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Abstract

The growing need for agricultural products and the challenges posed by environmental and economic factors have
created a demand for enhanced agricultural systems management. Machine learning has increasingly been leveraged
to tackle agricultural optimization problems, and in particular, reinforcement learning (RL), a subfield of machine
learning, seems a promising tool for data-driven discovery of future farm management policies. In this work, we
present the development of CropGym, a Gymnasium environment, where a reinforcement learning agent can learn
crop management policies using a variety of process-based crop growth models. As a use case, we report on the
discovery of strategies for nitrogen application inwinter wheat. AnRL agent is trained to decideweekly on applying a
discrete amount of nitrogen fertilizer, with the aim of achieving a balance between maximizing yield and minimizing
environmental impact. Results show that close to optimal strategies are learned, competitive with standard practices
set by domain experts. In addition, we evaluate, as an out-of-distribution test, whether the obtained policies are
resilient against a change in climate conditions.We find that, when rainfall is sufficient, the RL agent remains close to
the optimal policy. With CropGym,we aim to facilitate collaboration between the RL and agronomy communities to
address the challenges of future agricultural decision-making.

Impact Statement

This study presents CropGym, an open simulation environment to conduct reinforcement learning research for
discovering adaptive, data-driven policies for farm management using a variety of process-based crop growth
models. With a use case on nitrogen management, we demonstrate the potential of RL to learn sustainable
policies that are competitive with standard practices set by domain experts.

1. Introduction

In recent years, smart farming technologies have been considered key enablers to reduce the usage of
chemicals (fertilizers and plant protection products) and to reduce greenhouse gas emissions to enable
reaching the Green Deal targets (Saiz-Rubio and Rovira-Más, 2020). A promising direction within smart
farming technology research focuses on developing decision support systems (DSSs). These human–
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computer systems aim at providing farmers with a list of advice for supporting their business or
organizational decision-making activities to optimize returns on inputs while preserving resources, within
(environmental) constraints. With the evolution of agriculture into Agriculture 4.0, thanks to the
employment of current technologies such as Internet of things, remote sensing, big data, and artificial
intelligence, DSSs of various kinds have found their way into agriculture. Examples include, but are not
limited to, applications for agricultural mission planning, climate change adaptation, food waste control,
plant protection, and resource management of water and nutrients (Zhai et al., 2020).

The backbone of a DSS typically consists of a set of models that provide a representation of the
environment and processes therein that are to be optimized. In particular, for resource management a
substantial share of DSSs is based on process-based crop growth models (Graeff et al., 2012). These
models mathematically describe the growth, development, and yield of a crop for given environmental
conditions, such as type of soil, weather, and availability of water and nutrients. The scientific community
offers numerous crop growth models with different levels of sophistication, limitations, and limits of
applicability (Di Paola et al., 2016; Jones et al., 2017). Widely used frameworks are APSIM (Holzworth
et al., 2014), DSSAT (Jones et al., 2003), and PCSE (de Wit, 2023), which contain models such as
LINTUL-3 (Shibu et al., 2010) and WOFOST (de Wit et al., 2019).

Generally speaking, there are two major ways in which crop growth models are utilized in a DSS to
derive crop management decisions (Gallardo et al., 2020): (1) Components in the model are exploited to
provide estimates of crop yield-limiting factors, such as (future) deficiencies of nutrients and water, and
(2) the model is employed as a specialized simulator to assess the impact of a set of (predefined) crop
management practices. For both cases, it is not trivial to find the optimal set of actions, as decisions have to
be made under uncertainty. For instance, driving factors for, for example, future nutrient uptake, such as
future weather conditions, are uncertain at the time the model is asked for advice on fertilizer application.

Finding an optimized sequence of (cropmanagement) decisions under uncertainty is a challenging task
for which machine learning has increasingly been leveraged. In particular, reinforcement learning (RL), a
subfield of machine learning, seems a relevant tool to tackle agricultural optimization problems (Binas
et al., 2019). RL seeks to train intelligent agents in a trial-and-error fashion to take actions in an
environment based on a reward signal. In RL, the environment is formally specified as aMarkov decision
process (MDP) S,A,T ,Rf g, with state space S, an available set of actions A, a transition function T , and a
reward function R. In the context of, for example, crop management, S may consist of (virtual)
measurements on the state of the crop, A may be dose of fertilizer to apply, T may be represented by a
simulation step of a crop growth model, and R may be defined as the (projected) amount of yield.

Recently, a few research works have introduced RL for the management of agricultural systems. For
instance, RL has been used for climate control in a greenhouse (Wang et al., 2020), planting, and pruning
in a polyculture garden (Avigal et al., 2022), fertilizer (Overweg et al., 2021) and/or water management
(Chen et al., 2021; Tao et al., 2022; Saikai et al., 2023), coverage path planning (Din et al., 2022), and crop
planning (Turchetta et al., 2022) in open-field agriculture. A comprehensive overview of reinforcement
learning for crop management support is given in Gautron et al. (2022b).

As is common practice in RL research in a pioneering stage, practically all mentioned works used
simulated environments. Some of these environments have been made publicly available as software
artifact. Examples that build on crop growthmodels includeCropGym (Overweg et al., 2021), an interface
to the Python Crop Simulation Environment (PCSE) (deWit, 2023), gym-DSSAT (Gautron et al., 2022a),
an integration of theDSSAT (Hoogenboom et al., 2019) cropmodels,CropRL (Ashcraft andKarra, 2021),
a wrapper around the SIMPLE crop model (Zhao et al., 2019), SWATGym (Madondo et al., 2023), a
wrapper around SWAT (Arnold et al., 2011), and CyclesGym (Turchetta et al., 2022), a wrapper around
Cycles (Kemanian et al., 2022). The mentioned examples are implemented with the Gymnasium toolkit
(Towers et al., 2023), which is a highly used framework for developing and comparing reinforcement
learning algorithms. By providing standardized test beds, efforts like these are instrumental in further
promoting and accelerating RL research for agricultural problems.

In this study, we present the development of CropGym, a Gymnasium environment, where a
reinforcement learning agent can learn farm management policies using a variety of process-based crop
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growth models. In particular, we report on the discovery of strategies for nitrogen application in winter
wheat and we evaluate the resiliency of the obtained policies against climate change. The focus on
nitrogen is motivated by the fact that (in rain-fed winter wheat) nitrogen is a key driver for yield, yet if
supplied in excessive amount it has a detrimental effect on the environment, including eutrophication of
freshwater, groundwater contamination, tropospheric pollution related to emissions of nitrogen oxides
and ammonia gas, and accumulation of nitrous oxide, a potent greenhouse gas (Zhang et al., 2015).

2. Methodology

2.1. CropGym

We developed CropGym, a Gymnasium environment, for farm management policies, such as fertilization
and irrigation, using process-based crop growth models. CropGym is built around the Python Crop
Simulation Environment (PCSE), a well-established open-source framework that includes implementations
of a variety of crop simulationmodels. The software is characterized by a high level of customizability. Input
parameters, such as crop characteristics, are easily configurable. For deriving driving variables, such as
weather information, a broad selection of sources is available. Furthermore, dedicated routines facilitate the
assimilation of observational data, such as field measurements. State parameters on crop growth and
development, as well as carbon, water, and nutrient balances, are simulated and outputted at daily time
steps. Farm management actions can be applied at the same resolution.

CropGym follows standard gym conventions and enables daily interactions between an RL agent and a
crop model. The code is designed in a modular fashion and allows users to flexibly and easily create
custom environments. Users can, for example, base action and reward functions on crop state variables,
such as water stress, nitrogen uptake, and biomass. As a backbone, a variety of (components of) crop
growth models can be selected or combined. CropGym is shipped with a set of preconfigured environ-
ments that allow for readily conducting RL research for farmmanagement practices. The source code and
documentation are available at https://www.cropgym.ai.

2.2. Use case

In this work, we present a use case on nitrogenmanagement in rain-fedwinter wheat. An agent was trained
to decide weekly on applying a discrete amount of nitrogen fertilizer, with the goal of balancing the trade-
off between yield and environmental impact.

In the following, we outline the components that comprise the environment of our use case.
State space S consists of the current state of the crop and a multidimensional weather observation, as

parameterized with the variables listed in Table 1.
Action space A comprises three possible fertilizer application amounts, namely {0, 20, 40} kg/ha.

Table 1. Crop growth and weather variables exposed in the state space S

Variable Meaning Unit

DVS Development stage –

TGROWTH Total biomass growth (above and below ground) g/m2
LAI Leaf area index –

NUPTT Total nitrogen uptake –

TRAN Transpiration mm/day
TNSOIL Total soil inorganic nitrogen gN/m2
TRAIN Total rainfall mm
TRANRF Transpiration reduction factor –

WSO Weight storage organs g/m2
IRRAD Incoming global radiation J/m2/day
TMIN Minimum temperature °C
RAIN Precipitation cm/day
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Reward function R constitutes the balance between the gain in yield and the (environmental) costs
associated with the application of nitrogen. R is formalized as follows:

rt = ðWSOπ
t �WSOπ

t�1Þ�ðWSO0
t �WSO0

t�1Þ�βNt, (2.1)

with t the timestep,WSO theweight of the storage organ (g/m2), andN the amount of nitrogen (g/m2). The
upper indices π and 0 refer to the agent’s policy and a zero nitrogen policy, respectively. Parameter β
determines the trade-off between increased yield and reduced environmental impact. Setting β≈ 2:0
corresponds to a reward that purely comprises economic profitability, since a kg of fertilizer is twice as
expensive as a kg of wheat (Agri23a, 2023; Agri23b, 2023). In this work, we present results for β = 10:0 to
emphasize the environmental costs.

Transitions are governed by the process-based crop model LINTUL-3 (light interception and utiliza-
tion (Shibu et al., 2010)) and the weather sequence. The model parameters have been calibrated to
simulate winter wheat in the Netherlands (Wiertsema, 2015; Berghuijs et al., 2023). Weather data were
obtained from the PowerNASA database for three locations in the Netherlands and one in France for the
years 1990 to 2022. An episode runs until the crop has reached maturity, which differs between episodes
because of weather conditions.

An RL agent was trained with proximal policy optimization (PPO) (Schulman et al., 2017) as
implemented in the Stable-Baselines3 library (Raffin et al., 2021). The environment was normalized
with the VecNormalize environment wrapper, a normalized reward, and observation clipping set to 10.
The discount factor γ was set to 1.0 as we aim to optimize the cumulative reward over the entire episode.
To reduce redundancy among the input data, we aggregated the time-series data: The weather sequence,
with size of 3x7 (i.e., features x days), was processed with an average pooling layer, yielding a feature
vector of size of 3x1. The crop features, with size of 9x7, were shrunk to 9x1, by taking the last entry for
each feature. Both resulting feature vectors were concatenated and subsequently flattened to obtain a
feature vector of size of 12. The policy and the value network were a multilayer perceptron with two
hidden layers, each of size of 128, and activation function tanh. Weights were shared between both
networks. The training was done on the odd years from 1990 to 2022 (the even years were reserved for
validation), withweather data from (52,5.5), (51.5,5), and (52.5,6.0) (°N,°E). The training ran for 400,000
timesteps using default hyperparameters. We selected PPO as our choice of RL algorithm due to its
consistent high performance in RL research and its robust nature (Schulman et al., 2017). We also
explored training a Deep Q-Network (DQN) (Mnih et al., 2013), which yielded similar results to those
obtained (see Appendix A).

Two baseline agents were implemented as a reference for the RL agent:
The standard practice agent (SP) applies a fixed amount of nitrogen that is the same for all episodes. SP

thereby reflects common practice, in which a predetermined amount of nitrogen is applied on three
different dates during the season (Wiertsema, 2015). The static amount of nitrogen SP applied is
determined by the optimization1 on the training set.

The Ceres agent applies an episode-specific amount of nitrogen, that is optimized1 for the episode it is
evaluated on. Effectively, Ceres has access to the weather data of the entire season, which contrasts with

1 For training the baseline agents such as Ceres and SP, we exploited a flaw in the nitrogen leaching component of LINTUL-3. In
LINTUL-3, the nitrogen loss is computed as a fixed fraction of the amount of applied fertilizer (i.e., one minus fertilizer recovery
fraction), regardless of timing and state dynamics, such as weather conditions. Any surplus of nitrogen is not leached, but remains
available for uptake throughout the growing season. In principle, if we do not put constraints on the action space, we may apply all
required nitrogen at once, right at the start of the season, thereby allowing for the elimination of the timing dimension of the problem.
In this setting, optimization of the fertilization policy is reduced to finding the right amount of fertilizer, which can be resolvedwith a
simple optimizer. Policies obtained by this strategy effectively mimic practices in which fertilizer is always applied in a timely
manner, since the crop never has to wait before the applied fertilizer becomes available.

Note that we cannot employ thementioned optimization regimewhen the action space is constrained. This premise is violated for
the RL agent, as its action space is limited to a discrete amount of fertilizer, with amaximum of 40 kg/ha per action. This prevents the
RL agent from applying all the fertilizer at once. Moreover, unlike the Ceres agent, the RL agent does not have access to future
weather conditions and thus does not know the rewards of its actions in advance. As such, for the RL agent the timing dimension of
the problem is preserved.
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the RL agent that only has access to current and past weather data. Ceres can thus base its actions on future
weather conditions and thereby reflects the upper bound of what any agent can achieve maximally.

We evaluated the performance of the implemented agents in the even years from 1990 to 2022 with
weather data from (52,5.5) (°N,°E). As performance metrics, we computed the cumulative reward, the
amount of nitrogen, and the yield, summarized as the median over the test years. For statistical analyses,
we performed 15 runs initialized with different seeds and used bootstrapping to estimate the 95%
confidence interval around the median.

As an out-of-distribution test, we evaluated the resiliency of the policy against a change in climate
conditions. For that, we deployed both the trained RL and the baseline agents in a more southern climate.
Practically, this was implemented by taking weather data from (48,0.0) (°N, °E), located in France, as
opposed to (48,0.0) (°N, °E), located in the Netherlands, used during training (see Figure 1).

To reestablish the upper bound, Ceres was tuned to the weather data from the southern climate; SP and
RLwere not retrained. The robustness of the RL (and SP) agents was evaluated by assessing how close the
agents’ performance remains to the optimum, as determined by Ceres.

3. Results

A reinforcement learning agent (RL) was trained to find the optimal policy for applying nitrogen that
balances yield increase and (environmental) costs. Two baseline agents were implemented for compari-
son: (1) The standard practice agent (SP) applies a fixed amount of nitrogen that does not differ between
episodes and (2) the Ceres agent applies an episode-specific amount of nitrogen. The amount of nitrogen
SP applied is determined by the optimization of the training set. Ceres, however, applies an amount of
nitrogen that is optimized for the episode it is evaluated on. Ceres thereby reflects the upper bound of what
any agent can achieve maximally.

Figure 1. Locations of the training (red) and out-of-distribution test (blue), with a CCAFS climate
similarity index (Villegas et al., 2011) of 1.0 (reference) and 0.573, respectively.
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Table 2 reports the performancemetrics for each of the three agents, summarized as themedian over the
test years, and its associated 95% confidence interval. The amount of nitrogen the RL agent applies, and
the resulting yield and cumulative reward are close to the upper bound, as reflected by Ceres. Comparing
the RL agent with the standard practice (SP), we see that RL applies more nitrogen, which results in a
higher yield. The cumulative reward RL achieves is competitive with SP.

Figure 2 (left and middle) shows for each test year the reward obtained and amount of nitrogen applied
by each of the three agents, as a function of the reward obtained and amount of nitrogen applied by Ceres.
Formost test years, RL is closer to Ceres than SP, in terms of both obtained cumulative reward and applied
nitrogen. For two test years (2006 and 2010), the optimal amount of nitrogen, as determined by Ceres, is
zero. In these years, which are characterized by a low amount of rainfall, the extra yield obtained by
applying nitrogen does not outweigh the costs. RL (and SP) fail(s) to limit the nitrogen application,
however, resulting in negative cumulative rewards. Figure 2 (right) shows for each test year the difference
in yield between the RL agent and the SP agent, as a function of the difference in invested nitrogen. The
diagonal shows the break-even line, for which the difference in reward is zero. Most test years, as well as
the median, are above the break-even line, demonstrating that the RL agent’s decision to apply a different
amount of nitrogen is adequate.

Figure 3 shows the evolvement of the actions and rewards of the RL agent during the growing season,
as summarized by the median over the test years. Typically, the RL agent waits until spring for its first
actions. The median number of fertilization events is 7.0 (95% CI 6.0–8.0). The median length of an
episode is 208 days (95% CI 205–211).

Table 2. Cumulative reward, nitrogen, and yield (median and associated 95% CI)

Agent Cumulative reward Nitrogen (kg/ha) Yield (tonne/ha)

Ceres 129.39 (73.34, 136.57) 183.0 (157.2, 211.1) 8.96 (8.41, 9.14)
SP 117.74 (67.47, 132.82) 170.7 (170.7, 170.7) 8.72 (8.13, 8.94)
RL 121.36 (67.96, 133.19) 180.0 (170.0, 200.0) 8.81 (8.24, 9.13)

ΔRL,SP +3.33 (�1.94, 10.89) +9.3 (�0.70, 29.3) +0.13 (�0.01, 0.39)
p = 0.1057 p = 0.0398 p = 0.0290

Figure 2. (a): Cumulative reward obtained and (b): nitrogen applied by each of the three agents. Each dot
depicts a test year (n=16). For most test years, RL is closer to Ceres than SP. (c): the difference in yield
between the RL agent and the SP agent as a function of the difference in the amount of nitrogen applied.
The dashed line indicates the break-even line, at which both agents achieve the same reward. Most test
years are above the break-even line, demonstrating that the RL agent’s choice of applying a different
amount of nitrogen is adequate.
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The main driver for applying nitrogen is rainfall. Pearson’s correlation coefficient between the total
amount of rainfall during the growing season and the total amount of nitrogen applied is 0.69 (95% CI
0.58–0.76) for Ceres and 0.63 (95% CI 0.12–0.82) for RL (see Figure 4).

3.1. Climate resilience

To assess the robustness of the learned policy against changing climate conditions, we deployed both
the trained RL and the baseline agents in a more southern climate. With a climate similarity index of
0.573, as determined with the CCAFS method (Villegas et al., 2011), using average temperature and
precipitation as weather variables, the southern climate differs substantially from the northern
climate. The southern climate is characterized by a higher average temperature (10.4 °C vs

Figure 3. Policy visualization of the RL agent: (a) cumulative reward obtained and (b) nitrogen applied.
Typically, the RL agent waits until spring for its first actions.

Figure 4. Scatter plot with regression lines of the average daily rainfall and the total amount of nitrogen
applied by all three agents for (a) the northern climate and (b) the southern climate. The optimal amount
of nitrogen, as determined by Ceres, depends substantially on rainfall. Presumably, the RL agent has
learned to adopt this general trend. In dry years, when lack of rainfall impairs yield and the optimal
amount of nitrogen is (close to) zero, the RL agent does not limit its nitrogen application sufficiently, as it
arguably sticks to the general trend. In years with sufficient rainfall, the RL agent acts in line with the
optimal policy. This effect is seen in both the northern climate and the southern climate.
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9.8 °C), less amount of average daily rainfall (1.92 mm vs 2.12 mm), and a shorter growing season
(200 days vs 208 days).

Table 3 reports the performancemetrics for each of the three agents deployed in the southern climate.
The maximally achievable cumulative reward and yield, as represented by Ceres, are lower than what is
obtained in the northern climate. In six years, namely 1990, 1992, 1996, 2004, 2006, and 2010, yield is
(partially) limited by a low amount of rainfall, resulting in low cumulative rewards. In these dry years,
the performance of the RL agent is suboptimal, as it does not limit its nitrogen application sufficiently.
Yet, the cumulative reward RL achieves is competitive with SP. In years with sufficient rainfall, the RL
agent remains close to the optimal policy, as is illustrated in Figure 4, just as we saw for the northern
climate.

4. Discussion

We presented CropGym, a Gymnasium environment, to study policies for farm management, such as
fertilization and irrigation, using process-based crop growth models. We developed a use case on
nitrogen fertilization in rain-fed winter wheat. A reinforcement learning agent was trained to find the
optimal timings and amounts for applying nitrogen that balance yield and environmental impact. The
agent was found to learn close to optimal strategies, competitive with standard practices set by domain
experts.

As an out-of-distribution test, we evaluated whether the obtained policies were resilient against a
change in climate conditions, with sound results. Yet, in years where yield is limited by a shortage of
rainfall, the performance of the RL agent was suboptimal. The adoption of more dry weather data in the
training through, for example, fine-tuning approaches, may improve these results. Other examples of out-
of-distribution tests with practical impact include variations in soil characteristics, such as organic matter
content.

Clearly, as is common in RL research, our experiments are done in silico, and it is an open question to
what extent our results transfer into the real world. (Crop growth) models are by definition simplifications
of reality, and thus, policies derived from these models are inherently subject to a simulation-to-reality
gap. Narrowing this gap can be achieved by employing an ensemble of different crop growth models
(Wallach et al., 2018). CropGym supports such a strategy by offering implementations of a variety of
process-based crop growth models.

To further bridge the gap between simulation and reality, digital twin technology could be
exploited (Pylianidis et al., 2021). A variety of sensors can be employed to synchronize digital
representations of crops with their physical counterparts (Jin et al., 2018; Jindo et al., 2023). Yet, the
acquisition of sensor data may come with high (monetary) costs. In this context, CropGym could be
utilized to train agents that are able to determine when and to what extent the environment should be
measured (Bellinger et al., 2021). In such a training, the agent chooses between either relying on the
simulated state of the crop or paying the cost to measure the true state and update the crop growth
model accordingly.

Table 3. Out-of-distribution results: cumulative reward, nitrogen, and yield (median and 95% CI) in
southern climate

Agent Cumulative reward Nitrogen (kg/ha) Yield (tonne/ha)

Ceres 95.15 (0.0, 157.67) 149.6 (0.0, 202.99) 8.60 (4.69, 9.60)
SP 89.43 (�67.02, 140.23) 170.7 (170.7, 170.7) 8.50 (5.80, 9.13)
RL 78.17 (�49.92, 142.65) 160.0 (140.0, 180.0) 8.45 (5.80, 9.13)

ΔRL,SP +4.52 (�4.85, 16.79) �10.70 (�30.7, 9.3) �0.04 (�0.17, 0.13)
p = 0.1792 p = 0.7244 p = 0.6459
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In this work, we incentivize the RL agent to generate environmentally friendly policies by negotiating
the environmental costs of nitrogen application in the reward function. An alternative approach would be
to set hard constraints on the total amount of nitrogen applied. Such could be achieved by building on the
works in the domain of (safety)-constrained RL (Liu et al., 2021), supported by, for example, OpenAI’s
dedicated Safety Gym benchmark suite (Ray et al., 2019). Another constraint that could be considered is
the number of fertilization events.

As an open simulation environment, CropGym can be used to discover adaptive, data-driven policies
that performwell across a range of plausible scenarios for the future.WithCropGym,we aim to facilitate a
joint research effort from the RL and agronomy communities to meet the challenges of future agricultural
decision-making and to further match farmers’ decision-making processes.
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A. Appendix. Results of DQN
In addition to training with PPO, we explored training a Deep Q-Network (DQN) (Mnih et al., 2013). Configurations were kept the
same as with PPO. We used the default settings of the (hyper)parameters, as set by Stable Baselines, except for (1) the number of
hidden units, which was set to 128x128, (2) the activation function, which was set to tanh, and (3) exploration_final_eps, whichwas
set to 0.01. The training ran for 400,000 timesteps.

Below, we report the key results, aggregated over five runs with different random seeds. Figure 5 demonstrates that for each test
year (a) the cumulative reward, (b) the amount of fertilizer, and (c) the yield obtained by theDQN agent closely resemble those of the
PPO agent. Table 4 shows that, similar to RLPPO, also RLDQN achieves results competitive with SP.

Figure 5. Scatter plot of PPO and DQN agent for (a): cumulative reward obtained, (b): nitrogen applied,
and (c): yield obtained. Each point depicts a test year (n = 32).
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Table 4. Cumulative reward, nitrogen, and yield (median and associated 95% CI) for DQN

Agent Cumulative reward Nitrogen (kg/ha) Yield (tonne/ha)

Northern climate
RLDQN 115.60 (59.73, 132.75) 200.0 (170.0, 210.0) 8.80 (8.18, 9.21)
ΔRLDQN ,SP +0.38 (�5.05, 9.87) +29.30 (�0.70, 39.30) +0.16 (�0.04, 0.41)

p = 0.4822 p = 0.0355 p = 0.0360

Southern climate
RLDQN 78.46 (�54.88, 144.71) 180.0 (150.0, 190.0) 8.48 (5.83, 9.33)
ΔRLDQN ,SP +1.34 (�6.85, 15.83) +9.30 (�20.70, 19.30) +0.02 (�0.18, 0.15)

p = 0.4043 p = 0.4734 p = 0.4726
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