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DIFFERENTIAL SEA-ICE DRIFT. II. COMPARISON OF
MESOSCALE STRAIN MEASUREMENTS TO LINEAR DRIFT
THEORY PREDICTIONS

By W. D. HisLer 111

(U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, New
Hampshire 03755, U.S.A.)

ABsTRACT. A comparison of mesoscale strain measurements with the atmospheric pressure field and the
wind velocity field indicate that the ice divergence rate and vorticity follow the local pressure and wind
divergence with significant correlation. For low atmospheric pressures and converging winds the divergence
rate was found to be negative with the vorticity being counter-clockwise. The inverse behavior was observed
for high pressures and diverging winds. This behavior was shown to agree with predictions based upon the
infinite boundary solution of a linearized drift theory in the absence of gradient current effects and using
the constitutive law proposed by Glen (1970) for pack ice. The best least-squares values of the constitutive
law parameters n and { were found to be & 10' kgfs. Using typical divergence rates these values yield
compressive stresses of the magnitude of 105 N/m which are similar to values suggested by the Parmerter
and Coon (1972) ridge model. In general, the infinite boundary solution of the linear drift equation indicates
that in a low-pressure region that is reasonably localized in space, the ice would be expected to converge for
high compactness (winter) and diverge for low compactness (summer).

Calculations were also carried out using a more general linear visco-elastic constitutive law that includes
memory effects and which includes a generalized Hooke’s law as well as the Glen law as special cases. A
best fit of this more general calculation with strain measurements indicates overall a better agreement with
viscous behavior than with elastic behavior, with the frequency behavior of the estimated “viscosities”
similar to the Glen law behavior at temporal frequencies less than ~o.01 h™".

Resumé. Entrainement différentiel de la glace de mer. II. Comparaison des mesures de déformation d’échelle inter-
médiaire aux prévisions de la théorie de ['entrainement linéaire. Une comparaison des mesures de déformation
d’échelle moyenne avec le champ de la pression atmosphérique et le champ de vitesse du vent montre que
le taux de mouvement et la vorticité de la glace suivent la pression locale et la divergence du vent avec une
corrélation significative. Pour des pressions atmosphériques faibles et des vents convergents, le taux de
divergence a été trouvé négatif et la vorticité dans le sens contraire des aiguilles d’une montre. Le comporte-
ment inverse a été observé pour de hautes pressions et des vents divergents. Ce comportement est conforme
aux prévisions basées sur la solution aux limites infinies de la théorie de I’entrainement linéarisé en I'absence
des effets des gradients de courant et en utilisant la loi constitutive proposée par Glen (1970) pour la banquise.
La meilleure valeur, par les moindres carrés, pour les paramétres 7 et { de la loi constitutive a été trouvée
étre d’environ 102 kg/s. En utilisant les taux de divergence classiques, ces valeurs donnent des efforts de
compression d’un ordre de grandeur de 105 N/m qui sont analogues aux valcurs suggérées par le modéle de
ride de Parmerter et Coon (1972). En général, la solution aux limites infinies de I"équation de I'entraine-
ment linéaire montre que, dans une région 4 basse pression raisonnablement localisée dans 'espace, on peut
s'attendre A ce que la glace converge pour les hautes compacités (hiver) et diverge pour les basses compacités
(été).

On a également effectué des calculs en utilisant une loi constitutive visco-élastique linéaire plus générale
qui admet des effets mémoires et qui inclue une loi de Hooke généralisée aussi bien que la loi de Glen comme
cas particulier, Un meilleur ajustement de ces calculs plus généraux avec les déformations mesurées indique
surtout que le comportement visqueux coincide mieux que le comportement élastique avec le comportement
des “viscosités” estimées en fonction de la fréquence. Ce phénoméne est semblable & celui qui serait con-
forme 4 la loi de Glen pour des fréquences dans le temps inférieures & environ o,01 h™"

ZUSAMMENFASSUNG. Differentielle Drift des Meereises. II. Vergleich von Spannungsmessungen mittleren Massstabes
mit Voraussagen der linearen Drift-Theorie. Aus dem Vergleich von Spannungsmessungen mittleren Massstabes
mit den Feldern des Luftdruckes und der Windgeschwindigkeit ergibt sich, dass die Geschwindigkeit der
Eisdivergenz und die Wirbelbildung der lokalen Druck- und Winddivergenz mit signifikanter Korrelation
folgen. Fiir niedrigen Luftdruck und konvergierenden Wind erwies sich die Divergenzgeschwindigkeit als
negativ mit Wirbelbildung im Gegenuhrzeigersinn. Umgekehrtes Verhalten stellt sich bei hohem Luftdruck
und divergierenden Winden ein. Dies stimmt mit Voraussagen aus ciner linearisierten Drift-Theorie iiberein,
die Effekte aus Gradientenstromen nicht beriicksichtigt und das Grundgesetz benutzt, das Glen (1970) fiir
Packeis vorgeschlagen hat. Die besten, ausgeglichenen Werte fiir die Parameter » und { des Grundgesetzes
haben die Grassenordnung 1012 kg/s. Mit typischen Divergenzgeschwindigkeiten liefern diese Werte Druck-
spannungen der Gréssenordnung 105 N/m, die dhnlich den Werten des Riicken-Modells von Parmerter und
Coon (1972) sind. Ganz allgemein lisst die Losung der linearen Drift-Gleichung in einem Gebiet mit
niederem Luftdruck erwarten, dass das Eis bei hoher Kompaktheit (im Winter) konvergiert und bei niedriger
Kompaktheit (im Sommer) divergiert.

457

https://doi.org/10.3189/50022143000023224 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000023224

458 JOURNAL OF GLACIOLOGY

Weitere Berechnungen stiitzten sich auf ein allgemeineres lineares viscoelastisches Grundgesetz, das
Gediichtnis-Effekte beriicksichtigt und ein verallgemeinertes Hooke’sches Gesetz ebenso wie das Glen’sche
Gesetz als Sonderfille enthdlt. Bringt man diese allgemeineren Bereehnungen in beste Ubereinstimmung
mit Spannungsmessungen, so erscheint durchwegs viskoses Verhalten wahrscheinlicher als elastisches;
dabei liegt das Frequenz-Verhalten der geschitzen ““Viskosititen” nahe bei den aus dem Glen’schen Gesetz
zu erwartenden Werten mit zeitlichen Frequenzen von weniger als ungefihr 0,01 h=,

SYMBOLS
B wind stress constant = p( f Ra/2)t
D water stress constant = py( fKy/2)}
f Coriolis vector
J~ Coriolis parameter equal to the magnitude of the Coriolis vector times the sine of the
latitude
F force due to internal ice stress
GG vorticity response function
H  divergence-rate response function
Ky eddy viscosity of air
Ky eddy viscosity of water

m ice mass per unit area

P atmospheric pressure

P spatial average of the atmospheric pressure

u ice velocity

Uy x component of geostrophic wind
v wind velocity

Vg y component of geostrophic wind 5

5(t) Dirac delta function: 8(t) = 0 if 1 # o, | §(t) dt =

- 00

ice divergence rate
bulk viscosity of ice
shear viscosity of ice
Ekman angle in water
mf
ice vorticity
air density
pw water density

Ta  air stress on ice
Tw waler stress on ice

¢ Ekman angle in air

w frequency in temporal Fourier transforms

-] a > o3 e b

INTRODUCTION

One of the more important uses of mesoscale strain measurements is the comparison of the
differential drift—i.e. strain results—with sea-ice drift theories, both to test the theories and
to determine certain unknown parameters. These comparisons provide a more critical
measure of certain constitutive law parameters than do comparisons involving the drift of
only a single point. To make such a comparison in this paper, we will utilize a linearized
drift theory similar to that used by Yegorov (1970, 1971), Rothrock (1973), and Witting
(1972). Such theories, although not as exact as other calculations (Campbell, 1965; Campbell
and Rasmussen, 1972), do suffice for quantitative estimates of the dominant drift effects.

Recent calculations using linear drift theories have generally been of two types. In the
first, as carried out independently by Rothrock and Witting, the average yearly circulation
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of the Arctic ice cover has been calculated assuming the ice is incompressible. Such calcula-
tions, although of considerable interest, are not directly comparable to mesoscale strain
measurements. In the second approach, as carried out by Yegorov, an approximate infinite
boundary solution is obtained to a linear drift theory that uses a shear viscosity to explain the
rheological behavior of the ice and neglects gradient-current effects—i.e. neglects geo-
strophic ocean flow below the surface boundary layer. This second approach yields results
more directly comparable to strain measurements.

For our comparison here, we will use a linear drift equation similar to that used by
Yegorov. The rheological behavior of the ice is taken into account by using the constitutive
law proposed by Glen (1970) which includes a bulk viscosity as well as a shear viscosity.
Later in the paper, calculations will be carried out using a more general linear visco-elastic
constitutive law that allows for memory effects and includes a generalized Hooke's law as well
as the Glen law as special cases. Like Yegorov, we will neglect gradient-current effects.

However, unlike Yegorov, we will formulate the infinite boundary solution without
approximation in terms of a linear response function. The resulting real-space solution
consists of a straight-forward integral operator which may be applied to the pressure field to
obtain the expected differential ice drift. This response-function form of the solution is
useful because it clearly illustrates the differences of ice drift behavior expected in winter as
opposed to summer. In addition the solution allows a rapid determination of the scales of
variation in the atmospheric pressure field that are important for given bulk and shear
viscosity values. Furthermore the comparison of strain measurements to pressurc data allows
an estimation of the bulk and shear viscosity parameters.

LINEAR DRIFT EQUATIONS

Following Yegorov’s example, we consider a steady-state equilibrium drift equation for the
case where the gradient-current term varies so slowly in space and time that it may be neg-
lected. By neglecting this term we are effectively considering the sea ice to be moving across a
stagnant ocean (see for example Rothrock, 1973). In this case the equilibrium equation

takes the form
—mfxattyt+T,+F =0 (1)

where u is the ice velocity, f the Coriolis vector, m the ice mass per unit area, F the force due
to internal ice stress, and Ty and T, the water and air stresses respectively. The components
of water and air stresses are given by a simple Ekman layer theory:

Taz = B (Uyg cos ¢— TV sin ¢),
Tay = B (Vg cos ¢+ Ug sin ¢), }
Twz = D (—ug cos 8-+uy sin ),

Twy = —D (g sin O+uy cos 8), }

(2)

(3)

where ¢ and 8 are the Ekman angles in the air and water respectively. The parameters B
and D are proportionality constants related to the turbulence coefficients for the atmosphere
and the ocean. For the classical Ekman layer solution (Sutton, 1953, p. 71), B and D are given
by p( f K/2)* where p and K are respectively the density and eddy viscosity of either air or
water. [y and Vg are the geostrophic wind components given by

) 1 2P )

R “
ot '
T o
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where p is the air density and P is the atmospheric pressure. In Equation (2) it is implicitly
assumed that the ice velocity is small compared to the wind velocity and may be neglected.
For F, the force due to internal ice stress, we use the constitutive law proposed by Glen (1970)

F — 7Vt {V(V-u) (5)
where { and 7 are bulk and shear viscosity constants that can vary with ice compactness and
therefore season. Calculations using a somewhat more general constitutive law are discussed
later.

ICE DRIFT SOLUTIONS

In our case we are interested primarily in the solutions of the linear drift equations for the
ice divergence rate, A(A = (fug/tx-+fuy/cy)) and ice vorticity w(w = §(Cuy/0x—tuz/cy)).
By taking the divergence and curl of Equation (1) we obtain the two linear equations for A

and @
[(n+{) V2—D cos 8]A+[A+Dsin 0] 2w = BEny o, (6)
_B
—[A4D sin ]A+[gV2—D cos 6] 2w = %M’ V2P, )

where A = mf. These equations represent a linear system with the input being the pressure
field P and the output being A and w. Such systems (Jenkins and Watts, 1968) may be
described by response functions in wave-number space f1i(k), /1(k) so that Ak) =
H,(k) P(k) and & (k) = H:(k) P(k) where we denote wave-number space functions with a
tilde and k = |k|. The response functions may be obtained straight-forwardly by Fourier
transforming Equations (6) and (7) yielding wave-number space equations

A(k) = 20 [1—H(k)] (8)
e+t i
e —B P(k) %
@ (k) = - 1—G(k)], (9)
where

£ k2[ (k2 +D cos 0) sin ¢— (A4 D sin ) cos ¢][n-+{]
t—H{k) = 5 De-folh sin DLt 1) no+-Dian-0) Bros 6)° ()

e E{[(n+ ) k*+D cos 8] cos ¢+ (A+D sin ) sin ¢} 7
1—Gk) — (11)

[A24D2+2DAsin 0+ (n+ ) nk*+D(2n+ L) k2 cos 6] °
By the convolution theorem these equations yield simple integral equations in real space.
For example,

M) = = [P —P' ()] (12)
where (using polar co-ordinates)
P =+ [Ho—n) | P 0y doer, (13)
and ’
= Lﬁf k) kFolkr) (14)
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It should be noted that these equations only apply exactly to an ice cover and pressure ficld
of infinite extent and, in fact, represent solutions using boundary conditions P(x), A(x), @w(x)
finite at x, y — 0. However, in practice they may be applied to a finite case with the
necessary extent of the ice cover and pressure field determined by the spatial extent of a finite
filter H(r) that approximates the wave-number response H(k) in Equation (10).

The wave-number space form of the response function H(k) and (?_(k) contain considerable
information. In the case of the divergence rate for 7, { large, 1—FH(k) is generally positive
for large k and negative or zero for small k. Thus the divergence rate is essentially the result
of a high-pass filtering operation on the pressure field with the high wave-numbers contri-
buting positively to the divergence rate and the low wave-numbers negatively with a smaller
amplitude. For the vorticity, the response function is also a high-pass filter, but there is no
change in the sign of the contribution from different wave-number components of the pressure
field. The wave-number of the filter cut-oft decreases as # and { increase. Thus different
types of behavior are expected for #, { small as compared to 7, { large. These different types
of behavior may be characterized by examining the two limiting cases , { =0 and 7y, { — co.

Limiting cases
For the first case noting that (1 —H(k))/(n+{) k* and (1 —G(k)) [nk? are finite as n, { — 0

we have
B =8 . [D (cos 8 sin ¢—sin 0 cos ¢) — A cos ]
ke Rl i X1 D* 2D sin 0 > (1)
B . . . :
Lim w(x) = —- V2P(x) [D (cos 8 cos ¢+sin 0 sin ¢)+ A sin $] . (16)

m,L—+0 QPf A2+DZ+QDA sin 0

Thus we see the well-known result that for equal Ekman angles and small 7, { the ice would
be expected to diverge in a low (V2P > o) and converge in a high, whereas the vorticity
will be positive (counter-clockwise) in a low and vice versa in a high.

For the second limiting case, we note that for 5, { very large, H(k) and G(k) pass only
the very long spatial wave-lengths with the pass band frequency cut-off scaling as 1/n and/or
1/{. Consequently the real-space response functions H(x) and (:(x) approach constants (with
integrated arcas of unmity) for very large =, {. Therefore fH(x—x’) P(x') dx’ and
J'G(x —x') P(x') dx’ approach the average pressure for large # and {; as a result the limiting
equations for large 5, { are

im A(x) = ———. (P(x)—P) si
,,,I;'I.Iflx.A‘z) 0 (P(x)—P) sin ¢, (17)
Lim =(x) = =" (P(x)—P) cos , (18)
™l o 2npf

where P is the mean pressure over the infinite x,y space which would be approximately
constant in time. For u, { large but finite, P would be replaced by the very low wave-number
components of the pressure field which would be expected to be reasonably constant in time
if the cut-off wave-length is longer than the synoptic variation scale of the pressure field.

As can be seen from Equations (17) and (18), in the limiting case of large 7, {, the diver-
gence rate and vorticity are proportional to the local pressure deviation from the overall
mean pressure with a low pressure indicating a convergence and a positive vorticity. Note
that there is no dependence on the water stress in this limiting case. In fact the case of large
n, { is equivalent to neglecting all stresses except the internal ice stress and wind stress. An
alternative derivation, for example, would be to delete the water stress and Coriolis terms
from Equations (6) and (7) and solve a boundary-value problem with (A—P) and (w+P)
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finite at x, y — 4 co. It is also important to note that the solution for large 7, { includes
lateral transfer of stress through the pack up to infinite distances via the P term. However,
this term becomes only a constant because the lateral stress averages out and thus A and w
follow the local pressure.

To the extent that o and { may be considered very large in the winter and small in the
summer, the two limiting cases suggest that sea ice (far from coastal boundaries) would be
expected to converge in a low in winter and diverge in a low in summer with vorticity always
positive in a low. Such predicted behavior agrees with earlier mesoscale strain measurements
(Hibler and others, 1973), with the more extensive results reported in this paper, and with
Soviet observations (Volkov and others, 1971). It is also what one would expect intuitively;
namely that in winter the ice is tightly held and cannot move rapidly, so that the water and
Coriolis forces would be expected to be smaller than in the summer.

Finally, we note that if we used a series solution for the drift, as given by Yegorov (1970),
it would be impossible to draw the above conclusions, because the series diverges for frequencies
higher than the high pass cut-off frequency in 1 —H (k).

Greneral case—wave-length dependence
Clearly, it is critical what the “cut-off wave-lengths” for 1—H(k) and 1—G(k) are.
To illustrate typical forms of F(k) and G(k) we used the following numerical values:
S = r4b6xro-+st
m = 3.0 % 10% kg/m?
8 = ¢ = 30°
p — 1.3 kg/ms
Ky = 1.5 X 10" m?/s
Ky =2.0X 1072 m?fs
B =49x1072kgs ! m2
D=118kgsTm2

Response
1o ————\orticity R
Divergence
Wove Lem)!m%
o8+ 9
1=H(k) J
sin ¢

(solid lines)
0.6+

04 1
1-Gl(k) |
cos¢ 1 i J

(dashed lines) ,"
0.2 /f' .
F4
Ve ~
® 7
//
0 T el 4
\_/
-0.2 i = L - 1
10° 10 10 10° 10 10°

Wave Length, km

Fig. 1. Wave-number space response functions for the divergence rate and vorticity of the ice pack for different values of o and L.
The response functions operate on the atmospheric pressure field.
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The results for different values of 5 and { are illustrated in Figure 1. For the /(k) curve the
key wave-length is the transition from positive to negative response. The results generally
indicate that for 5, { & 10'2kg/s, the “high wave-number” pressure variations are those
with wave-lengths shorter than z g ooo km. Since the synoptic scale for the Arctic is of the
order of 500 km (Yegorov, 1971), we would expect the limiting case of large 7, { to be reason-
ably valid for 9, { & 102 kg/s. Forn, { & 10% kg/s, on the other hand, the high wave-number
cut-off is such that one might expect the case of small », { to be more applicable. This wave-
length dependence explains why most calculations by Campbell (1965) and Campbell and
Rasmussen (1972) have indicated diverging ice in a low-pressure region. This is especially
true of the yearly average drift where the mean yearly pressure field contains few high wave-
number spatial variations.

Figure 1 also illustrates the importance of the scale over which the pressure field is con-
sidered. I'or example, consider » and { values such that the positive-negative transition in
H(k) is at about 1 0oo km. Then, if we consider a high-pressure system varying slowly in space
with few high-frequency components with wave-numbers greater than 1 ooo km~1, we would
expect the ice to converge. On the other hand, for a high-pressure system varying very
rapidly in space with significant variance at wave-numbers greater than 1000 km~1, we would
expect the ice to diverge. Clearly, it is very important to define the spatial scale used when
speaking of diverging or converging ice.

COMPARISON OF THEORY WITH MESOSCALE MEASUREMENTS

To determine how well the limiting forms of the predicted A and @ values for large 5 and {
and infinite boundaries compare with mesoscale observations reported in Hibler and others
(1974), we have made a comparison between the local pressure at the main AIDJEX 1972
Camp (located at roughly lat. 75° N., long. 148 W.), the measured divergence rate, and the
measured vorticity. The resulting time series are illustrated in Figure 2 with the dashed
portions of the deformation rates representing data taken while the mesoscale array was only
partially deployed. Calculation of the strain-rate and vorticity time series is described in some
detail in Hibler and others (1974). In addition to these three time series, Figure 2 also shows
the calculated divergence of the wind-velocity field and the fluctuations of the local pressure
from the average pressure over a region approximately 6oo km in diameter. The average
pressure P was estimated by taking the average of the camp pressure, four remote data buoy
pressures located around the camp about 300 km away, and the Point Barrow pressure.
For calculation of divergence of the wind velocity field we used local wind-speed and direction
measurements at each of the three manned stations. The distances and relative angles be-
tween the stations were taken as constant and estimated from position data for 19 March as
reported by Thorndike and others (1972). The basic computational equations are similar to
those used in the strain calculations (Hibler and others, 1974). All of the time series shown in
Figure 2 were smoothed with the same low-pass filter having a transition band from o-3/80
cycles/h (Hibler, 1972).

Correlation coeflicients were calculated between all five of the time series (excluding the
dashed portions of the divergence rate and vorticity) with the results listed in matrix form in
Table I. The standard error is based upon a number of degrees of freedom equal to the
number of points correlated multiplied by the fraction of the spectrum passed by the filter.

As can be seen from Figure 2 and Table I, there is a positive correlation between the local
pressure and the divergence rate and a negative correlation between pressure and vorticity,
as predicted by the limiting case of large viscosity in the linear drift theory. The results also
indicate that the time series of spatial pressure fluctuation is quite similar to that of camp
pressure and has a similar correlation to the divergence rate and vorticity. This generally
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Fig. 2. Comparison of experimental time series calculated from AIDFEX 1972 data. All curves were smoothed with a low
pass filter having a transition band from o lo 3/80 cycles per hour.

TasLE I. CORRELATION COEFFICIENT MATRIX BETWEEN TIME SERIES

u = ice velocity, v = wind velocity
(Standard error = 0.22)

Veou (Vxu)/2 pP—P P Vv
Vou I —0.44 0.41 0.34 0.38
(qug,l'? —0.44 T —0.54 —o0.46 —0.53
P— 0.41 —0.54 I 0.75 0.39
P 0.34 —0.46 0.75 I 0.21
Vv 0.38 —0.53 0.39 0.21 1
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indicates that the pressure field has considerable variance at wave-lengths shorter than
600 km and justifies to a limited extent the use of the infinite boundary solution for comparison.

The correlation between the vorticity and the divergence rate shows the expected negative
value with the magnitude of the vorticity being generally larger than the divergence rate.
In particular the ratio of the variance of the vorticity to that of the divergence rate is 3.8. The
correlations between the wind divergence and the local pressure and pressure fluctuations
are also positive indicating the expected wind convergence in a low-pressure region and vice
versa in a high.

With respect to correlation at higher temporal frequencies, there are indications that there
is little linear correlation between the pressure and the divergence rate at periods shorter than
24 h. This is reasonable since the atmospheric pressure variation is very nearly band-limited.

|
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Fig. 3. Spectra of atmospheric pressure and mesoscale ice divergence rate at the main AIDJEX 1972 camp.

This is illustrated by the spectra of the time series of the pressure and divergence rate given
in Figure 3. Clearly the pressure time series has comparatively little variance at periods shorter
than 24 h, which agrees with typical expected synoptic variation scales (Monin, 1972, p. 9).
The spectrum of divergence rate on the other hand is relatively flat although it does fall off by
about a factor of 2 at 24 h periods. These curves indicate that, although the meteorological
driving forces on the ice are relatively smooth, the response of the ice is more complex and
erratic in time, probably due to random bumping of flows and opening and closing of leads.

Estimales of constitutive law parameters v and {

Assuming that the limiting case of large viscosity in the linear drift theory is applicable to
our observed mesoscale deformation, we may estimate the viscosity parameters 5 and L
To do this we use the slopes of the regression lines of A and = upon P (using the curves in

Figure 2), and also, for comparison, the regression lines of A and = upon P—P. Equating
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these regression-line slopes to the predicted slopes in Equations (17) and (18) and inserting
numerical values for B, ¢, and f (as previously listed), we obtained the results shown in

Table I1.
TapLe II. EstimaTes oF 5 AND {
Regression line used | n+1¢
A, @ upon P (1.7040.73) X 10" kg/s (5.3 +3.34) % 1012 kgfs
A, w upon P—P (0.664-0.23) x 10'2 kg/s (1.9440.95) x 10'2 kg/s

According to the estimates in T'able 11, » and  are of the order of 10'2 kg/s with {, the
compressive viscosity, being somewhat larger than », the shear viscosity. This result agrees
with intuitive expectations, since one would expect the ice to offer greater resistance to pure
compression than to pure shear.

The table also shows that the estimates of n and { from different regression lines are quite
similar. This illustrates that much of the observed correlation between the pressure field and
the differential ice motion is due to higher (spatial) wave-number variations in the pressure
field. Such behavior suggests an explanation for why the infinite boundary solution works
reasonably well, since high wave-number variations may be extracted by a real-space response
function that is well limited in space. Response functions to extract lower wave-number
variations, on the other hand, extend much further spatially, so boundary effects would
consequently be expected to be more critical at lower wave-numbers.

It should also be noted that reducing B, the wind stress coefficient, would reduce » and ¢,
and cause the response function to be more limited in space. Keeping this factor in mind, it
is likely that our estimates of 5 and { are only approximate, and in general our deformation
results could be compatible with  and { values varying anywhere from 10! to 102 kg/s.

As regards the validity of the limiting case of large viscosity, by referring back to Figure 1
we see that, for values of %, { & 10" to 10'2 kg/s, the wave-number cut-off of the response
functions lies in the range 1 000 to 3 0ooo km. These wave-lengths are commensurate with or
larger than expected synoptic variations in the pressure field, so that the use of the limiting case
of large ), { appears to be justified for the data analyzed in this paper. However, for the
smaller wave-lengths in this range, the expected correlation would be primarily between the
high wave-number pressure components such as those estimated using #—P. The limiting
case of large n, { may also be justified for other boundary conditions (see Appendix).

It is interesting to note that compressive stresses predicted by our estimated values of 7
and { are reasonable in terms of the stresses predicted by Parmerter and Coon (1972). For
example, maximum values of A are of the order of 0.0004 h-' which yields, for { = 102 g/s,
a compressive stress of 1.1 % 105 N/m where we have used the Glen constitutive law. This is
close to the 0.1 to 0.4 % 105 N/m needed to cause ridging in 2 m ice by the ridge model of
bending failure of Parmerter and Coon. It is also similar to the maximum pressure difference
of 2 % 105 N/m obtained by Rothrock (1973) assuming the ice is incompressible.

Also of some interest is the numerical comparison of the calculated wind divergence rate
with that estimated from the curvature of the pressure field. T'o do this we take as an estimate
of the Laplacian —4(P—P)/5a* where @ = 300 km. Using the regression line of V-v upon
P—P, we find an observed relation which yields an Ekman angle of 44°. Certainly these
comparisons are only approximate, but they do indicate that the wind divergence estimated
from the pressure field using the geostrophic approximation and a constant Ekman angle is of
the same order of magnitude as the rate of wind divergence calculated directly.

A MORE GENERAL LINEAR CONSTITUTIVE LAW

The previous sections generally indicate that most of the dominant aspects of the observed
mesoscale drift behavior may be explained using a simple viscous rheology for ice. It is useful
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to see if better agreement can be obtained using a linear visco-elastic law including memory
effects. To do this we will carry out calculations using a more general constitutive law which
allows the *“‘viscosities” (bulk and shear) to vary with frequency and which can include both
elastic and viscous behavior. One such law that is computationally similar to the Glen law is
given by

F(l) = J.q(t—t') Vau(t)) di'+ f Lt—t') V(V-u(t)) dt’, (19)

Taking the temporal Fourier transform of this equation (for convenience we simply
replace ¢ by w to denote temporal transforms), we obtain

F(w) = g(w) V2u(w)+{(w) V(V-a(w) (20)

where 7(w) and {(w) are analytic in the upper half plane to guarantee causality. Two parti-
cular limiting cases of this law are

(a) Glen viscous law:
or, in frequency space:

n(t) = 78(1), }
(21)
L(t) = £8(1),

where 5 and { are constant viscosities.

(b) Generalized Hooke’s law:

j (23)
L(t) = L6(0),
where gl = (I) ; fg } (24)
or in frequency space:
t
7](“") = wtit uB ]
. (25)

2

w—+1€

C(w) = gJ

with € infinitesimal.

Note that for the Hooke’s law case n(w) and {(w) both decrease with decreasing frequency
and have a phase shift. The phase shift is the key indicator of elastic behavior.

Drift calculations using generalized law

It is clear that by using temporal transforms of all quantities the same formalism used for
the simple viscous calculation may be used for the more generalized calculations. In parti-
cular, Equations (6) through (11) may be formally extended to include the generalized
constitutive law by replacing all quantities with temporal Fourier transforms; for example
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A(x) > A(x, w); A(k) — A(k, w). The arguments about limiting cases also are similar except
that the magnitudes of n(w) and {(w) are now the determining factors. In particular for the
limiting case of |n(w)|, |{(w)|, we have by analogy to Equations (17) and (18) the results:

_ B[P(x, w) —P]sin ¢

Iﬂ(m)i.:l[il(ic:?l% o ol = (@) +L(w)] of e
. _ —B(P(x, w)—P) cos ¢
mmn.ﬁiﬁ?—) u ) = 2n(w) pf (27)

Comparison of general calculations with observations

To test Equations (26) and (27), we need to determine the coherence (and phase lag) at
different frequencies between the time series of ice deformation and that of atmospheric
pressure; in particular we would like to estimate 9(w) and {(w). To carry out such an estima-
tion, we note that for a linear system the frequency response function may be estimated
by a cross-spectral analysis (Jenkins and Watts, 1968, p. g52). Using the unfiltered time series
for A(t), =(t) and P(¢t) (the camp atmospheric pressure), a cross-spectral analysis was carried
out using the “lagged product” method. In Figure 4 we show the resulting coherency spectra
and phase angles. The convention for phase angle is such that a positive phase angle indicates

180

90

(deg)

Phase

-180-

o
N
T

Coherence

ool 002
Frequency (cycles/h)

Fig. 4. Coherency specira and phase between (a) vorticity and atmospheric pressure and (b) divergence rate and atmospheric
pressure. The 95%, confidence limits for the phase angles vary from - 20° to | 25°.
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a deformation signal lagging behind the atmospheric pressure. Using Equations (26) and
(27) as a model, a negative phase angle of go° would occur for a perfect Hooke’s law behavior.
In Figure 5 we illustrate the resulting amplitudes of n(w) and {{w) obtained from estimates of
the amplitude of the response functions of A and = upon P.

5.0x10°

T

40

3.0

2.0

Amplitude (kg /s)

1 1.
0] 0l .02
Frequency (cycles/h)

Fig. 5. Frequency dependence of the generalized bulk and shear viscosity amplitudes. The amplitudes were obtained using the
estimated response function of A and o upon P.

From Figure 5 we see that both the bulk and shear “viscosities” {(w) and n(w) exhibit
a general decrease in amplitude with increasing frequency. In Figure 4, the phase angle
does show some tendency to be negative, which is indicative of elasticity, especially in the
phase between vorticity and pressure at higher frequencies. However, the overall behavior
would generally seem to be more suggestive of a viscous behavior (o° phase angle) than of an
elastic one (—go® phase angle).

The decrease in the “viscosity” amplitudes with increasing frequency is plausible on
physical grounds. For example let us imagine forcing a simultancous sinusoidal oscillation
in the divergence rate and shear rate of a given region of pack ice. The displacements of the
oscillations will scale as 1/w. Consequently at very low frequencies the average compressive
stress magnitude over one cycle should be larger than at higher frequencies because the larger
compressive displacements might cause more thick ice to be crushed. Similarly the shear stress
should be larger for highly compressive ice; and since shear and dilatation deformations are
observed generally to occur simultaneously (Hibler and others, 1974), the magnitude of the
average shear stress for a cycle might be expected to increase with the increasing displace-
ment amplitude of the lower frequency cycles.

Referring back to Figure 3 we see that most of the atmospheric pressure variance is at
wave-lengths longer than 100 h. (g0, of the pressure variance in Figure 3 is in fact at wave-
lengths greater than 120 h.) The fact that {(w) and especially n(w) are relatively flat over
these wave-lengths (varying by a factor of about three), coupled with the small phase shifts
at low frequency, indicates that at low frequencies the limiting case of the Glen law (i.e.
n(w) and {(w) constant) is a good first approximation to the generalized constitutive law.
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Since a linear law of any kind is probably only an approximation of the true ice rheology, the
above results suggest that for most predictive purposes there is little advantage in using a more
generalized linear law as opposed to the Glen law.

ConcrLusions

The most obvious inadequacies of the comparison made here are the neglect of finite
boundaries in the drift predictions and the use of a simplified ice rheology. However the
calculations and comparisons in this paper do provide some helpful insight into expected
differential sea-ice drift for different ice conditions. Specifically this study indicates several
conclusions relative to AIDJEX.

1. The general agreement between the predictions of the infinite boundary linear drift
theory and observations indicates that the dominant aspects of the mesoscale differential drift
observed in the 1971 and 1972 AIDJEX pilot programs may be explained using simple
boundary conditions and straight-forward linear constitutive laws. Certainly more complete
calculations are needed to explain detailed drift behavior.

2. The solution of the linear drift calculation indicates the sensitive nature of differential
comparisons, in that smaller values of the constitutive law parameters 5 and { will not only
change the magnitude of the divergence rate but will completely change its sign.

3. With respect to spatial scales, the infinite boundary linear drift solution indicates that,
for long wave-length variations in ice deformation, the internal ice stress is unimportant,
whereas for short wave-length variations, the internal ice stress becomes critical. Consequently,
calculations of ice drift using the same viscous parameters may be quite different for pressure
fields varying slowly in space as opposed to these varying rapidly. For example, given
appropriate » and { values, it is possible to have the ice converge in a high-pressure system
covering most of the Arctic Basin and to diverge in a high pressure system covering only a
portion of the Arctic Basin.

Such spatial scaling effects may also have a bearing on comparisons on different time
scales, since the temporal mean of the pressure field over say a month, may vary more slowly
in space than the mean daily pressure does.

4. The cross-spectral study between the atmospheric pressure and ice deformation using
a gencralized linear constitutive law indicates that our observed strain results may be better
explained by a visco-elastic law including memory effects than by a simple viscous linear law.
However, at low temporal frequencies (<0 x0.01 h=1) the generalized law is similar to the
Glen viscous law, a fact which suggests that for general predictive purposes such a generalized
linear law will probably yield only slight improvement over the Glen law.

5. Finally, the fact that differential drift follows the local pressure field reasonably well
indicates that the ice velocity field may be rather non-linear. Consequently differential drift
estimation using long strain lines (& 100 ki) may not always adequately resolve high wave-
number variations in the ice velocity field.
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APPENDIX

RELATIVE MAGNITUDES OF DIFFERENTIAL DRIFT FORCES

A substitution of measured drift parameters into Equations (6) and (7) allows a direct assessment of the relative
magnitudes of the wind, water, and Coriolis stress terms independent of the value and functional form of the
internal ice stress and independent of boundary conditions. From Figure 2 we see that typical values for A, =
and V-v wind are given by A & 0.0002h~!, w & 0.0006 h™!, V-wy, & 0.14 h~*. Using Equation (6) and values of
B, D, 0, $, and f as mentioned earlier, we find that the wind stress term is about 10 to 20 times as large as the
water and Coriolis stress terms. This indicates that for differential drift the neglect of water strain and Coriolis
terms for compact conditions is reasonable, and thus justifies the use of the drift solution for large 7, {.

It is useful to contrast the differential drift results in this paper with regular drift. For the case of regular
(non-differential) drift, the ratio between wind and ice velocities is typically of the order of 50 or less (Reed
and Campbell, 1962; Skiles, 1968). Thus, since D/B x 50, for regular drift, water and Coriolis stress terms may
not be neglected. For differential drift as in this paper, on the other hand, the ratio of wind divergence to ice
divergence or vorticity is =300 so that water and Coriolis stresses are relatively small.
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