. For each e > 0 we have 

lim inf (u + eun) (p) > m — — 

for all g G G — G — En since ĉ w > 0 on R. 
By the above theorem there exists a sequence {un} in HBD(G) such that 

u = CD-limw ww on G. Since u-\- eon — CD- l im*^ + evn) on G and these 
functions are continuously extendable t o G U /3(G), 

(w + eO(g) = \imk(uk + e^)(g) 

for all q G Ew C 0(G). Since wfc is bounded on G and yw = oo on £w, we have 

lim inf (uk + evn) (p) = (uk + evn) (q) = oo 
p£G,p->q 

for all q G En. Thus we obtain 

lim inf (u + e^) (/>) > m — -
p£G,p-$q M 

for all g G G — Gand/z è l .Herew + evn is superharmonic on G and therefore 
# + evn > m — 1/n on G. On letting e —> 0 and then n —> oo we obtain the 
assertion. 

Among various consequences of the above theorem we state here the 
harmonic decomposition theorem (cf. [6; 4]). Recall that a compact subset 
K on R* is called a distinguished compact set if K = (K P R) and d(K P R) 
is smooth. 

THEOREM 2. Let K be a distinguished compact subset of R* and f a Dirichlet 
finite Tonelli function on R. Then 

(i) fhas a unique decomposition f = u + g, where u G M (R) P HD (R — K) 
and g G M A ( ^ ) with g = 0 on K, 

(iï)every h G MA(R) with h = 0 on K is orthogonal to u, i.e. DR(u, h) = 0, 
(iii) the Dirichlet principle is valid: DB(f) = DR(u) + DR(g), 
(iv) \u\ ^ supd(KnR)UAR\f\ on R - K, 
(v) if v is a superharmonic (subharmonic) function on R — K such that 

v ^ f (v è f) on R — K, then v ^ u (y S u) on R — K. Here we assume 
that KU AR 5*0. 
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